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Examples of constraints in function optimization - 1

Optimal control State constraints

@ “avoid the wall"
X(t) S [X/ow’Xhigh]

@ “abide by the speed limit"
X'(t) € [Viow, Vhigh]

@ “do not stress the pilot”
X”(t) € [a,ow, a/-,,'gh]

Physical constraints

< provides feasible trajectories in
path-planning

This consists in an infinite number of pointwise constraints!



Examples of constraints in function optimization - 2

Nonparametric estimation Shape constraints
@ nonnegativity
f(x)>0
4 AT o directional monotonicity
gﬁ 8,f(X) >0
' @ directional convexity
8?7:f(x) >0

/ 6 Side information /Requirements

— compensates small number of samples
or excessive noise

T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50
Time [h]

Applied in many fields: Biology, Chemistry, Statistics, Economics,...
With many techniques: Isotonic regression, density estimation with splines,...



Examples of constraints in function optimization - 3

o Global optimization of smooth (nonconvex) g:

¢ e
c>g(x),VxeX

o Density estimation with relative entropy:

min ~ [ log(F()antx) (= KLt pe) + )
fEC(X,R), [, F(x)dx=1 Jx

f(x)>0,VxeX
e Optimal transport in its dual formulation:

max [ u60dut) + [ vanly) (= OTe(u))

u,ve C(X,R)
u(x)+v(y)<c(x,y), Vx,yeXxX
Other problems/extensions: Joint Quantile Regression (JQR), handling constrained derivatives,
vector or SDP-valued functions,. . . methods presented in this talk used in [Aubin-Frankowski and Sz
Marteau-Ferey et al., 2020a, Vacher et al., 2021, Rudi et al., 2020, Muzellec et al., 2021]



Dealing with an infinite number of constraints: an overview

f € argmingegq, £(f) s.t. "0 < f(x), Vx € K", K C R? non-finite (compact)

o Discretize constraint at “virtual” samples {%n}meim C X,
< no guarantees out-of-samples [Agrell, 2019, Takeuchi et al., 2006]
@ Add constraint-inducing penalty, Reons(f) = —A [ min(0, f(x))dx
< no guarantees, changes the problem objective [Brault et al., 2019]
o Replace inequality by equality to nonnegative function ®(x) " Ad(x) then discretize
— generic: bounded amount of violation, extra SDP variable A [Muzellec et al., 2021]

Tightening

o Replace inequality by equality to nonnegative function ®(x)" A®(x) and optimize over A
< non-generic: only specific classes of functions [Marteau-Ferey et al., 2020b];
o Discretize but replace 0 by 7),[|f|| [Aubin-Frankowski and Szabé, 2020a]
< generic: no violation, second-order cone constraints, but extra tightening :



Table of Contents

@ Introduction to constrained problems
© Kernel methods for problem approximation

© Deriving bounds on the optimization error



Our battle horse: the Reproducing kernel Hilbert space (RKHS)

A RKHS (Hy, (-, )¢, ) is a Hilbert space of real-valued functions over a set X if one of the
following equivalent conditions is satisfied [Aronszajn, 1950]

Jk: X xX = Rs.t. k() = k(x,-) € Hy and f(x) = (f(-), k«(:))g¢, for all x € X and f € Hy
(reproducing property) J

[F(x) = TG = [(F = fo, k)il < IF = Fallicllkllie = I = Falliey/ k(x, x)

kiss.t. 30, : X — Hy s.t. k(x,y) = <¢k(x)7¢k()/)>9{k- d)k(X) = kx() J

kisst. G = [k (xj, )]’ ij=1 7 0 and 3 := span({k«(-) }xex). i.e. the completion for the
pre-scalar product (ky(-), ky(-))k,0 = k(x, )




Two essential tools for computations

Representer Theorem (e.g. [Schdlkopf et al., 2001a])

Let L : RV — R U {oo}, strictly increasing Q : R, — R, and

argmin L (F5)) ) + 21711

Then 3 (an)nein) € RY st (1) = 3 ,eqng ank(-, xa)

< Optimal solutions lie in a finite dimensional subspace of Hy.

Finite number of evaluations = finite number of coefficients

(" ank(-,%n)s D bmk(ym))sce = D Y. anbmk(xn, ym)

ne[N] mée[M] n€[N] me[M]

< On this finite dimensional subspace, no need to know (Hy, (-, )3, )-



A nice class of nonnegative functions: kernel Sum-of-Squares/PSD models

How to build a nonnegative function given a kernel ®4(x) = k(-,x)? Square it!
fix = (Dp(x), Pr(x))s, = k(x,x) >0
More generally take a positive semidefinite operator A € S*(Hy),

fa i x = (Pp(x), APy(x))ac, > 0

N N
(PSD model) A=Y a;0u(x) ® Pr(x;) = fa(x) = > ajk(x, xi)k(x, x;)
ij=1 ij=1
N N
(kernel SoS) [aj]ij = Zu u; (SVD) = fa(x Z Zu k(x, x7))?
i=1 j=1

Note that in general f4 ¢ H, but f4 € H) ® Hy (Hadamard product). If span({kx(-)}xex) is
dense in continuous functions, so are the {fa}acs+(3(,) in nonnegative functions



What | am looking for: an approximation framework

Example: optimizing over vector fields f : R? — RP constrained over compact set X to belong
to a set F(x)

Optimization over F 28 C(X,R) or L(x)

i minf e 5P /I(X,f(x))d,u(x)
=[f;...;fp

s.t.
f(x) e F(x),Vx e X




What | am looking for: an approximation framework

Example: optimizing over vector fields f : R? — RP constrained over compact set X to belong
to a convex set F(x)

Optimization over F 28 C(X,R) or L(x)

f=[f: .I.n.i;nfp] e 5P / 10, £())da(x)

S.t.
ci(x) f(x) + di(x) >0,Vie[l], Vx € X

Infinite number of affine constraints! [




What | am looking for: an approximation framework

Example: optimizing over vector fields f : R? — RP constrained over compact set X to belong
to a convex set F(x)

Optimization over F 2 C(X,R) or L(u) Empirical approx. through RKHS J{,

min //(X, f(x))du(x) minP Z 1(%n, f(Xn))_'_)\Hng«[f
f=[f;...;f] € TP f eIl nem

s.t. s.t.

ci(x) 'f(x) + di(x) > 0, Vi€ [l], Vx € X | cilxm) TF(xm) + di(xm) =2, Vi € [I], Vm € [M]

Infinite number of affine constraints! [




What | am looking for: an approximation framework

Example: optimizing over vector fields f : R? — RF constrained over compact set X to belong
to a convex set F(x)

Optimization over F 28 C(X,R) or L(u) Empirical approx. through RKHS J{,

min [0 80)dut) | min 3 TG Fn) A
f=[f;...;f] eFP fedl  nem

s.t. s.t.
ci(x) TF(x) + di(x) >0, Vie[l], yx e X | eilm) T (xm) + d,-(xm)z 2, Viell],Vvm e [M]

Infinite number of affine constraints! J Finite number of constraints for {xm}m C X!




Statement of simpler problem

Given points (xp)ne[n] € XN, aloss L : RN — RU {cc}, a regularizer R : R, — R, a RKHS
Hy of smooth functions from X to R and a compact set X C X.

70 ¢ arg min £(F) = L((F(x))neqp) + R (IFls5,)
f e ﬂ{k

s.t. 0<f(x), VxeX.

Idea to overcome non-finiteness: Discretize constraint at “virtual” samples {%n} mein C X,
use the fill distance: hy = sup,csc d(x, {%m}me[m)) to bound |L(FapProx) — [(0)]



Statement of simpler problem

Given points (xp)ne[n] € XN, aloss L : RN — RU {cc}, a regularizer R : R, — R, a RKHS
Hy of smooth functions from X to R and a compact set X C X.

7 € arg min £(f) = L ((F())pepy) + RIll,)
f e Hy
s.t. 0<f(x), VxeX.

Idea to overcome non-finiteness: Discretize constraint at “virtual” samples {%n} mein C X,
use the fill distance: hy = sup,csc d(x, {%m}me[m)) to bound |L(FapProx) — [(0)]

Semi-positive definite (SDP) relaxation

Second-order cone (SOC) tightening

[Rudi et al., 2020]

[Aubin-Frankowski and Szabé, 2020a]

nmllfll < £ (%m) (D(&m), AP(%m)) i = f(%m)
e.g. for k(x,y) = ¥(x —y) with extra variable A € ST (%)
v = /¥(0) — p(hy) x hy < 1 Relax by at most C(||f|| + Tr(A)) - (hm)® for

Tighten constraint by at most C||f|| - hy s-smooth Sobolev spaces



Deriving SOC constraints through continuity moduli
Take 6 > 0 and x s.t. ||[x — Xp| <6

[F(x) = F(&%m) = [(F(), k(x,-) = k(%m, -))i]

<NFOMe  sup — lk(x,-) = k(% )k
{x| lIx—%ml| <0}

nm(9)
wm(f,6) = sup  [f(x) = F(&n)| < nm(O)IF ()l
{x ] [Ix—%ml| <4}

For a covering X = U vy Bx(%m, 6m)

“0 < F(x), Vx € K" <= “wm(F,8) < F(%m), Ym € [M]"



Deriving SOC constraints through continuity moduli

Take 6 > 0 and x s.t. ||[x — Xp| <6

[F(x) = F(&%m) = [(F(), k(x,-) = k(%m, -))i]

<NFOMe  sup — lk(x,-) = k(% )k
{x| lIx—%ml| <0}

1m(9)
wm(f,0) == sup  [f(x) = (%) < mm(S)IF()llk
{x | llx—%ml| <o}
For a covering K C Ui By (Xm, Om)
“0 < f(x), Vx € K" <= “wn(f,0) < f(Xm), Vm € [M]*
< “Mm(OFC) < £(%m), Vm € [M]
Since the kernel is smooth, 6 — 0 gives n,(d) — 0.

There is also a geometrical interpretation for this choice of 7.



Support Vector Machine (SVM) is about separating red and green points by blue hyperplane.

13/28



Using the nonlinear embedding & : x — Dyk(x, ), the idea is the same. With only the green
points, it is a one-class SVM [Schélkopf et al., 2001b]



The green points are now samples of a compact set XK.



The image ®(X) is not convex...



The image ®(X) is not convex, can we cover it by balls of radius 7?



First cover X C [U{Xm + dB}, and then look at the images ®({X, + JB})



Cover the ®({Xy, + 0B}) with tiny balls! This is how SOC was defined.



For SDP relaxation (a.k.a. kernel Sum-Of-Squares), it is rather like inflating an ellipsis. . .



For SDP relaxation (a.k.a. kernel Sum-Of-Squares), it is rather like inflating an ellipsis until it
reaches all the points to interpolate



Second-order-cone (SOC) tightening Semi-positive definite (SDP) relaxation

Ball covering in the RKHS Kernel Sum-Of-Squares (kSOS)
Protecting the points from all sides, thus Leverages smooth interpolation and relaxing,
“slower" convergence thus “faster" convergence

In both cases, SOC or SDP constraints instead of affine — extra computational price



Nested constraint sets

V_e
Vspp
Vo
Vsoc
Ve

Fill distance: hy = sup d(X7 {)?m}mé[l\/l])
xeX

={f € Hy|f(x) > —¢, Vx € K}

= {f € Hy |3A € ST(Hy), F(%m) = (D(Zm), AP(Xm))k, ¥V m € [M]},
={f e Hy|f(x) >0, Vx € K},

= {F € 9| (m) = |, ¥ m € [M]},

={f e Hy|f(x)>e€ Vx € X}



Nested constraint sets

Fill distance:  hy = sup d(x, {%m} me[m)
xeX

V_e i ={f € Hy|f(x) > —¢, Vx € K}
Vspp = {f € Hi|3A € ST(Hy), f(Zm) = (®(%m), AP (Xm))k, ¥ m € [M]},
Vo = {f € Hy|f(x) >0, Vx € K},
Vsoc :={f € Hy | f(%m) > nmllfllk, Vm e [M]},
Ve i={f € Hy|f(x) > € Vx € K}

Proposition (Informal nestedness)
Under some assumptions on the kernel (e.g. Sobolev), there exists explicit constants Csoc and
Cspp, such that for hy = sup,cq d(X, {Xm}me[m)) and any R >0
€>Csoc-R-hy = (VeNRBk) C Vsoc C Vo
€> Cspp-R-(hm)° = (RBxN Vo) C (RBxNVspp) C V_
If L is B-Lipschitz, then |L(F0) — L(F°9C)| < BCsoc - R - hy. If f° has a quadratic expression,
then |£(f0) = ﬁ(fSDP)| < BCspp-R - (hM)S




Nested constraint sets - decreasing optima sequence

Voo i={f € Hy|f(x) > —¢, Vx € K}
Vspp = {f € Hy HA S 5+(g‘fk),
f(km) = (®(%m), A®(Sm))k, ¥ m € [M]},
Vo :={f € Hy|f(x) >0,Vx € K},
Vsoc :=A{f € Hi | f(%m) = nullflk, ¥ m € [M]},
Ve i={f € Hy|f(x) > € Vx € X}

For R > ||f°||«, we have

L(F) < L(FRPP) < L(F0) < L(F2°€) < L(F9)



Nested constraint sets - decreasing optima sequence

L(F7) < L(FRPT) < £(F) < £(F*°) < £(F)
Idea: find a g. € Hy such that ||ge[[x < w(e) where

w:Ry = Ry A, and such that f~¢+ g. € Vy,
thus under some f3-Lipschitz assumption on L,

L(F76)

SOC: e > Csoc - R - hy
SDP/kSOSZ ExX CSDP -R- (hM)s



Example 1: solving LQ control with state constraints through KRR

Original control problem

1
i / lu(2)Pdt
0

z(-)ew?2,u(-)el?
s.t.
2(0) =0, 2(0)=0,
7(t) = —z(t) + u(t), Vt € [0,1],
2(t) € [ziow(t), zup(t)], V£ € [0, 1].

Optimal trajectory with SOC constraints (ball covering)

4+
= = Optimal trajectory with discretized constraints (n = 0)
Upper/Lower constraints zjpu,m and zym
St | ar | |
0 0.2 0.4 0.6 0.8 1



Example 2: Estimation of monotone/convex production functions

Only 25 points selected out of 543, checking generalization properties for various constraints
(used as side information)
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(a) NoCons (b) SOC Monot.



Example 2: Estimation of monotone/convex production functions

Only 25 points selected out of 543, checking generalization properties for various constraints
(used as side information)
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(c) SOC Conv. (d) SOC Conv.+Monot.



Example 2: Estimation of monotone/convex production functions

Only 25 points selected out of 543, checking generalization properties for various constraints
(used as side information)

0.6 o - —Train (27 points - 5% of total)
g ‘ | —Test (272 points - 50% of total)
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NoCons SOC Conv. SOC Monot. SOC Conv.+Monot.

Figure: MSE as a function of incorporating shape constraints with the proposed SOC technique.
NoCons: no constraint. SOC Monot.: two monotonicity constraints. SOC Conv.: one convexity
constraint. SOC Conv.4+Monot.: one convexity and two monotonicity constraints.



Final remarks

“Finite coverings in RKHSs can be used to turn an infinite number of
pointwise affine constraints over a compact set into finitely many
SOC inequality/SDP equality constraints."

“Bounding the constraint perturbation made by discretizing allows to
easily assess rates of convergence.’



To go beyond

@ Handle state constraint in LQ control through the LQ kernel

— PCAF, Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel
methods, SIAM Journal on Control and Optimization, 2021

@ Tackle SDP and derivative constraints with SOC constraints

— PCAF and Zoltan Szabé, Handling Hard Affine Shape Constraints in RKHSs, under
review, 2021

@ Use kernels for learning vector fields and nonlinear systems

— Coming in soon!

More to be found on https://pcaubin.github.io/


https://pcaubin.github.io/

To go beyond

@ Handle state constraint in LQ control through the LQ kernel

— PCAF, Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel
methods, SIAM Journal on Control and Optimization, 2021

@ Tackle SDP and derivative constraints with SOC constraints

— PCAF and Zoltan Szabé, Handling Hard Affine Shape Constraints in RKHSs, under
review, 2021

@ Use kernels for learning vector fields and nonlinear systems

— Coming in soon!

More to be found on https://pcaubin.github.io/

Thank you for your attention!


https://pcaubin.github.io/

Example 3: Joint Quantile Regression (JQR)

0.9

08

0.7

0.6

0.5

04r

031

02r

0.1

Y——q=01

q=0.5
q=0.9

0

-08 -06 -0.

f-(x) conditional quantile over (X, Y):
P(Y < f(x)|X = x) =7 €]0,1].

Estimation through convex optimization over
“pinball loss" I-(-) (i.e. tilted absolute value
[Koenker, 2005]).

Known fact: quantile functions can cross when
estimated independently.

Joint quantile regression with non—crossing constraints

Z 37 by (Vo — falxn) + 2 D Ifall2

qe[Q] ne[N] q€[Q]



Pairing non-crossing quantiles with other shape constraints

Engel's law (1857): “As income rises, the proportion of income spent on food falls, but
absolute expenditure on food rises.”

-1 -0.5 0 0.5 1 1.5
without constraints



Pairing non-crossing quantiles with other shape constraints

Engel's law (1857): “As income rises, the proportion of income spent on food falls, but
absolute expenditure on food rises.”

-1 -0.5 0 0.5 1 1.5 -1 -0.5 0 0.5 1 1.5

without constraints non-crossing constraints



Pairing non-crossing quantiles with other shape constraints

Engel's law (1857): “As income rises, the proportion of income spent on food falls, but
absolute expenditure on food rises.”

-1 -0.5 0 0.5 1 1.5 -1 -0.5 0 0.5 1 15

without constraints non-crossing--increasing



Pairing non-crossing quantiles with other shape constraints

Engel's law (1857): “As income rises, the proportion of income spent on food falls, but
absolute expenditure on food rises.”

-1 -0.5 0 0.5 1 1.5 -1 -0.5 0 0.5 1 15

without constraints non-crossing-increasing+-concave



Time-varying state-constrained LQ optimal control

Jin vo(x()) + 8(x(T))

}
tx(tep) T rerx(trer) + / [X(0)TQ(Ox(2) + u(t) R(t)u(t)] dt

to

s.t. X (t) = A(t)x(t) + B(t)u(t), a.e. in[ty, T],
ci(t) ' x(t)< di(t), Vit e T, Vie[I]=[1,7],
o state x(t) € R?, control u(t) € RP,

@ reference time t,f € [to, T], set of constraint times T, C [to, T],
o x(-) : [to, T] — R? absolutely continuous, R(-)*/2u(-) € L?([to, T])



Time-varying state-constrained LQ optimal control

i Xa(x(to)) + 8(x(T)) S Lx(8)jep)

(b)) + [ [OTQUOK +u(OR@uO] de <Ol

s.t. X (t) = A(t)x(t) + B(t)u(t), a.e. in[ty, T],
ci(t) ' x(t)< di(t), Vit e T, Vie[I]=[1,7],
o state x(t) € R?, control u(t) € RP,

@ reference time t,f € [to, T], set of constraint times T, C [to, T],
o x(-) : [to, T] — R? absolutely continuous, R(-)*/2u(-) € L?([to, T])

S:={x:[to, T] = R?|3 R(-)l/zu(-) € L%(tg, T) s.t. X'(t) = A(t)x(t) + B(t)u(t) a.e. }

Given x(-) € S, for the pseudoinverse B(t)® for || - |[r, set u(t) %= B(t)°[x/(t) — A(t)x(t)].
(S,(-,-)g) is a (vector-valued) RKHS with an explicit kernel [Aubin-Frankowski, 2021]!



Optimal control: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

min  —x(T) + \Mu()|]? !
o (T) + MluC)z20,7)

(x(0) =05, X(0)=0, w(0)=0, x(T/3)=05 x(T)=0
(%(t) = —10x(t) + w(t), w(t) =u(t),ae in[0, T]
(x(t) € [-3,+00, w(t) €[-10,10],Vt € [0, T]]
[ N

x(t) w(t)

Vi(t)=u(t)

(t)



Optimal control: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

min - —x(T) + Mu(-)||? A< 1
oI s (T) + M)z, 1)

(x(0) =05, %(0)=0, w(0)=0, x(T/3)=05 x(T)=0
(%(t) = —10x(t) + w(t), Ww(t) = u(t),ae in[0, T]|
(x(t) € [-3,+00[, w(t) €[-10,10],Vt € [0, T]]

Converting affine state constraints to SOC constraints, applying rep. thm

sl x()llk = *(tm) <3, x(-) = K(-,0)po + K(-, T/3)PT/3
Mw[x()llk + w(tm) < 10, M
NwllX(-)llk — w(tm) < 10 +K(, T)pT + mZ::l K(-, tm)Pm

Most of computational cost is related to the “controllability Gramians"
Ki(s,t) = fomm(s’t) e(s=ABBTe(*="AT 47 which we have to approximate.



Optimal control: constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]]

Angle x() Velocity x(-) Couple w(-)

6r

-0.21

-0.41

SOC constraints (N,=200)

-0.61 discretized constraints

0 0.5 1 0 0.5 1 0 0.5 1



Optimal control: constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]]
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i 1o e L
3 318 gl
5l
) ol

04} N4

2t
SOC constraints (N,=200) a3l
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. . 4 . '
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Optimal control: constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]]

04t

-0.6F

Angle x()

N,=200
N,=400
N,=800

Velocity x(-)
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0.5




Optimal control: constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]]

04t
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n,,~ 0.05 (guaranteed)
n,~0.01
n,,~ 0.001
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