
State-constrained Linear-Quadratic Optimal Control is a
shape-constrained kernel regression

Pierre-Cyril Aubin-Frankowski

INRIA Paris - SIERRA

ORCOS VC, Vienna 2022

1/28



2/28

Where to use Machine Learning in control theory?
Many objects can be learnt depending on the available data

Trajectory x : t ∈ [t0,T ] 7→ RQ

Control u : t ∈ [t0,T ] 7→ RP

Vector field f : (t, x , u) 7→ RQ

Lagrangian L : (t, x , u) 7→ R ∪ {∞}
Value function VT ,xT : (t0, x0) 7→ R ∪ {∞}

Which one should we try to approximate?

What is the most principled/theoretically grounded application of
kernel methods?

Trajectories of linear systems belong to a reproducing kernel
Hilbert space (RKHS)!

State constraints are then easy to satisfy!
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Time-varying state-constrained LQ optimal control

min
x(·),u(·)

χx0(x(t0)) + g(x(T ))

+x(tref )>Jref x(tref ) +
∫ T

t0

[
x(t)>Q(t)x(t) + u(t)>R(t)u(t)

]
dt

s.t. x′(t) = A(t)x(t) + B(t)u(t), a.e. in [t0,T ],
ci(t)>x(t)≤ di(t), ∀ t ∈ Tc ,∀ i ∈ [I] = [[1, I]],

state x(t) ∈ RQ, control u(t) ∈ RP ,
reference time tref ∈ [t0,T ], set of constraint times Tc ⊂ [t0,T ],
A(·) ∈ L1(t0,T ), B(·) ∈ L2(t0,T ), Q(·) ∈ L1(t0,T ), R(·) ∈ L2(t0,T ),
Q(t) < 0 and R(t) < r IdM (r > 0), ci(·), di(·) ∈ C0(t0,T ), Jref � 0,
lower-semicontinuous terminal cost g : RQ → R ∪ {∞}, indicator function χx0 ,

x(·) : [t0,T ]→ RQ absolutely continuous, R(·)1/2u(·) ∈ L2([t0,T ])
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Time-varying state-constrained LQ optimal control

min
x(·),u(·)

χx0(x(t0)) + g(x(T )) → L(x(tj)j∈[J])

+x(tref )>Jref x(tref ) +
∫ T

t0

[
x(t)>Q(t)x(t) + u(t)>R(t)u(t)

]
dt → ‖x(·)‖2S

s.t. x′(t) = A(t)x(t) + B(t)u(t), a.e. in [t0,T ],
ci(t)>x(t)≤ di(t), ∀ t ∈ Tc ,∀ i ∈ [I] = [[1, I]],

state x(t) ∈ RQ, control u(t) ∈ RP ,
reference time tref ∈ [t0,T ], set of constraint times Tc ⊂ [t0,T ],
A(·) ∈ L1(t0,T ), B(·) ∈ L2(t0,T ), Q(·) ∈ L1(t0,T ), R(·) ∈ L2(t0,T ),
Q(t) < 0 and R(t) < r IdM (r > 0), ci(·), di(·) ∈ C0(t0,T ), Jref � 0,
lower-semicontinuous terminal cost g : RQ → R ∪ {∞}, indicator function χx0 , “loss
function“ L : (RQ)J → R ∪ {∞},
x(·) : [t0,T ]→ RQ absolutely continuous, R(·)1/2u(·) ∈ L2([t0,T ])
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Why are state constraints difficult to study?

Theoretical obstacle: Pontryagine’s Maximum Principle involves not only an adjoint vec-
tor p(t) but also measures/BV functions ψ(t) supported at times where the constraints are
saturated. You cannot just backpropagate the Hamiltonian system from the transversality
condition.

Numerical obstacle: Time discretization of constraints may fail e.g.

Speed cameras in traffic control

In between two cameras, drivers always break
the speed limit.
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Reproducing kernel Hilbert spaces (RKHS)
A RKHS (Fk , 〈·, ·〉Fk ) is a Hilbert space of real-valued functions over a set T if one of the
following equivalent conditions is satisfied [Aronszajn, 1950]

∃ k : T × T → R s.t. kt(·) = k(·, t) ∈ Fk and f (t) = 〈f (·), kt(·)〉Fk for all t ∈ T and f ∈ Fk
(reproducing property)

the topology of (Fk , 〈·, ·〉Fk ) is stronger than pointwise convergence
i.e. δt : f ∈ Fk 7→ f (t) is continuous for all t ∈ T.

|f (t)− fn(t)| = |〈f − fn, kt〉Fk | ≤ ‖f − fn‖Fk‖kt‖Fk = ‖f − fn‖Fk

√
k(t, t)

For T ⊂ Rd , Sobolev spaces Hs(T,R) satisfying s > d/2 are RKHSs.{
H1
0 = {f | f (0) = 0, ∃f ′ ∈ L2(0,∞)}
〈f , g〉H1

0
=
∫∞
0 f ′g ′dt ←→ k(t, s) = min(t, s).

Other classical kernels
kGauss(t, s) = exp

(
−‖t − s‖2Rd/(2σ2)

)
kpoly(t, s) = (1 + 〈t, s〉Rd )2.
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Two essential tools for computations

Representer Theorem (e.g. [Schölkopf et al., 2001])
Let L : RN → R ∪ {∞}, strictly increasing Ω : R+ → R, and

f̄ ∈ arg min
f ∈Fk

L
(

(f (tn))n∈[N]

)
+ Ω (‖f ‖k)

Then ∃ (an)n∈[N] ∈ RN s.t. f̄ (·) =
∑

n∈[N] ank(·, tn)

↪→ Optimal solutions lie in a finite dimensional subspace of Fk .
Finite number of evaluations =⇒ finite number of coefficients

Kernel trick

〈
∑
n∈[N]

ank(·, tn),
∑

m∈[M]
bmk(·, sm)〉Fk =

∑
n∈[N]

∑
m∈[M]

anbmk(tn, sm)

↪→ On this finite dimensional subspace, no need to know (Fk , 〈·, ·〉Fk ).
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Vector-valued reproducing kernel Hilbert space (vRKHS)

Definition (vRKHS)

Let T be a non-empty set. A Hilbert space (FK , 〈·, ·〉K ) of RQ-vector-valued functions defined
on T is a vRKHS if there exists a matrix-valued kernel K : T × T → RQ×Q such that the
reproducing property holds:

K (·, t)p ∈ FK , p>f(t) = 〈f,K (·, t)p〉K , for t ∈ T, p ∈ RQ, f ∈ FK

There is a one-to-one correspondence between K and (FK , 〈·, ·〉K )
[Micheli and Glaunès, 2014], so changing T or 〈·, ·〉K changes K .
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Representer theorem in vRKHSs

Theorem (Representer theorem with constraints, P.-C. Aubin, 2021)

Let (FK , 〈·, ·〉K ) be a vRKHS defined on a set T. For a “loss“ L : RN0 → R ∪ {+∞}, strictly
increasing “regularizer“ Ω : R+ → R, and constraints di : RNi → R, consider the optimization
problem

f̄ ∈ arg min
f∈FK

L
(
c>0,1f(t0,1), . . . , c>0,N0f(t0,N0)

)
+ Ω (‖f‖K )

s.t.
λi‖f‖K ≤ di(c>i ,1f(ti ,1), . . . , c>i ,Ni f(ti ,Ni )), ∀ i ∈ [[1,P]].

Then there exists {pi ,m}m∈[[1,Ni ]] ⊂ RQ and αi ,m ∈ R such that

f̄ =
∑P

i=0
∑Ni

m=1 K (·, ti ,m)pi ,m with pi ,m = αi ,mci ,m.
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Objective: Turn the state-constrained LQR into “KRR“
We have a vector space S of controlled trajectories x(·) : [t0,T ]→ RQ

S[t0,T ] := {x(·) | ∃u(·) ∈ L2(t0,T ) s.t. x′(t) = A(t)x(t) + B(t)u(t) a.e. }
Given x(·) ∈ S[t0,T ], for the pseudoinverse B(t)	 of B(t), set

u(t) := B(t)	[x′(t)− A(t)x(t)] a.e. in [t0,T ].
〈x1(·), x2(·)〉S := x1(tref )>Jref x2(tref )

+
∫ T

t0

[
x1(t)>Q(t)x2(t) + u1(t)>R(t)u2(t)

]
dt

LQR for Q ≡ 0, R ≡ Id

min
x(·)∈S
u(·)∈L2

L(x(tj)j∈[J]) + ‖u(·)‖2L2(t0,T )

ci(t)>x(t) ≤ di(t), t ∈ Tc , i ∈ [I]

“KRR“ (Kernel Ridge Regression)

min
x(·)∈S

L(x(tj)j∈[J]) + ‖x(·)‖2S

ci(t)>x(t) ≤ di(t), t ∈ Tc , i ∈ [I]

Is (S, 〈·, ·〉S) a RKHS?
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u(t) := B(t)	[x′(t)− A(t)x(t)] a.e. in [t0,T ].
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+
∫ T

t0

[
x1(t)>Q(t)x2(t) + u1(t)>R(t)u2(t)

]
dt

Lemma (P.-C. Aubin, SICON 2021)
(S[t0,T ], 〈·, ·〉S) is a vRKHS over [t0,T ] with uniformly continuous K (·, ·; [t0,T ]).
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Splitting S[t0,T ] into subspaces and identifying their kernels
It is hard to identify K , but take Q ≡ 0, R ≡ Id, tref = t0, Jref = Id

〈x1(·), x2(·)〉S := x1(t0)>x2(t0) +
∫ T

t0
u1(t)>u2(t)dt.

S0 := {x(·) | x′(t) = A(t)x(t), a.e. in [t0,T ]} ‖x(·)‖2K0 = ‖x(t0)‖2

Su := {x(·) | x(·) ∈ S and x(t0) = 0} ‖x(·)‖2K1 = ‖u(·)‖2L2(t0,T ).

As S = S0 ⊕ Su, K = K0 + K1.

Since dim(S0) = Q, for ΦA(t, s) ∈ RQ×Q the state-transition
matrix s → t of x′(τ) = A(τ)x(τ)

K0(s, t) = ΦA(s, t0)ΦA(t, t0)>.

K1 obtained using only the reproducing property and variation of constants

K1(s, t) =
∫ min(s,t)

t0
ΦA(s, τ)B(τ)B(τ)>ΦA(t, τ)>dτ .



11/28

Splitting S[t0,T ] into subspaces and identifying their kernels
It is hard to identify K , but take Q ≡ 0, R ≡ Id, tref = t0, Jref = Id

〈x1(·), x2(·)〉S := x1(t0)>x2(t0) +
∫ T

t0
u1(t)>u2(t)dt.

S0 := {x(·) | x′(t) = A(t)x(t), a.e. in [t0,T ]} ‖x(·)‖2K0 = ‖x(t0)‖2

Su := {x(·) | x(·) ∈ S and x(t0) = 0} ‖x(·)‖2K1 = ‖u(·)‖2L2(t0,T ).

As S = S0 ⊕ Su, K = K0 + K1. Since dim(S0) = Q, for ΦA(t, s) ∈ RQ×Q the state-transition
matrix s → t of x′(τ) = A(τ)x(τ)

K0(s, t) = ΦA(s, t0)ΦA(t, t0)>.

K1 obtained using only the reproducing property and variation of constants

K1(s, t) =
∫ min(s,t)

t0
ΦA(s, τ)B(τ)B(τ)>ΦA(t, τ)>dτ .



11/28

Splitting S[t0,T ] into subspaces and identifying their kernels
It is hard to identify K , but take Q ≡ 0, R ≡ Id, tref = t0, Jref = Id

〈x1(·), x2(·)〉S := x1(t0)>x2(t0) +
∫ T

t0
u1(t)>u2(t)dt.

S0 := {x(·) | x′(t) = A(t)x(t), a.e. in [t0,T ]} ‖x(·)‖2K0 = ‖x(t0)‖2

Su := {x(·) | x(·) ∈ S and x(t0) = 0} ‖x(·)‖2K1 = ‖u(·)‖2L2(t0,T ).

As S = S0 ⊕ Su, K = K0 + K1. Since dim(S0) = Q, for ΦA(t, s) ∈ RQ×Q the state-transition
matrix s → t of x′(τ) = A(τ)x(τ)

K0(s, t) = ΦA(s, t0)ΦA(t, t0)>.

K1 obtained using only the reproducing property and variation of constants

K1(s, t) =
∫ min(s,t)

t0
ΦA(s, τ)B(τ)B(τ)>ΦA(t, τ)>dτ .



12/28

Examples: controllability Gramian/transversality condition

Steer a point from (0, 0) to (T , xT ), with e.g. g(x(T )) = ‖xT − x(T )‖2N

Exact planning (x(T ) = xT )

min
x(·)∈S
x(0)=0

χxT (x(T )) + 1
2‖u(·)‖2L2(t0,T )

Relaxed planning (g ∈ C1 convex)

min
x(·)∈S
x(0)=0

g(x(T )) + 1
2‖u(·)‖2L2(t0,T )

x(0) = 0⇔ x(·) ∈ Su. Representer theorem: ∃pT , x̄(·) = K1(·,T )pT

Controllability Gramian

K1(T ,T ) =

∫ T

0

ΦA(T , τ)B(τ)B(τ)>ΦA(T , τ)>dτ

x̄(T ) = xT ⇔ xT ∈ Im(K1(T ,T ))

Transversality Condition

0 = ∇
(
p 7→ g(K1(T ,T )p) +

1
2
p>K1(T ,T )p

)
(pT )

= K1(T ,T )(∇g(K1(T ,T )pT ) + pT ).

Sufficient to take pT = −∇g(x̄(T ))



13/28

Relation with the differential Riccati equation

Take tref = T , Jref = JT � 0. Let J(t,T ) be the solution of

-∂1J(t,T ) = A(t)>J(t,T ) + J(t,T )A(t)
−J(t,T )B(t)R(t)−1B(t)>J(t,T ) + Q(t),

J(T ,T ) = JT ,

Theorem (P.-C. Aubin, 2021)
Let Kdiag : t0 ∈]−∞,T ] 7→ K (t0, t0; [t0,T ]). Then Kdiag(t0) = J(t0,T )−1. More generally,
K (·, t; [t0,T ]) is given by a matrix Hamiltonian system for all t ∈ [t0,T ]

∂1K (s, t) = A(s)K(s, t) + B(s)R(s)−1B(s)>
{
Π(s, t) + ΦA(t0, s)> −ΦA(t, s)>, s ≥ t,

Π(s, t) + ΦA(t0, s)>, s < t.

∂1Π(s, t) = −A(s)>Π(s, t) + Q(s)K (s, t),
Π(t0, t) = −IdN ,
K (t,T ) = −J−1T (Π(T , t)> + ΦA(t,T )−ΦA(t0,T )).
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Relation with the differential Riccati equation

x̄(·) := arg min
x(·)∈S[t0,T ]

x(T )>JT x(T ) +
∫ T

t0
[x(t)>Q(t)x(t) + u(t)>R(t)u(t)]dt︸ ︷︷ ︸

‖x(·)‖2S

s.t.
x(t0) = x0,

Pontryagine’s Maximum Principle (PMP)
p(t) = −J(t,T )x̄(t) and ū(t) = R(t)−1B(t)>p(t) = −R(t)−1B(t)>J(t,T )x̄(t) =: G(t)x̄(t)
↪→ online and differential approach

Representer theorem from kernel methods
x̄(t) = K (t, t0; [t0,T ])p0, with p0 = K (t0, t0; [t0,T ])−1x0 ∈ RQ

↪→ offline and integral approach (∼ Green kernel in PDEs)
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Numerical example: submarine in a cavern

Original control problem

min
z(·)∈W 2,2,u(·)∈L2

∫ 1

0
|u(t)|2dt

s.t.
z(0) = 0, ż(0) = 0,
z̈(t) = −ż(t) + u(t), ∀t ∈ [0, 1],
z(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1].
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x =
(
z
ż

)
, A =

(
0 1
0 -1

)
, B =

(
0
1

)

Rewriting in standard form

min
x(·)∈W 1,2,u(·)∈L2

∫ 1

0
|u(t)|2dt

s.t.
x(0) = 0,
x′(t) a.e.= Ax(t) + Bu(t),
z1(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1]
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RKHS regression
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x(·) ∈ Su
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Numerical example: submarine in a cavern

RKHS regression

min
x(·) ∈ Su

‖x(·)‖2K1

s.t.
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Van Loan’s trick for time-invariant Gramians

Use matrix exponentials as in [Van Loan, 1978]

exp
((

A Qc
0 −A>

)
∆
)

=
(
F2(∆) G2(∆)

0 F3(∆)

)

F̂2(t) = eAt

F̂3(t) = e−A>t

Ĝ2(t) =
∫ t

0
e(t−τ)AQce−τA

>dτ

K1(s, t) =
∫ min(s,t)

0
e(s−τ)ABB>e(t−τ)A>dτ

Set QC = BR−1B>.

For s ≤ t, K1(s, t) = Ĝ2(s)F̂2(t)>

For t ≤ s, K1(s, t) = F̂2(s)Ĝ2(t)>
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Dealing with an infinite number of constraints

No representer theorem for: c(t)>x(t) ≤ d , ∀t ∈ [0,T ]

Discretize on {tm}m∈[M] ⊂ [0,T ]?

ηm‖x(·)‖K +

c(tm)>x(tm) ≤ d , ∀m ∈ [[1,M]]

No guarantees!
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ηm‖x(·)‖K + c(tm)>x(tm) ≤ d , ∀m ∈ [[1,M]]

No guarantees!

Second-Order Cone (SOC) constraints: {f | ‖Af + b‖K ≤ c>f + d}

SOC comes from adding a buffer, ηm > 0, to a discretization, {tm}m∈[M].

LP⊂ QP ⊂ SOCP ⊂ SDP
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Dealing with an infinite number of constraints

No representer theorem for: c(t)>x(t) ≤ d , ∀t ∈ [0,T ]

Discretize on {tm}m∈[M] ⊂ [0,T ]?

ηm‖x(·)‖K + c(tm)>x(tm) ≤ d , ∀m ∈ [[1,M]]

No guarantees!

Second-Order Cone (SOC) constraints: {f | ‖Af + b‖K ≤ c>f + d}

SOC comes from adding a buffer, ηm > 0, to a discretization, {tm}m∈[M].

How to choose ηm? The choice ηm‖x(·)‖K is related to continuity moduli:
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Deriving SOC constraints through continuity moduli

Take δ ≥ 0 and t s.t. |t − tm| ≤ δ

|c(t)>x(t)− c(tm)>x(tm)| = |〈x(·),K (·, t)c(t)− K (·, tm)c(tm)〉K |
≤ ‖x(·)‖K sup

{t | |t−tm|≤δ}
‖K (·, t)c(t)− K (·, tm)c(tm)‖K︸ ︷︷ ︸

ηm(δ)

ωm(x , δ) := sup
{t | |t−tm|≤δ}

|c(t)>x(t)− c(tm)>x(tm)| ≤ ηm(δ)‖x(·)‖K

For a covering [0,T ] =
⋃
m∈[M][tm − δm, tm + δm]

“c(t)>x(t) ≤ d , ∀t ∈ [0,T ]“⇐ “c(tm)>x(tm) + ωm(x , δ) ≤ d ,∀m ∈ [M]“
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|c(t)>x(t)− c(tm)>x(tm)| = |〈x(·),K (·, t)c(t)− K (·, tm)c(tm)〉K |

≤ ‖x(·)‖K sup
{t | |t−tm|≤δ}

‖K (·, t)c(t)− K (·, tm)c(tm)‖K︸ ︷︷ ︸
ηm(δ)

ωm(x , δ) := sup
{t | |t−tm|≤δ}

|c(t)>x(t)− c(tm)>x(tm)| ≤ ηm(δ)‖x(·)‖K

For a covering [0,T ] =
⋃
m∈[M][tm − δm, tm + δm]

“c(t)>x(t) ≤ d , ∀t ∈ [0,T ]“⇐ “c(tm)>x(tm) + ηm‖x(·)‖ ≤ d ,∀m ∈ [M]“
‖K(·, t)c(t)− K(·, tm)c(tm)‖2K :=c(t)>K(t, t)c(t) + c(tm)>K(tm, tm)c(tm)

− 2c(tm)>K(tm, t)c(t)

Since the kernel is smooth, for c(·) ∈ C0, δ → 0 gives ηm(δ)→ 0.
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Deriving SOC constraints through continuity moduli

Take δ ≥ 0 and t s.t. |t − tm| ≤ δ

|c(t)>x(t)− c(tm)>x(tm)| = |〈x(·),K (·, t)c(t)− K (·, tm)c(tm)〉K |
≤ ‖x(·)‖K sup

{t | |t−tm|≤δ}
‖K (·, t)c(t)− K (·, tm)c(tm)‖K︸ ︷︷ ︸

ηm(δ)

ωm(x , δ) := sup
{t | |t−tm|≤δ}

|c(t)>x(t)− c(tm)>x(tm)| ≤ ηm(δ)‖x(·)‖K

For a covering [0,T ]⊂
⋃
m∈[M][tm − δm, tm + δm]

“c(t)>x(t) ≤ d(t),∀t ∈ [0,T ]“⇐ “c(tm)>x(tm) + ηm‖x(·)‖ ≤ dm, ∀m ∈ [M]“

with dm := inft ∈ [tm−δm,tm+δm] d(t).
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From affine state constraints to SOC constraints
Take (tm, δm) such that [0,T ] ⊂ ∪m∈[[1,NP ]][tm − δm, tm + δm], define

ηi(δm, tm) := sup
t ∈ [tm−δm,tm+δm]∩[0,T ]

‖K (·, tm)ci(tm)− K (·, t)ci(t)‖K ,

di(δm, tm) := inf
t ∈ [tm−δm,tm+δm]∩[0,T ]

di(t).

We have strengthened SOC constraints that enable a representer theorem

ηi(δm, tm)‖x(·)‖K+ ci(tm)>x(tm) ≤ di(δm, tm), ∀m ∈ [[1,NP ]],∀ i ∈ [[1,P]]

⇓

ci(t)>x(t) ≤ di(t), ∀ t ∈ [0,T ], ∀ i ∈ [[1,P]]

Lemma (Uniform continuity of tightened constraints)

As K (·, ·) is UC, if ci(·) and di(·) are C0-continuous, when δ → 0+, ηi(·, t) converges to 0 and
di(·, t) converges to di(t), uniformly w.r.t. t.
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SOC tightening of state-constrained LQ optimal control

Problem of time-varying linear quadratic optimal control with finite horizon and affine
inequality state constraints

with SOC tightening

min
x(·) ∈ S[t0,T ]

χx0(x(t0)) + g(x(T )) + ‖x(·)‖2K

s.t.
ci(t)>x(t) ≤ di(t), ∀ t ∈ [t0,T ],∀ i ∈ [I],

with [t0,T ] ⊂
⋃
m∈[M][tm − δm, tm + δm], and two values defined at each tm

ηi(δm, tm) := sup
t ∈ [tm−δm,tm+δm]∩[0,T ]

‖K (·, tm)ci(tm)− K (·, t)ci(t)‖K ,

di ,m := inf
t ∈ [tm−δm,tm+δm]∩[t0,T ]

di(t).

Actually also works for ball constraints ‖x(t)‖p ≤ 1 and variations!
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Main theoretical result in P.-C. Aubin, SICON, 2021

(H-gen) A(·),Q(·) ∈ L1 and B(·),R(·) ∈ L2, ci(·) and di(·) ∈ C0.
(H-sol) ci(t0)>x0 < di(t0) and there exists a trajectory xε(·) ∈ S satisfying strictly the affine

constraints, as well as the initial condition.1
(H-obj) g(·) is convex and continuous.

Theorem (∃/Approximation by SOC constraints, P.-C. Aubin, 2021)

Both the original problem and its strengthening have unique optimal solutions. For any ρ > 0,
there exists δ̄ > 0 such that for all (δm)m∈[[1,N0]], with [t0,T ] ⊂ ∪m∈[[1,N0]][tm − δm, tm + δm]
satisfying δ̄ ≥ maxm∈[[1,N0]] δm,

1
γK

sup
t∈[t0,T ]

‖x̄η(t)− x̄(t)‖ ≤ ‖x̄η(·)− x̄(·)‖K ≤ ρ

with γK := supt∈[0,T ], p∈BN

√
p>K (t, t)p.

1(H-sol) is implied for instance by an inward-pointing condition at the boundary.
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Main practical result in P.-C. Aubin, SICON, 2021

Problem of time-varying linear quadratic optimal control with finite horizon and affine
inequality state constraints with SOC tightening

min
x(·) ∈ S[t0,T ]

χx0(x(t0)) + g(x(T )) + ‖x(·)‖2K

s.t.
ηi(δm, tm)‖x(·)‖K + ci(ti ,m)>x(ti ,m) ≤ di ,m, ∀m ∈ [Mi ], ∀ i ∈ [I].

By the representer theorem, the optimal solution has the form

x̄(·) =
P∑
j=0

Nj∑
m=1

K (·, tj,m)p̄j,m,

where t0,1 = t0 and t0,2 = T , and the coefficients
(p̄j,m)j,m solve a finite dimensional second-order cone problem.
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Main practical result in P.-C. Aubin, SICON, 2021

More precisely, setting t0,1 = t0 and t0,2 = T , the coefficients of the optimal solution
x̄(·) =

∑P
j=0

∑Nj
m=1 K (·, tj,m)p̄j,m solve

min
γ∈R+,

pj,m∈RN ,
αj,m∈R

χx0

 P∑
j=0

Nj∑
m=1

K (t0, tj,m)p̄j,m

+ g

 P∑
j=0

Nj∑
m=1

K (T , tj,m)p̄j,m

+ γ2

s.t. γ2 =
P∑
i=0

Ni∑
n=1

P∑
j=0

Nj∑
m=1

p>i ,nK (ti ,n, tj,m)pj,m,

pj,m = αj,mcj(tm), ∀m ∈ [[1,Nj ]], ∀ j ∈ [[1,P]],

ηi(δi ,m, ti ,m)γ +
∑P

j=0
∑Nj

m=1 ci(ti ,m)>K (ti ,m, tj,m)pj,m
≤ di(δi ,m, ti ,m),

∀m ∈ [[1,Ni ]],
∀ i ∈ [[1,P]], .

which can be written equivalently as a finite dimensional second-order cone problem (SOCP).
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Take-home messages

“State-constrained LQ Optimal Control is a shape-constrained kernel
regression.“

“Controlled trajectories have the adequate structure to use kernel
methods, most of all for path-planning.“

“In general, positive definite kernels are much too linear to tackle
nonlinear control problems → Linearize! “
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Future work: Pushing RKHSs beyond/Revisiting LQR

For RKHSs

Control constraints do not correspond to continuous evaluations
↪→ limits of RKHS pointwise theory (e.g. x ′ = u ∈ L2([0,T ], [−1, 1]) a.e.)

Successive linearizations of nonlinear system lead to changing kernels
↪→ a single kernel may not be sufficient (e.g. x ′ = f[xn(·)]x + f[un(·)]u a.e.)

Non-quadratic costs for linear systems do not lead to Hilbert spaces
↪→ one may need Banach kernels (e.g. ‖u(·)‖2L2(0,T ) → ‖u(·)‖L1(0,T ))

For control theory

To each evaluation at time t corresponds a covector pt ∈ RQ

↪→ Representer theorem well adapted for state constraints, but unsuitable for control
constraints. Reverts the difficulty w.r.t. PMP approach.

The Gramian of controllability generates trajectories
↪→ This allows for close-form solutions in continuous-time.
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Future work and open questions

Extending results to linear PDE control->done

Extending results to Gramian of observability & Kalman filter->almost done

This talk summarizes
Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel methods, Aubin, SIAM
J. on Control and Optimization, 2021
Interpreting the dual Riccati equation through the LQ reproducing kernel, Aubin, Comptes Rendus.
Mathématique, 2021

The code is available at https://github.com/PCAubin

More to be found at https://pcaubin.github.io/

Thank you for your attention!

https://github.com/PCAubin
https://pcaubin.github.io/
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Annex: Green kernels and RKHSs
Let D be a differential operator, D∗ its formal adjoint. Define the Green function
GD∗D,x (y) : Ω→ R s.t. D∗D GD∗D,x (y) = δz(y) then, if the integrals over the boundaries in
Green’s formula are null, for any f ∈ Fk

f (x) =
∫

Ω
f (y)D∗DGD∗D,x (y)dy =

∫
Ω
Df (y)DGD∗D,x (y) =: 〈f ,GD∗D,x 〉Fk ,

so k(x , y) = GD∗D,x (y) [Saitoh and Sawano, 2016, p61]. For vector-valued contexts, e.g.
FK = W s,2(Rd ,Rd) and D∗D = (1− σ2∆)s component-wise, see [Micheli and Glaunès, 2014,
p9].

Alternatively, in 1D, D GD,x (y) = δz(y), the kernel associated to the inner product∫
Ω Df (y)Dg(y)dy for the space of f “null at the border“ writes as

k(x , y) =
∫

Ω
GD,x (z)GD,y (z)dz

see [Berlinet and Thomas-Agnan, 2004, p286] and [Heckman, 2012].



26/28

Annex: IPC gives strictly feasible trajectories

(H-sol) C(0)x0 < d(0) and there exists a trajectory xε(·) ∈ S satisfying strictly the affine
constraints, as well as the initial condition.
(H1) A(·),B(·) ∈ C0, ci(·), di(·) ∈ C1 and C(0)x0 < d(0).
(H2) There exists Mu > 0 s.t. , for all t ∈ [t0,T ] and x ∈ RQ satisfying C(t)x ≤ d(t), and

‖x‖ ≤ (1 + ‖x0‖)eT‖A(·)‖L∞(t0,T )+TMu‖B(·)‖L∞(t0,T ) , there exists ut,x ∈ MuBM such that

∀ i ∈ {j | cj(t)>x = dj(t)}, c′i(t)>x− d ′i (t) + ci(t)>(A(t)x + B(t)ut,x ) < 0.

This is an inward-pointing condition (IPC) at the boundary.

Lemma (Existence of interior trajectories)

If (H1) and (H2) hold, then (H-sol) holds.
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Annex: control proof main idea, nested property

ηi(δ, t) := sup ‖K (·, t)ci(t)− K (·, s)ci(s)‖K , ωi(δ, t) := sup |di(t)− di(s)|,
di(δm, tm) := inf di(s), over s ∈ [tm − δm, tm + δm] ∩ [t0,T ]

For −→ε ∈ RP
+, the constraints we shall consider are defined as follows
V0 := {x(·) ∈ S |C(t)x(t) ≤ d(t), ∀ t ∈ [t0,T ]},
Vδ,fin := {x(·) ∈ S |−→η (δm, tm)‖x(·)‖K + C(tm)x(tm) ≤ d(δm, tm), ∀m ∈ [[1,M0]]},
Vδ,inf := {x(·) ∈ S |−→η (δ, t)‖x(·)‖K +−→ω (δ, t) + C(t)x(t) ≤ d(t), ∀ t ∈ [t0,T ]},
V−→ε := {x(·) ∈ S |−→ε + C(t)x(t) ≤ d(t), ∀ t ∈ [t0,T ]}.

Proposition (Nested sequence)

Let δmax := maxm∈[[1,M0]] δm. For any δ ≥ δmax, if, for a given y0 ≥ 0,
εi ≥ supt∈[t0,T ][ηi(δ, t)y0 + ωi(δ, t)], then we have a nested sequence

(V−→ε ∩ y0BK ) ⊂ Vδ,inf ⊂ Vδ,fin ⊂ V0.

Only the simpler V−→ε constraints matter!
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Numerical example 2: constrained pendulum - definition
Constrained pendulum when controlling the third derivative of the angle

min
x(·),w(·),u(·)

−ẋ(T ) + λ‖u(·)‖2L2(0,T ) λ� 1

x(0) = 0.5, ẋ(0) = 0, w(0) = 0, x(T/3) = 0.5, x(T ) = 0

ẍ(t) = −10 x(t) + w(t), ẇ(t) = u(t), a.e. in [0,T ]

ẋ(t) ∈ [−3,+∞[, w(t) ∈ [−10, 10], ∀ t ∈ [0,T ]

x(t) w(t) 

ẋ(t) 

ẇ(t)=u(t) 
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Numerical example 2: constrained pendulum - definition
Constrained pendulum when controlling the third derivative of the angle

min
x(·),w(·),u(·)

−ẋ(T ) + λ‖u(·)‖2L2(0,T ) λ� 1

x(0) = 0.5, ẋ(0) = 0, w(0) = 0, x(T/3) = 0.5, x(T ) = 0
ẍ(t) = −10 x(t) + w(t), ẇ(t) = u(t), a.e. in [0,T ]
ẋ(t) ∈ [−3,+∞[, w(t) ∈ [−10, 10], ∀ t ∈ [0,T ]

Converting affine state constraints to SOC constraints, applying rep. thm

ηẋ‖x(·)‖K − ẋ(tm) ≤ 3,
ηw‖x(·)‖K + w(tm) ≤ 10,
ηw‖x(·)‖K − w(tm) ≤ 10

x̄(·) = K (·, 0)p0 + K (·,T/3)pT/3

+ K (·,T )pT +
M∑

m=1
K (·, tm)pm

Most of computational cost is related to the “controllability Gramians“
K1(s, t) =

∫min(s,t)
0 e(s−τ)ABB>e(t−τ)A>dτ which we have to approximate.
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Numerical example 2: constrained pendulum - illustration
Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints . Grayed areas: constraints over [0,T ].

Angle x(·) Velocity ẋ(·) Couple w(·)
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Figure: Comparison of SOC constraints (guaranteed ηw ) vs discretized constraints (ηw = 0) for
NP = 200.
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Numerical example 2: constrained pendulum - illustration
Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints . Grayed areas: constraints over [0,T ].
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Figure: Comparison of SOC constraints (guaranteed ηw ) vs discretized constraints (ηw = 0) for
NP = 200 - Chattering phenomenon like for traffic cameras!.
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Numerical example 2: constrained pendulum - illustration
Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints . Grayed areas: constraints over [0,T ].
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Figure: Comparison of SOC constraints for varying NP and guaranteed ηw .



28/28

Numerical example 2: constrained pendulum - illustration
Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints . Grayed areas: constraints over [0,T ].
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Figure: Comparison of SOC constraints for varying ηw and NP = 200.
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