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Where to use Machine Learning in control theory?

Many objects can be learnt depending on the available data

e Trajectory x:t€[t, T]—RQ

e Control u:te[ty, T]— RP

@ Vector field fo(t,x,u)—RQ

e Lagrangian L:(t,x,u) — RU{oco}

e Value function VT« 1 (to, x0) = R U {oo}

Which one should we try to approximate?

What is the most principled/theoretically grounded application of
kernel methods?




Where to use Machine Learning in control theory?

Many objects can be learnt depending on the available data

e Trajectory X te[ty, T] —RQ

e Control u:te[ty, T]— RP

@ Vector field fo(t,x,u)—RQ

e Lagrangian L:(t,x,u) — RU{oco}

e Value function VT« 1 (to, x0) = R U {oo}

Which one should we try to approximate?

What is the most principled/theoretically grounded application of
kernel methods?

Trajectories of linear systems belong to a reproducing kernel
Hilbert space (RKHS)!
State constraints are then easy to satisfy!
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Time-varying state-constrained LQ optimal control

X(I.n),iu?.) Xxo (X(t0)) + &(x(T))

i}
x(tror) T drerX(rer) + /t [x(5)7Q(Ox(2) + u(t) R(t)u(t)] dt

st. X(t) = A(t)x(t) + B(t)u(t), a.e. in[ty, T],
ci(t) ' x(t)< di(t), Vit € T, Vi€ [I] = [1,7],
state x(t) € R?, control u(t) € R”,
reference time t,f € [to, T], set of constraint times T C [to, T],
A() € LY(to, T), B(-) € L%(to, T), Q(-) € LY(to, T), R(*) € L?(to, T),
Q(t) >= 0 and R(t) = ridy (r > 0), C;('),d,'(‘) € Co(to, T), Jrer = 0,
lower-semicontinuous terminal cost g : R® — R U {oo}, indicator function xx,.

e 6 6 o6 o

x(-) : [to, T] = R? absolutely continuous, R(-)/2u(-) € L?([to, T])



Time-varying state-constrained LQ optimal control

Din - (x(10) + 8(x(T)) = Lx(t)jern

x(tr) ) + [ [0 QUK (e RO at = xR
st. X(t) = A(t)x(t) + B(t)u(t), a.e. in[ty, T],
ci(t) " x(t)< di(t), Yt € T, Vi e [I] = [1,7],
o state x(t) € R?, control u(t) € R,
@ reference time t,ef € [to, T], set of constraint times T C [to, T],
o A(-) € LY(ty, T), B(:) € L%(to, T), Q() € L (to, T), R(") € L?(to, T),
o Q(t) >= 0 and R(t) = rldy (r > 0), C;('),d,'(‘) € Co(to, T), Jer =0,
o lower-semicontinuous terminal cost g : R® — R U {co}, indicator function xy,, “loss
function" L : (R®)! — R U {0},

o x(-) : [to, T] = R absolutely continuous, R(-)}/?u(-) € L?([ty, T])



Why are state constraints difficult to study?

o Theoretical obstacle: Pontryagine's Maximum Principle involves not only an adjoint vec-
tor p(t) but also measures/BV functions v (t) supported at times where the constraints are
saturated. You cannot just backpropagate the Hamiltonian system from the transversality
condition.

o Numerical obstacle: Time discretization of constraints may fail e.g.

Speed cameras in traffic control

In between two cameras, drivers always break
the speed limit.

" Camera



Reproducing kernel Hilbert spaces (RKHS)

A RKHS (Jk, (-, )7,) is a Hilbert space of real-valued functions over a set T if one of the
following equivalent conditions is satisfied [Aronszajn, 1950]

Jk:TxT = Rst. k() =k(-,t) € Fi and f(t) = (f(-), ke(-))7, for all t € T and f € Fy
(reproducing property) J

the topology of (F, (-, -)7,) is stronger than pointwise convergence
i.e. 0y : f € Fy — f(t) is continuous for all t € T. J

|£(t) — fa(t)| = [{f = fo, ke), | < [If = Fallg M| kells, = [IF — fallo /(2 1)
For T C RY, Sobolev spaces H*(T,R) satisfying s > d/2 are RKHSs.

H} = {f|f(0) =0, If" € L%(0,00)} i
{ <f07g>Hé _ fooo f’g’dt > k(t,s) = mln(t, S).

Other classical kernels
Kgauss(t,5) = exp (=t = 5l124/(20%))  kpoty(£,5) = (1 + (£, 5)pa)?.



Two essential tools for computations

Representer Theorem (e.g. [Schdlkopf et al., 2001])

Let L : RV — R U {oo}, strictly increasing Q : R, — R, and

fec inL ((f(tn)), +Q(||f
arg min L ((F(tn))nep ) + 2 (1£11)

Then 3 (an)nein) € RY st 7(1) = 3 ,cqng ank(, tn)

< Optimal solutions lie in a finite dimensional subspace of F.

Finite number of evaluations = finite number of coefficients

(" ank(-,tn), D> bmk(,sm)a, = D Y. anbmk(tn,sm)

ne[N] me[M] n€[N] me[M]

< On this finite dimensional subspace, no need to know (Fy, (-, )7, ).



Vector-valued reproducing kernel Hilbert space (VRKHS)

Definition (VRKHS)

Let T be a non-empty set. A Hilbert space (Fk, (-, ) ) of RP-vector-valued functions defined
on T is a VRKHS if there exists a matrix-valued kernel K : T x T — R®*Q suych that the
reproducing property holds:

K(,t)p e Tk, p f(t)=(F K(,t)p)x, forteT, pecRfeFy

There is a one-to-one correspondence between K and (JFk, (-, ) k)
[Micheli and Glaunés, 2014], so changing T or (-,-), changes K.



Representer theorem in vVRKHSs

Theorem (Representer theorem with constraints, P.-C. Aubin, 2021)

Let (Fk,(-,-)x) be a VRKHS defined on a set T. For a “loss" L : RNo — R U {400}, strictly
increasing “regularizer” Q : Ry — R, and constraints d; : RNi — R, consider the optimization
problem

fe arg min L (c02f(t0,0), - €q ppf (o)) + 2 ([Fl1x)
€Ik

S.t.
Aillfllk < di(e/1f(ti), - .. el f(tin,)), Vi € [1, P].

Then there exists {Pi,m}me1,n] C R® and o m € R such that

_ N; ]
f= Z;D:O Zm:l K(, ti,m)pi,m with Pi,m = ®imCim-




Objective: Turn the state-constrained LQR into “KRR"

We have a vector space S of controlled trajectories x(-) : [to, T] — R®
Sito, 771 = 1x(-) [ Ju() € [2(ty, T) s.t. X'(t) = A(t)x(t) + B(t)u(t) a.e. }
Given x(+) € Sy, 77, for the pseudoinverse B(t)® of B(t), set
u(t) == B(t)°[¥'(t) — A(t)x(t)] a.e. in[ty, T].
(x1(-),x2()) g 1= X1 (trer) " Jrerx2(trer)

= [ a0 Q(ee(o) + ua(0) R(Ous(0)] a

LQRfor Q=0, R=1Id “KRR" (Kernel Ridge Regression)
. 2 .
X((ri);% L(x(tj)jer) + ()2, ) i, L(x(t;)jern) + X113
u(-)e
()T < d: i
G(E)Tx() < di(t), ¢ € T, i € [1] ci(t) ' x(t) < di(t),t € Te,i € [Z]

Is (S, (-,-)s) a RKHS?



Objective: Turn the state-constrained LQR into “KRR"
We have a vector space S of controlled trajectories x(-) : [to, T] — R®
Sito, 71 = {x(-) | 3u(-) € L*(to, T) st. X(t) = A(t)x(t) + B(t)u(t) ae. }
Given x(+) € Sy, 17, for the pseudoinverse B(t)® of B(t), set
u(t) := B(t)°[¥(t) — A(t)x(t)] a.e. in[to, T].
(x1(), x2(-)) 5 = x1(trer) " Jrerxa(tref)

:
+/t [xa(£)TQUExa(t) + us (1) TR(Dua(1)] di

Lemma (P.-C. Aubin, SICON 2021)

(Sito, 715 (5 )s) is @ VRKHS over [to, T] with uniformly continuous K(, -; [to, T]).




Splitting S|y, 7] into subspaces and identifying their kernels

It is hard to identify K, but take Q =0, R=1d, t,r = to, Jyer = Id

() k(s = xa(10) o) + | " () Tus()dt.

So = {x(-) [X(t) = A(t)x(t), a.e.in [to, TI}  [|Ix(:)ll = Ix(to)|?
Su = {x(-)|x(-) € S and x(to) = 0} Ix(-), = uC) 2z, 7y-

AsS=5yD S,, K = Ky + K.



Splitting S|y, 7] into subspaces and identifying their kernels

It is hard to identify K, but take Q =0, R=1d, t,r = to, Jyer = Id

(x1(-),x2(-)) s := x1(to) " x2(t0) + /TU]_(t)TUZ(t)dt.

So = {x(-) [X(t) = A(t)x(t), a.e.in [to, TI}  [|Ix(:)ll = Ix(to)|?
Su = {x(-)|x(-) € S and x(to) = 0} Ix(-), = uC) 2z, 7y-

As S =Sy @ Su, K = Ko + Ki. Since dim(Sp) = @, for da(t,s) € R*Q the state-transition
matrix s — t of X'(7) = A(7)x(7)

Ko(s,t) = ®a(s, to)®a(t, 1) .



Splitting S|y, 7] into subspaces and identifying their kernels

It is hard to identify K, but take Q =0, R=1d, t,r = to, Jyer = Id

(x1(-),x2(-)) s := x1(to) " x2(t0) + /TU]_(t)TUZ(t)dt.

So = {x()1X(6) = A(E)X(), ace. in [t0, T} [X()IIE, = x(t0)]
Sy = {x(-)Ix(-) € S and x(t) = 0} ()%, = Hu(')H%Z(tO,T)'

As S =Sy @ Su, K = Ko + Ki. Since dim(Sp) = @, for da(t,s) € R*Q the state-transition
matrix s — t of X'(7) = A(7)x(7)

Ko(s, t) = ®a(s, to) Pa(t, to) .

Ki obtained using only the reproducing property and variation of constants

Ku(s, t) = /mm(s‘t) ®a(s, 7)B(r)B(r) da(t, ) dr.

to



Examples: controllability Gramian /transversality condition
Steer a point from (0,0) to (T,x7), with e.g. g(x(T)) = [|x7 — x(T)||%,

Exact planning (x(T) = x7)

Relaxed planning (g € C* convex)

. 1 2 : 1
iy, Xor (X(T)) + S luC) 22,7 Join g(X(T))+5”"(‘)“%2&01)
x(0)=0 x(0)=0

x(0) =0 < x(-) € S,. Representer theorem: Ipr, X(-) = Ki(-, T)pT

Controllability Gramian

Transversality Condition

.
Ka(T, T) = / ®a(T, 7)B(7)B(r) " ®a(T, 7) " d7 0=v (p o & (T, TR) + 207 K(T, T)p) (o7)
0

X(T)=x7 < x7 €Im(Ki(T, T)) = Ku(T, T)(Ve&(Ki(T, T)p7) + PT)-

Sufficient to take pr = —Vg(X(T))




Relation with the differential Riccati equation

Take ter = T, Jper = J7 = 0. Let J(t, T) be the solution of

S0t T) =A(t)TI(t, T) + I(t, T)A(t)
—J(t, T)B(t)R(t)"*B(t) " J(t, T) + Q(¢t),
T, T) =7,
Theorem (P.-C. Aubin, 2021)

Let Kgiag : to €] — 00, T] — K(to, to; [to, T]). Then Kyiag(to) = J(to, T)~L. More generally,
K(-, t;[to, T]) is given by a matrix Hamiltonian system for all t € [ty, T]|

T _ T
oiN(s,t) = —A(s)"N(s,t) + Q(s)K(s, t),
n(t(), Z‘) = —ldy,

K, T) =371 (N(T,t)" + ®a(t, T) — Da(to, T)).




Relation with the differential Riccati equation

X(:):= argmin x(T)"Jrx(T)+ T[x(t)TQ(t)x(t) + u(t) "R(t)u(t)]dt

x(-)ES[1y, 7] to

()l
s.t.
X(to) = Xg,

Pontryagine's Maximum Principle (PMP)

p(t) = —J(t, T)x(t) and @i(t) = R(t)71B(t) "p(t) = —R(t)"!B(t) " J(t, T)x(t) =: G(t)x(t)
— online and differential approach

.

Representer theorem from kernel methods

X(t) = K(t, to; [to, T])po, with po = K(to, to; [to, T]) "*x0 € R?
— offline and integral approach (~ Green kernel in PDEs)

.




Numerical example: submarine in a cavern

Original control problem

1
min / lu(t)[2dt
0

z(-)eW?2 u(-)eL?
S.t.
z(0) =0, z(0)=0,
z(t) = —z(t) + u(t), Vt € [0,1],
z(t) € [Ziow(t), zup(2)], V £ € [0, 1].




Numerical example: submarine in a cavern

Original control problem Rewriting in standard form

2
z(- )eWII212 u(-)eL? / |U(t)‘2dt x(- )eW12 u(-)eL? / | dt
s.t.
2(0) =0, 2(0)=0, x(O) - o,
z(t) = —z(t) + u(t), vVt € [0,1], x'(t) = Ax(t) + Bu(t),
Z(t) € [Z|0W(t)azup(t)]a Vte [07 1]' ) Zl(t) € [Z|ow(t),2up(t)], Vte [0, 1]

N

(a0 e ()



Numerical example: submarine in a cavern

RKHS regression Rewriting in standard form

min x(-)||2
(s KOl in / u(t)2dt
S.t. s.t.
z1(t) € [ziow(t), zup(t)], V't € [0, 1] ) x(0) =0,
X' (t) = Ax(t) + Bu(t),
Sy = {x(-)|x(") € S and x(0) = 0} 71(t) € [2ow(t), zup(t)], V£ € [0, 1]

()l = IIu()lIZ20,1)-



Numerical example: submarine in a cavern

RKHS regression I

min _ [x()|I%
x(-) € Sy fa
s.t. = .
Q
z1(t) € [2iow(t), 2up(t)], V £ € [0, 1]
Upper/Lower constraints 2o, and z,,

.
0.6 0.8

Sy = {x(-)|x(-) € S and x(0) = 0}

()l = llu()lIZ20,1)-

min(s,t)
Ki(s,t) = / els=ABBTe(t-"A 47



Numerical example: submarine in a cavern

RKHS regression

min _ [|x()[I%
x() € Sy fa
s.t. 3}: -
Zl(t) € [zlow,m7 Zup,m]a
Upper/Lower constraints zjou,m and Zu,mn

.
0.5 0.6 0.7 0.8 0.9

0.4
t

YVt € [tm— Om,tm+ dm], Ym € [M]

.
0.2 0.3

.
0.1

0

Sy = {x(-)|x(-) € S and x(0) = 0}
()l = lu()lIZ20,1)-

/-min(s,t) e(S—T)ABBTe(t—T)ATdT

Ki(s. t) =



Numerical example: submarine in a cavern
.

RKHS regression

. 2
min - [x(-)]l,
x(-) € Su
s.t. E:; -
Zl(tm) € [Zlow,ma zup,m]a
Yt-cttm—bmrtmom}, Ym € [M] al
v
il = = Optimal trajectory with discretized constraints (n = 0)
M M sl Upp_elr_/r.Lower constraints Ziowm and Zypm
x() = Z Ki(:s tm)Pm = Z amKi(:, tm)em 0 02 04 06 08
m=1 t

m=1
min(s,t) T
K]_(S, t) — / e(S*T)ABBTe(th)A dT
0



Numerical example: submarine in a cavern

3k
" 11400
RKHS regression
11200
. 2
min _ [|x()]l%, 1100
X(’) E Su
t = <1800
S.T. =
Zl(tm) S [Z|0W,m7 Zup,m]a 1%°
Yt etm—dmrtmt+om}, Ym € [M] 1400
= = Optimal trajectory with discretized constraints (1 = 0) 1200
M M Upper/Lower constraints Zjpwm and zupm & 0|l Z()||x
_ St L b | I )
X() — Z Kl(',tm)Pm = Z amKl(-,tm)em 0 0.2 0.4 0.6 0.8 1
t

m=1 m=1

min(s,t)
/{1(57 t) — / e(sz)ABBTe(th)ATdT
0



Numerical example: submarine in a cavern

RKHS regression

. 2
min [1x() [,
X( E u
s.t.
Zl(tm) S [Zlow,myzup,m] + ﬁmHX(‘)HKu

YtectHm—bmrtmt+—om}, Vm € [M]

3k

a4l Optimal trajectory with SOC constraints (ball covering)
= = Optimal trajectory with discretized constraints (n = 0)
M M Upper/Lower constraints zjum and zypm
— St L i I ol | | |
X(-) = Z Ki(:s tm)Pm = Z amKi(:, tm)em 0 02 04 06 08 1
m=1 m=1 t

min(s,t)
/{1(57 t) — / e(sz)ABBTe(th)ATdT
0



Van Loan'’s trick for time-invariant Gramians

Use matrix exponentials as in [Van Loan, 1978]

A Q. Fa(A) Gy(A)
(6 5)2)- (% 52

Fao(t) = M Ki(s,t) = /mi"(svf) es=ABBT o(t-7AT 41
Fa(t)=e A’ O
) . Set Qc = BR™!BT.
Gy(t) = e(t*T)Ach*TATdT °t Qc
0 For s < t, Ki(s, t) = Ga(s)Fa(t) "

I
il
)
—~
[
N—
(2}
N
—~~
—+
-
4‘

For t <s, Ki(s,t)




Dealing with an infinite number of constraints

No representer theorem for: c(t)x(t) < d,Vt € [0, T]
Discretize on {tm}mermy C [0, T]?

c(tm) " x(tm) < d,¥Ym € [1, M]

No guarantees!



Dealing with an infinite number of constraints
No representer theorem for: c(t)"x(t) < d,Vt € [0, T]
Discretize on {tm}mem) C [0, T]?

Dl x() |k + c(tm) "x(tm) < d,¥Ym € [1, M]

Second-Order Cone (SOC) constraints: {f | ||Af + b||x < c'f + d}
SOC comes from adding a buffer, 1, > 0, to a discretization, {tm}me[my-

LPc QP c SOCP c SDP



Dealing with an infinite number of constraints
No representer theorem for: c(t)"x(t) < d,Vt € [0, T]
Discretize on {tm}mem) C [0, T]?

Dl x() |k + c(tm) "x(tm) < d,¥Ym € [1, M]

Second-Order Cone (SOC) constraints: {f | ||Af + b||x < c'f + d}
SOC comes from adding a buffer, 1, > 0, to a discretization, {tm}me[my-

How to choose 1,7 The choice nm||x(-)||k is related to continuity moduli:



Deriving SOC constraints through continuity moduli

Take 6 >0 and tst. [t —tm| <6

|e(8) "x(t) = c(tm) "x(tm)| = [(x(-), K(
t

<xClle  sup [K(- t)e
{t]|t—tm| <6}

s 1)e(t) = K( tm)c(tm)) k|
) = K( tm)e(tm)l

7/m(6)
wm(x,0) = sup [c(t)"x(t) = c(tm) " X(tm)| < nm(8)]Ix ()]l
{t||t—tm|<6}
For a covering [0, T| = Ume[,\/,][tm — Omy tm + Om)

“o(t)Tx(t) < d,Vt € [0, T]" < “c(tm) x(tm) + wm(x,d) < d,Ym € [M]"



Deriving SOC constraints through continuity moduli

Take 6 >0 and tst. |t —tm| <O

|e(8) " x(t) = c(tm) "x(tm)| = [(x(-), K(-, )e(t) = K(-, tm)c(tm))|

<IxCllk  sup [K(st)e(t) = K(:, tm)e(tm)ll i
{t|lt—tm|<6}

7]m(5)

wm(x,0) == sup[c(t) 'x(t) = c(tm) x(tm)| < 1m(8)[IX()K
{t]]t—tm|<d}

For a covering [0, T] = Upeipltm — dm. tm + 0]
“e(t)Tx(t) <d Vte[0, T]" < “c(tm) x(tm) + nmllx()| < d ,Ym e [M]"
IK (s t)e(t) = K (-, tm)e(tm) i s=c(2) " K(t, )e(t) + c(tm) " K (tm, tm)c(tm)
—2¢(tm) " K(tm, t)c(t)
Since the kernel is smooth, for c(-) € C°, & — 0 gives 7m(5) — 0.



Deriving SOC constraints through continuity moduli

Take 6 >0 and tst. [t —ty| <6

|c(8) 'x(t) = c(tm) "x(tm)| = [(x(-), K(, t)c(t) = K(-, tm)c(tm)) k|
<|xClle  sup JIK(, 1)e(t) = K-, tm)e(tm)l

{t][t—tm|<d}
Nm(5)
win(x,6) = sup [e(t)Tx(t) = c(tm) " x(tm)| < mm(8)[Ix()llk
{t]lt—tm|<5}

For a covering [0, T|C Ume[M][tm — Omy tm + O]
“o(t) ' x(t) < d(t),Vt € [0, T]" < “c(tm) ' x(tm) + 1mlIx()|| < dm, Vm € [M]"

with di = infy ¢ (6, — 5.t d()-



From affine state constraints to SOC constraints
Take (tm,dm) such that [0, T] C Unepr,nppltm — Oms tm + dm], define
Ni(0m, tm) = sup [K(- tm)ei(tm) — K(-, t)ei(t)l k,

te [tm*(smytm+6m]m[o’-r]
di(m, tm) = di(t).

We have strengthened SOC constraints that enable a representer theorem

inf
t € [tm—0m,tm+0m]N[0, T]

101 (O ms tm) |1X() |k + €i(tm) "%(tm) < di(6m, tm), ¥Ym € [1, Np], Vi € [1, P]
)
ci(t) ' x(t) < di(t), YVt [0, T],Vi e [1,P]

Lemma (Uniform continuity of tightened constraints)

As K(-,-) is UC, ifc;(-) and d;(-) are C°-continuous, when & — 0T, n;(-, t) converges to 0 and
di(-, t) converges to d;(t), uniformly w.r.t. t.




SOC tightening of state-constrained LQ optimal control

Problem of time-varying linear quadratic optimal control with finite horizon and affine
inequality state constraints

min xo (X X ()12
() o  xellta))+et(T)) + Il
s.t.
ci(t) "x(t) < di(t), Vt € [to, T],Vi € [Z],



SOC tightening of state-constrained LQ optimal control

Problem of time-varying linear quadratic optimal control with finite horizon and affine
inequality state constraints with SOC tightening

min %o (X X x()|I%
()28 Xxo(X(t0)) + &(x(T)) + [Ix(-)IIk
s.t.

11 (Oms tm) [1X() | 6 + €i(tim) "x(ti,m) < dim, ¥ m € [Mi], Vi € [Z],

with [to, T] C Upepmy[tm — 6ms tm + dm], and two values defined at each tp,

Ni(Om, tm) = sup IK(: tm)ci(tm) — K(-, t)ei(t) |k,
te[tmf§m,tm+6m]ﬂ[0,7—]
d,'7m = di(t)'

inf
t € [tm—0m,tm+0m]N[to, T]

Actually also works for ball constraints ||x(t)||, < 1 and variations!



Main theoretical result in P.-C. Aubin, SICON, 2021

(H-gen) A(-),Q(-) € L' and B(-),R(-) € L?, ¢;(-) and d(-) € C°.

(H-sol) c;(tg) "xo < di(ty) and there exists a trajectory x°(-) € S satisfying strictly the affine
constraints, as well as the initial condition.!

(H-obj) g(+) is convex and continuous.

Theorem (3/Approximation by SOC constraints, P.-C. Aubin, 2021)

Both the original problem and its strengthening have unique optimal solutions. For any p > 0,
there exists 0 > 0 such that for all (0m)meqr,no], With [to, T] € Umep, o] [tm — Om) tm + Om]
satisfying 6 > MaXme[t,No] Om

1

— sup_[xy(2) = x(2)[| < 1%y () =%()lk < p
/K te[ty, T]

with Yk 1= SUPco, T], peBy \/ p'K(t, t)p.

!(H-sol) is implied for instance by an inward-pointing condition at the boundary.




Main practical result in P.-C. Aubin, SICON, 2021

Problem of time-varying linear quadratic optimal control with finite horizon and affine
inequality state constraints with SOC tightening

min < (X x ()12
() B polxw)) +EK(T) + X0l

s.t.
0i(Oms tm) X ()| + €i(ti,m) " x(tim) < dim, ¥ m € [M}], Vi € [Z].
By the representer theorem, the optimal solution has the form

PN

()= D> K( tim)Bjm.

j=0 m=1

where ty1 = tp and tg> = T, and the coefficients
(Pj,m)j,m solve a finite dimensional second-order cone problem.




Main practical result in P.-C. Aubin, SICON, 2021

More precisely, setting tp1 = to and tgo» = T, the coefficients of the optimal solution
- PN _
x(1) = =0 2m=1 K(-, tj,m)Pj,m solve

N;

P ' P NJ
: 2
Iélulgn Xxo (ZZKtO’tjmpjm)+g<Z KTtJmpjm)+’Y
p:meﬁ;\, j=0 m=1 j=0 m=1
aj,mER
Ni N;

P
Z p;l:nK(tlnatJ m)pj m»

Pjm= Ozj,ij(tm), Vme [[1, NJ]],\V/_j S II]., P]],

N:
77i(5i,m, ti,m)’7 + ZJ'-D:O ijzl C,'(t,'7m)TK(t,'7m, tj,m)pj,m Vm € II]., N,']],
< di(éi,ma ti,m)a Vie |]:17 P]]v

which can be written equivalently as a finite dimensional second-order cone problem (SOCP).



Take-home messages

“State-constrained LQ Optimal Control is a shape-constrained kernel
regression.”

“Controlled trajectories have the adequate structure to use kernel
methods, most of all for path-planning.”

“In general, positive definite kernels are much too linear to tackle
nonlinear control problems — Linearize! “



Future work: Pushing RKHSs beyond/Revisiting LQR

For RKHSs

@ Control constraints do not correspond to continuous evaluations
< limits of RKHS pointwise theory (e.g. x' = u € L?([0, T],[-1,1]) a.e.)

@ Successive linearizations of nonlinear system lead to changing kernels
< a single kernel may not be sufficient (e.g. x" = fi, ()X + flu, (v a-e.)

@ Non-quadratic costs for linear systems do not lead to Hilbert spaces
< one may need Banach kernels (e.g. Hu(‘)Hiz(o n [u()ll2(0,7))
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For RKHSs

@ Control constraints do not correspond to continuous evaluations
< limits of RKHS pointwise theory (e.g. x' = u € L?([0, T],[-1,1]) a.e.)

@ Successive linearizations of nonlinear system lead to changing kernels
< a single kernel may not be sufficient (e.g. x" = fi, ()X + flu, (v a-e.)

@ Non-quadratic costs for linear systems do not lead to Hilbert spaces
< one may need Banach kernels (e.g. Hu(‘)Hiz(o n [u()ll2(0,7))

For control theory

@ To each evaluation at time t corresponds a covector p; € R?
— Representer theorem well adapted for state constraints, but unsuitable for control
constraints. Reverts the difficulty w.r.t. PMP approach.

@ The Gramian of controllability generates trajectories
— This allows for close-form solutions in continuous-time.



Future work and open questions

@ Extending results to linear PDE control->done

@ Extending results to Gramian of observability & Kalman filter->almost done

This talk summarizes

@ Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel methods, Aubin, SIAM
J. on Control and Optimization, 2021

@ Interpreting the dual Riccati equation through the LQ reproducing kernel, Aubin, Comptes Rendus.
Mathématique, 2021

The code is available at https://github.com/PCAubin
More to be found at https://pcaubin.github.io/

Thank you for your attention!


https://github.com/PCAubin
https://pcaubin.github.io/
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Annex: Green kernels and RKHSs
Let D be a differential operator, D* its formal adjoint. Define the Green function

Gppx(y) : 2 = Rs.t. D*D Gp-p «(y) = 0.(y) then, if the integrals over the boundaries in
Green's formula are null, for any f € F

f(x) = /Q f(y)D*DGp-px(y)dy = /Q Df(y)DGp-px(y) =: {f, GD*Dx) 5
so k(x,y) = Gp-p(y) [Saitoh and Sawano, 2016, p61]. For vector-valued contexts, e.g.
Tk = W2(RY,RY) and D*D = (1 — 0?A)° component-wise, see [Micheli and Glaunés, 2014,
p9].

Alternatively, in 1D, D Gp (y) = 0,(y), the kernel associated to the inner product
Jo Df(y)Dg(y)dy for the space of f “null at the border” writes as

K(x.y) = /Q Gox(2)Gp.y (2)dz

see [Berlinet and Thomas-Agnan, 2004, p286] and [Heckman, 2012].



Annex: IPC gives strictly feasible trajectories

(H-sol) C(0)xo < d(0) and there exists a trajectory x°(-) € S satisfying strictly the affine
constraints, as well as the initial condition.

(H1) A(-),B(-) €C° ci(),di(-) € Ct and C(0)xo < d(0).
(H2) There exists M, > 0 s.t. , for all t € [t, T] and x € R satisfying C(t)x < d(t), and
X[ < (1 + |jxo||)eT 1A=t )+ TMullBO)lleooo. 1) | there exists uy, € M,Bp such that

Vie{jle(t) x=di(t)}, ci(t)"x — dl(t) + ci(t) T (A(t)x + B(t)us ) < 0.

This is an inward-pointing condition (IPC) at the boundary.

Lemma (Existence of interior trajectories)

If (H1) and (H2) hold, then (H-sol) holds.




Annex: control proof main idea, nested property

ni(8,t) :=sup |K(-, t)ei(t) — K(, s)ei(s)lx,  wild, t) := sup|di(t) — di(s)],
di(Om, tm) == inf di(s), overs € [tm — Om, tm + Om] N [to, T]
For € € RP, the constraints we shall consider are defined as follows
Vo :={x(-) € S[C(t)x(t) < d(t), Vt € [to, T]},
Vifin = {X(") € S| 7 (6m, tm) [X() | & + C(tm)X(tm) < d(Spm, tm), ¥ m € [1, Mo},
Vsine = {x(-) € S| 7 (6, t)x()l|x + & (5, t) + C(t)x(t) < d(t), Vt € [to, T]},
Vo = {x(-) € S| € + C(t)x(t) < d(t), Vt € [to, T]}.

Proposition (Nested sequence)

Let Omax 1= Maxmep1,Mo] Om- For any 6 > dmax, if, for a given yo > 0,
€ > SUPse(s,, T1[Mi (9, t)yo + wi(6, t)], then we have a nested sequence

(V2 NyoBk) C Vs,inf C Vs.5in C Vo.

Onlv the simpler V= constraints matter!



Numerical example 2: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

min  —x(T) + \Mu()|]? !
o (T) + MluC)z20,7)

(x(0) =05, X(0)=0, w(0)=0, x(T/3)=05 x(T)=0
(%(t) = —10x(t) + w(t), w(t) =u(t),ae in[0, T]
(x(t) € [-3,+00, w(t) €[-10,10],Vt € [0, T]]
[ N

x(t) w(t)

Vi(t)=u(t)

(t)



Numerical example 2: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

min - —x(T) + Mu(-)||? A< 1
oI s (T) + M)z, 1)

(x(0) =05, %(0)=0, w(0)=0, x(T/3)=05 x(T)=0
(%(t) = —10x(t) + w(t), Ww(t) =u(t),ae in[0, T]|
(x(t) € [-3,+00[, w(t) €[-10,10],Vt € [0, T]]

Converting affine state constraints to SOC constraints, applying rep. thm

sl x()llk = *(tm) <3, x(-) = K(-,0)po + K(-, T/3)PT/3
Mw[x()llk + w(tm) < 10, M
NwllX(-)llk — w(tm) < 10 +K(, T)pT + mZ::l K(-, tm)Pm

Most of computational cost is related to the “controllability Gramians”
Ki(s,t) = fomm(s’t) e(s=ABBTe(*="A" 7 which we have to approximate.



Numerical example 2: constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]]
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Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]]
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Optimal solutions of the constrained pendulum “path-planning” problem.
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Numerical example 2: constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]]
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