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Shape constraints, ex: monotonic kernel ridge regression

Shape constraints = priors on the form of the solution of the problem
↪→ compensates lack of samples or excessive noise
↪→ incorporates physical constraints
ex: monotone, convex functions or non-crossing quantiles are priors

min
f ∈ Fk

[
1
N

N∑
n=1
|yn − f (xn)|2 + λ ‖f ‖2Fk

]
s.t.

0 ≤ Df (x), ∀x ∈ K .

D is a differential operator (e.g. Df = f ′), K a compact set (e.g. [0,T ]).

For K = [0,T ], we have an infinite number of constraints!

Discretize constraint at {x̃m}m≤M ⊂ K ? No guarantees out-of-samples!
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Goal: devise a technique for constraints to be satisfied
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1D KRR with monotonic
constraint over [0, 2]:

Unconstrained KRR
vs

Second-Order Cone
(SOC) constrained

Let us add a buffer to the discretization (interior solution)

“0 ≤ Df (x), ∀x ∈ K“⇐ “ηK ,m‖f (·)‖ ≤ Df (x̃m), ∀m ∈ [[1,M]]“

How to choose ηK ,m?
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Reproducing kernel Hilbert spaces (RKHS) in one slide
A RKHS (Fk , 〈·, ·〉Fk ) is a Hilbert space of real-valued functions over a set
X if one of the following is satisfied (Aronszajn, 1950)

∃ k : X × X → R s.t. kx (·) = k(x , ·) ∈ Fk and f (x) = 〈f , kx 〉Fk

k is s.t. ∃Φk : X → Fk s.t. k(x , y) = 〈Φk(x),Φk(y)〉Fk

k is s.t. G = [k (xi , xj)]ni ,j=1 < 0 and Fk := span({kx (·)}x∈X )

ex: kσ(x , y) = exp
(
−‖x − y‖2Rd/(2σ2)

)
klin(x , y) = 〈x , y〉Rd

There is a one-to-one correspondence between kernels k and RKHSs
(Fk , 〈·, ·〉Fk ). Changing X or 〈·, ·〉Fk changes the kernel k.

if X is an open set, k ∈ Cm,m(X ,X ), D a differential operator of order at
most m, then kernel trick for derivatives holds

Dxk(x , ·) ∈ Fk ; Df (x) = 〈f (·),Dxk(x , ·)〉Fk
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Back to Second-Order Cone Constraints

Take δ > 0 and x s.t. ‖x − x̃m‖ ≤ δ

Df (x) = Df (x̃m) + 〈f (·),Dxk(x , ·)− Dxk(x̃m, ·)〉k
Df (x) ≥ Df (x̃m)− ‖f (·)‖k‖Dxk(x , ·)− Dxk(x̃m, ·)‖k
Df (x) ≥ Df (x̃m)− ‖f (·)‖k sup

{x | ‖x−x̃m‖≤δ}
‖Dxk(x , ·)− Dxk(x̃m, ·)‖k︸ ︷︷ ︸

ηK ,m(δ)

For smooth kernels, δ → 0 gives ηK ,m(δ)→ 0.

Shift-invariant kernel (k(x , y) = k0(x − y)) gives

η = sup
u∈B‖·‖X (0,1)

√
|2DxDy k0(0)− 2DxDy k0 (δu)|

Other buffers were possible (e.g. constant), why choose “ηK ,m‖f (·)‖“?
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SVM is about separating red and green points by blue hyperplane.
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Using the nonlinear embedding ΦD : x 7→ Dxk(x , ·), the idea is the same.
Consider only the green points, it looks like one-class SVM.
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The green points are now samples of a compact set K .
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Φ𝐷(𝐾) 

The image ΦD(K ) looks ugly...
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Φ𝐷(𝐾) 

The image ΦD(K ) looks ugly, can we cover it by balls? How to choose η?
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Φ𝐷(𝐾) 

First cover K ⊂
⋃
{x̃m + δB}, and then look at the images ΦD({x̃m + δB})
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Cover the ΦD({x̃m + δB}) with tiny balls! This is how SOC was defined.
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Joint quantile regression (JQR): airplane data

Airplane trajectories at takeoff have increasing altitude.
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JQR with monotonic con-
straint over [xmin, xmax]:

Quantiles should be
non-crossing

Two shape constraints jointly handled with 15k samples.
Works with higher dimensions too!
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Joint quantile regression (JQR): Engel’s law

As income rises, the proportion of income spent on food falls, but absolute
expenditure on food rises.
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Priors have a great effect on the shape of solutions!
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Conclusion and Acknowledgments

Open problems:
other types of compact coverings? Convex hull of union of sets?
modify coverings while optimizing? e.g. greedily adding new samples

Deeply grateful to:

Nicolas Petit (Mines ParisTech), my PhD advisor

Jean-Philippe Vert (Mines ParisTech-Google), who got me to love kernels

Zoltán Szabó (Ecole polytechnique), my co-author for quantile regression

See Hard Shape-Constrained Kernel Machines, PCAF and Zoltán Szabó
https://arxiv.org/abs/2005.12636
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