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Shape constraints, ex: monotonic kernel ridge regression

Shape constraints = priors on the form of the solution of the problem
< compensates lack of samples or excessive noise
< incorporates physical constraints

ex: monotone, convex functions or non-crossing quantiles are priors
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s.t.
0 < Df(x), VxeK.

D is a differential operator (e.g. Df =), K a compact set (e.g. [0, T]).
For K = [0, T], we have an infinite number of constraints!

Discretize constraint at {%m}m<m C K 7 No guarantees out-of-samples!
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Goal: devise a technique for constraints to be satisfied

1D KRR with monotonic
constraint over [0, 2]:

Unconstrained KRR
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Let us add a buffer to the discretization (interior solution)
“0 < Df(x), ¥x € K" < "k m|If ()| < Df(Xm), Vm € [1, M]*
How to choose 1k m?
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Reproducing kernel Hilbert spaces (RKHS) in one slide

A RKHS (Jk, (-, -)7,) is a Hilbert space of real-valued functions over a set
X if one of the following is satisfied (Aronszajn, 1950)

Tk X x X = Rst. k() = k(x,-) € T and F(x) = (f, ky)g, |
kisst. 3dy : X — F s.t. k(X,y) = <¢k(X),¢k(y)>§k J
kiss.t. G = [k(xi,x)]];—; = 0 and Fy := span({kx(-)}xex) J

ex: ky(x,y) = exp (=[x = y1I2a/(202))  hin(x,¥) = (x,¥)ze
@ There is a one-to-one correspondence between kernels k and RKHSs

(Fk, (-, -)7,)- Changing X or (-,-)5, changes the kernel k.

e if X is an open set, k € C™™(X, X), D a differential operator of order at
most m, then kernel trick for derivatives holds

DX/((X./') E&rk ; Df(X): <f(')sDXk(X7.)>ffk
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Back to Second-Order Cone Constraints

Take 6 > 0 and x s.t. ||[x — Xp| <6

Df (x) = Df (%m) + (f(-), Dxk(x, ) — Dxk(%m, )k
Df(x) = Df (%m) = [|f (-)ll [ Dxk(x, -) = Dxk(%m, -)ll«
Df(x) = Df(%m) = If ()l sup |[Dxk(x,") = Dxk(%m, )|l

{x [lx—=%m|| <5}

T]K,m((s)

For smooth kernels, § — 0 gives 1k, m(d) — 0.

Shift-invariant kernel (k(x,y) = ko(x — y)) gives

n=sup \/[2D«Dyko(0) — 2D Dy ko (du)|
UGB”.HX(O,l)

Other buffers were possible (e.g. constant), why choose “nk ml/f(-)||"?
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SVM is about separating red and green points by blue hyperplane.
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Using the nonlinear embedding ®p : x — Dyk(x,-), the idea is the same.

Consider only the green points, it looks like one-class SVM.
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The green points are now samples of a compact set K.
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The image ®p(K) looks ugly...
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The image ®p(K) looks ugly, can we cover it by balls? How to choose 7n?
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First cover K C [J{Xm + 0B}, and then look at the images ®p({Xm, + dB})

Pierre-Cyril Aubin-Frankowski Kernel Regression with Hard Shape Constraints MLSS Tiibingen, July 2020 6/9



Cover the ®p({Xm + dB}) with tiny balls! This is how SOC was defined.
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Joint quantile regression (JQR): airplane data

Airplane trajectories at takeoff have increasing altitude.

JQR with monotonic con-
straint over [Xmin, Xmax]:

Altitude (*100 ft)
o
w

Quantiles should be
non-crossing
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Two shape constraints jointly handled with 15k samples.
Works with higher dimensions too!
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Joint quantile regression (JQR): Engel’s law

As income rises, the proportion of income spent on food falls, but absolute
expenditure on food rises.

Tncome spent on food
Income spent on food

p2:
a5t 2
T s o o5 1 15 o TTUL es o s 1 a5 o
Total income Total income
Increasing-+non-crossing Increasing-+non-crossing+concave

Priors have a great effect on the shape of solutions!
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Conclusion and Acknowledgments

Open problems:
@ other types of compact coverings? Convex hull of union of sets?

@ modify coverings while optimizing? e.g. greedily adding new samples
Deeply grateful to:
Nicolas Petit (Mines ParisTech), my PhD advisor
Jean-Philippe Vert (Mines ParisTech-Google), who got me to love kernels

Zoltan Szabé (Ecole polytechnique), my co-author for quantile regression

See Hard Shape-Constrained Kernel Machines, PCAF and Zoltadn Szabd
https://arxiv.org/abs/2005.12636
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