Kernels and optimization:
Hilbert vs tropical, kernel Sum-of-Squares, optimal control,
c-concavity and representer theorems

Pierre-Cyril Aubin-Frankowski

INRIA SIERRA, Paris, France
Moving to TU Wien for postdoc in Sept 23

LIKE 2023

June 29, 2023, Bern
A very natural problem

Let X be a set, and $\mathcal{F} = \{f : X \to \mathbb{R}\}$ a function class. For $F \in \mathcal{F}$ and $L : \mathcal{F} \to \mathbb{R}$

$$\min_{x \in X} F(x) \quad \text{VS} \quad \min_{f \in \mathcal{F}} L(f) = L(f(x_1), \ldots, f(x_N))$$

Typical examples of \mathcal{F} in this talk
- \mathcal{F} is a RKHS \mathcal{H}_k with kernel k
- \mathcal{F} is CVEX(\mathbb{R}^d), the set of convex lower semicontinuous functions over \mathbb{R}^d
- \mathcal{F} is Lip(X), the set of 1-Lipschitz functions over a metric space X

Questions:
- can we minimize a given F through function evaluations?
- can we minimize over \mathcal{F} when L involves a finite number of evaluations?
Some very special function spaces, the ones generated by a kernel

RKHSs and convex functions have the common property of having clear generators:

\[\mathcal{H}_k = \{ f(\cdot) = \sum_{y \in X} a_y k(\cdot, y) \mid (a_y)_y \text{ finite} \} + \text{completion} \]

\[\text{CVEX}(\mathbb{R}^d) = \{ f(\cdot) = \sup_{y \in \mathbb{R}^d} (\cdot, y) + a_y \mid (a_y)_y \subset \mathbb{R} \cup \{-\infty\} \} \]
Some very special function spaces, the ones generated by a kernel

RKHSs and convex functions have the common property of having clear generators:

\[\mathcal{H}_k = \{ f(\cdot) = \sum_{y \in X} a_y k(\cdot, y) | (a_y)_y \text{ finite} \} + \text{completion} \]

\[\text{CVEX}(\mathbb{R}^d) = \{ f(\cdot) = \sup_{y \in \mathbb{R}^d} (\cdot, y) + a_y | (a_y)_y \subset \mathbb{R} \cup \{-\infty\} \} \]

More generally take a (max-plus) kernel \(b : X \times Y \rightarrow \mathbb{R} \), and define its range

\[\text{Rg}(B) := \{ \sup_{y \in Y} b(\cdot, y) + a_y | a_y \in \mathbb{R} \cup \{-\infty\} \} \]

Take \(X = Y \) for now:

i) For \(X = \mathbb{R}^d \), \(b(x, y) = -\|x - y\|^2 \) gives the 1-semiconvex l.s.c. functions,

\[\text{Rg}(B) = \{ f \text{ l.s.c.} | f + \| \cdot \|^2 \text{ is convex} \} \]

ii) For \((X, d) \) a metric space, \(p \in (0, 1] \), \(b(x, y) = -d(x, y)^p \) gives the \((1, p)\)-Hölder continuous functions,

\[\text{Rg}(B) = \{ f | \forall x, y, |f(x) - f(y)| \leq 1 \cdot d(x, y)^p \} \].
What are we going to see?

If $\mathcal{F} = \mathcal{H}_k$ is a RKHS,

- (minimize over \mathcal{H}_k): **known** \rightarrow representer theorems
 \hookrightarrow (**new** cases in optimal control/estimation)

- (minimize $F \in \mathcal{H}_k$): **new** \rightarrow kernel Sum-of-Squares

If $\mathcal{F} = \text{Rg}(B)$ is a tropical kernel space,

- (minimize over $\text{Rg}(B)$): **new** \rightarrow tropical representer theorems

- (minimize $F \in \text{Rg}(B)$): **new** \rightarrow F c-concave and alternating minimization

Separate works with Alain Bensoussan (UT Dallas), Alessandro Rudi (INRIA Paris), Stéphane Gaubert (INRIA Polytechnique), Flavien Léger (INRIA Paris)
Optimizing over RKHSs: representer theorem

Let $L : \mathbb{R}^N \rightarrow \mathbb{R} \cup \{\infty\}$, strictly increasing $\Omega : \mathbb{R}_+ \rightarrow \mathbb{R}$, and assume there exists $\bar{f} \in \text{argmin}_{f \in \mathcal{H}_k} L \left((f(x_n))_{n \in [N]} \right) + \Omega \left(\|f\|_k \right)$

Then $\exists (a_n)_{n \in [N]} \in \mathbb{R}^N$ s.t. $\bar{f}(\cdot) = \sum_{n \in [N]} a_n k(\cdot, x_n)$

\leftrightarrow Actually even for $\Omega = 0$, existence of \bar{f}, gives existence of optimal $\bar{f}_0(\cdot) = \sum_{n \in [N]} a_n k(\cdot, x_n)$.

\leftrightarrow All vs some optimal solutions lie in a finite dimensional subspace of \mathcal{H}_k.

Finite number of evaluations \implies finite number of coefficients
What if there is no RKHS? Find one! Example in optimal control

The Linear-Quadratic (LQ) optimal control is defined over

\[S_{[t_0, T]} := \{ x(\cdot) \mid x(t_0) = 0, \exists u(\cdot) \in L^2(t_0, T) \text{ s.t. } x'(t) = Ax(t) + Bu(t) \text{ a.e. } \} \]

a vector space of controlled trajectories \(x(\cdot) : [t_0, T] \rightarrow \mathbb{R}^Q \).

LQ optimal control

\[
\min_{x(\cdot) \in S_{[t_0, T]}, u(\cdot) \in L^2} \ g(x(T)) + \int_{t_0}^{T} \| u(\tau) \|^2 d\tau
\]

with \(u(t) = B^{\Theta} [x'(t) - Ax(t)] \)
What if there is no RKHS? Find one! Example in optimal control

The Linear-Quadratic (LQ) optimal control is defined over

$$S_{[t_0, T]} := \{ x(\cdot) \mid x(t_0) = 0, \exists u(\cdot) \in L^2(t_0, T) \text{ s.t. } x'(t) = Ax(t) + Bu(t) \text{ a.e. } \}$$

a vector space of controlled trajectories $x(\cdot) : [t_0, T] \to \mathbb{R}^Q$.

The corresponding kernel has the form of a Gramian:

$$K(s, t) = \int_{t_0}^{\min(s, t)} e^{A(s-\tau)} B(\tau) B^\top(\tau) e^{A^\top(t-\tau)} d\tau.$$

and the optimal solution is of the form $\tilde{x}(\cdot) = K(\cdot, T)p_T$ for some $p_T \in \mathbb{R}^Q$.

LQ optimal control

$$\min_{x(\cdot) \in S_{[t_0, T]} } \int_{t_0}^{T} \| u(\tau) \|^2 d\tau + g(x(T))$$

with $u(t) = B^\ominus [x'(t) - Ax(t)]$

“KRR” (Kernel Ridge Regression)

$$\min_{x(\cdot) \in S_{[t_0, T]} } g(x(T)) + \| x(\cdot) \|^2_{S_{[t_0, T]}}$$

with $\| x(\cdot) \|^2_{S_{[t_0, T]}} = \| B^\ominus [x'(\cdot) - Ax(\cdot)] \|_{L^2(t_0, T)}^2$
#1 Where’s Waldo/Charlie the kernel? For Kalman estimation

Continuous-time estimation problem (smoothing/filtering) over GPs with linear SDE

\[dx(t) = Fx(t)dt + Gdw(t), \quad x(t_0) = \xi, \]
\[dy(t) = Hx(t)dt + db(t), \quad y(t_0) = 0. \]

Problem: Estimate \(x(s) \) with the \(\sigma \)-algebra \(\mathcal{Y}^T = \sigma(y(\tau), 0 \leq \tau \leq T) \) by (linear) minimum mean square estimator, a.k.a. the minimum variance linear estimator

\[\hat{x}(s|T) = \mathbb{E}[x(s)|\mathcal{Y}^T] = x_S(s|T) := \bar{x}(s) + \int_{t_0}^{T} S_s(t|T)dy(t). \]
Continuous-time estimation problem (smoothing/filtering) over GPs with linear SDE

\[dx(t) = Fx(t)dt + Gdw(t), \quad x(t_0) = \xi, \]
\[dy(t) = Hx(t)dt + db(t), \quad y(t_0) = 0. \]

Problem: Estimate \(x(s) \) with the \(\sigma \)-algebra \(\mathcal{Y}^T = \sigma(y(\tau), 0 \leq \tau \leq T) \) by (linear) minimum mean square estimator, a.k.a. the minimum variance linear estimator

\[\hat{x}(s \mid T) = \mathbb{E}[x(s) \mid \mathcal{Y}^T] = x_S(s \mid T) := \bar{x}(s) + \int_{t_0}^{T} S_s(t \mid T)dy(t). \]

\[\epsilon_S(s \mid T) := x(s) - x_S(s \mid T) = x(s) - \int_{t_0}^{T} S_s(t \mid T)dy(t). \]

\[\hat{S}_s(\cdot \mid T) \in \text{argmin}_{S(\cdot \mid T)} \Gamma_S(s \mid T) = \mathbb{E}[\epsilon_S(s \mid T)(\epsilon_S(s \mid T))^*]. \]

The kernel is the covariance of \(\epsilon_{\hat{S}}(\cdot \mid T) \) and we have \(\hat{S}_s(t \mid T) = K(s, t \mid T)H^*R^{-1} \),

\[K(s, t \mid T) = \mathbb{E}[\epsilon_{\hat{S}}(s \mid T)(\epsilon_{\hat{S}}(t \mid T))^*] \in \mathcal{L}(\mathbb{R}^n, *, \mathbb{R}^n) \]
#2 Where's Waldo/Charlie the kernel? For least squares estimation

Using least squares formulation of the estimation problem

\[
L_x(x(\cdot)) := \int_{t_0}^{T} \| y(t) - H x(t) \|^2_{R^{-1}} dt + \| G^\oplus (x'(t) - F x(t)) \|^2_{Q^\oplus} dt + \langle \Pi_0^\oplus x(t_0), x(t_0) \rangle + \langle \Sigma_T x(T), x(T) \rangle
\]

Introduce the RKHS \(S_{[t_0, T]} = \{ x(\cdot) \in H^1 \mid \exists u(\cdot) \in L^2 \text{ s.t. } x'(\tau) = F x(\tau) + G Q^{\frac{1}{2}} u(\tau) \} \).

\[
\| x(\cdot) \|^2_{S_{[t_0, T]}} = \langle \Pi_0^{-1} x(t_0), x(t_0) \rangle + \langle \Sigma_T x(T), x(T) \rangle + \int_{t_0}^{T} \| u(\tau) \|^2 d\tau + \int_{t_0}^{T} \langle H^* R^{-1} H x(\tau), x(\tau) \rangle d\tau
\]
2 Where's Waldo/Charlie the kernel? For least squares estimation

Using least squares formulation of the estimation problem

$$ L_x(x(\cdot)) := \int_{t_0}^{T} \|y(t) - Hx(t)\|^2_{R^{-1}} dt + \|G^\ominus (x'(t) - Fx(t))\|^2_{Q^\ominus} dt + \langle \Pi_0^\ominus x(t_0), x(t_0) \rangle + \langle \Sigma_T x(T), x(T) \rangle $$

Introduce the RKHS $S_{[t_0, T]} = \{ x(\cdot) \in H^1 \mid \exists u(\cdot) \in L^2 \text{ s.t. } x'(\tau) = Fx(\tau) + GQ^{\frac{1}{2}} u(\tau) \}$.

$$ \|x(\cdot)\|^2_{S_{[t_0, T]}} = \langle \Pi_0^{-1} x(t_0), x(t_0) \rangle + \langle \Sigma_T x(T), x(T) \rangle + \int_{t_0}^{T} \|u(\tau)\|^2 d\tau + \int_{t_0}^{T} \langle H^* R^{-1} Hx(\tau), x(\tau) \rangle d\tau $$

Taking Fréchet derivative (rather than representer theorem)

$$ \int_{t_0}^{T} \mathcal{K}(\cdot, t|T) H^* R^{-1} y(t) dt = \arg\min_{x(\cdot) \in S} \|R^{-1/2} y(\cdot)\|^2_{L^2} + \|x(\cdot)\|^2_{S} - 2 \langle H^*(\cdot) R^{-1}(\cdot) y(\cdot), x(\cdot) \rangle_{L^2([t_0, T])} $$

and the kernel has the explicit form (based on Riccati matrices and some semi-groups)

$$ K(s, t|T) = \Phi_{F,\Sigma}(s, t_0)(\Pi_0^{-1} + \Sigma(t_0))^{-1}\Phi_{F,\Sigma}^*(t, t_0) + \int_{t_0}^{\min(s,t)} \Phi_{F,\Sigma}(s, \tau) GQG^* \Phi_{F,\Sigma}^*(t, \tau) d\tau $$
What if there is no RKHS? Find one!

- finding an RKHS somewhere allows for simpler computations (representer theorems + kernel trick)

- in LQ optimal control, RKHSs come from vector spaces of trajectories\(^1\)

LQ optimal control \subseteq kernel methods

- in linear estimation, kernels come from covariances of optimal errors\(^2\)

New formulas for the covariances of GPs induced by linear SDEs!

Now back to minimizing functions rather than over functions.

Optimizing a smooth function in a RKHS: kernel Sum-of-Squares

Take $F \in \mathcal{H}_k$ with $k \in C^{s_k}(X \times X, \mathbb{R})$, $s_k \geq 0$, $X \subset \mathbb{R}^d$ bounded open. Global optimization of

$$\min_{x \in X} F(x)$$

is in general non-convex. BUT it can be rewritten as

$$\sup_{c \in \mathbb{R}} c \quad \text{subject to} \quad F(x) - c \geq 0, \forall x \in X$$

This convex problem has an infinite number of affine constraints...Lets sample them!
Optimizing a smooth function in a RKHS: kernel Sum-of-Squares

Take $F \in \mathcal{H}_k$ with $k \in C^{s_k}(X \times X, \mathbb{R})$, $s_k \geq 0$, $X \subset \mathbb{R}^d$ bounded open. Global optimization of

$$\min_{x \in X} F(x)$$

is in general non-convex. BUT it can be rewritten as

$$\sup_{c \in \mathbb{R}} \left(F(x) - c \right) \geq 0, \forall x \in X$$

This convex problem has an infinite number of affine constraints. . . .Lets sample them! However, we would get $\hat{c} = \min_{m \in [M]} F(x_m)$ and in the worst case

$$|\hat{c} - \min F| \propto \text{Lip}(F) \cdot h_M$$

where

$$h_M = \sup_{x \in X} \min_{m \in [M]} \|x - x_m\| \text{ (fill distance)} \quad (8)$$

BUT $h_M \propto \frac{1}{M^d} \rightarrow \text{curse of dimensionality}$. Can we do better by leveraging the smoothness?
Optimizing a smooth function in a RKHS: kernel Sum-of-Squares

We want to do global zero-th order optimization of smooth functions. Scattering inequalities tell us that if \(f(x_m) - g(x_m) = 0 \) with \(f, g \in C^s \), then on a small neighborhood of size \(r \)

\[
|f(x) - g(x)| \leq C \cdot r^s
\]

Question: Can we find a “nice” function \(g(x) \geq 0, g \in C^2 \) such that

\[
\sup_{c \in \mathbb{R}} c \quad : \quad F(x) - c = g(x), \forall x \in X
\]

Yes...but that’s not trivial because of the nonnegativity constraint.
Optimizing a smooth function in a RKHS: kernel Sum-of-Squares

We want to do global zero-th order optimization of smooth functions. Scattering inequalities tell us that if $f(x_m) - g(x_m) = 0$ with $f, g \in C^s$, then on a small neighborhood of size r

$$|f(x) - g(x)| \leq C \cdot r^s$$

Question: Can we find a “nice” function $g(x) \geq 0, g \in C^2$ such that

$$\sup_{c \in \mathbb{R}} c \quad \text{subject to} \quad F(x) - c = g(x), \forall x \in X$$

Yes...but that’s not trivial because of the nonnegativity constraint.
Can we set $g = h^2$ for some function h? Yes, if $F \in C^2$ has a strictly positive Hessian at a unique global minimum. BUT we don’t know how to compute it.

Can we look for h in a RKHS? Yes but non convex equality constraint...
A nice class of nonnegative functions: kernel Sum-of-Squares/PSD models

How to build a nonnegative function given an embedding $\phi : X \rightarrow \mathcal{H}_\phi$? Square it!

$$f : x \mapsto \langle \phi(x), \phi(x) \rangle_{\mathcal{H}_\phi} = k_\phi(x, x) \geq 0$$

More generally take a positive semidefinite operator $A \in S^+(\mathcal{H}_\phi)$,

$$f_A : x \mapsto \langle \phi(x), A\phi(x) \rangle_{\mathcal{H}_\phi} \geq 0$$

(PSD model) \[A = \sum_{i,j=1}^{N} a_{ij}\phi(x_i) \otimes \phi(x_j) \implies f_A(x) = \sum_{i,j=1}^{N} a_{ij}k_\phi(x, x_i)k_\phi(x, x_j) \]

(kernel SoS) \[[a_{ij}]_{i,j} = \sum_i u_i u_i^\top \text{ (SVD)} \implies f_A(x) = \sum_{i=1}^{N} \left(\sum_{j=1}^{N} u_{i,j}k_\phi(x, x_j) \right)^2 \]

Note that in general $f_A \notin \mathcal{H}_\phi$ but $f_A \in \mathcal{H}_\phi \odot \mathcal{H}_\phi$ (Hadamard product). If $\text{span}(\{k_\phi(\cdot, x)\}_{x \in X})$ is dense in continuous functions, so are the $\{f_A\}_{A \in S^+(\mathcal{H}_\phi)}$ in nonnegative functions.
Optimization with kernel Sum-of-Squares/PSD models

We can consider the convex problem and approximate it through sampling + regularisation:

\[
\sup_{c \in \mathbb{R}, A \in S^+(\mathcal{H}_\phi)} F(x) - c = \langle \phi(x), A\phi(x) \rangle_{\mathcal{H}_\phi}, \forall x \in X
\]

\[
\sup_{c \in \mathbb{R}, A \in S^+(\mathcal{H}_\phi)} c - \lambda \text{Tr}(A)
\]

We do have a representer theorem! Two cases\(^a\) for \(F \in C^s\):

- if \(\exists A^* \in S^+(\mathcal{H}_\phi), F(x) - \min F = \langle \phi(x), A^* \phi(x) \rangle_{\mathcal{H}_\phi} \), then \(|\hat{c} - \min F| \leq C_0(F) \cdot h_M^s \propto \frac{1}{M^d}\)

- otherwise, \(|\hat{c} - \min F| \leq C_0(F) \cdot h_M \propto \frac{1}{M^d}\).

\(^a\)Pierre-Cyril Aubin-Frankowski and Alessandro Rudi. “Approximation of optimization problems with constraints through kernel Sum-Of-Squares”. In: (2022).

Now back to minimizing over functions rather than functions.

Optimization on tropical function spaces

Take a (max-plus) kernel $b : X \times Y \to \mathbb{R}$, and recall what is the range

$$\text{Rg}(B) := \{ \sup_{y \in Y} b(\cdot, y) + a_y \mid a_y \in \mathbb{R} \cup \{-\infty\} \}.$$

Given a subset $\hat{X} = \{x_m\}_{m \in I}$, define

$$\text{Rg}_{\partial \hat{X}}(B) := \left\{ f \in \text{Rg}(B) \mid \forall m \in I, \exists p_m \in Y \text{ maximizing:} \right\}$$

$$f(x_m) = \sup_{p \in Y} b(x_m, p) - \sup_{x' \in X} (b(x', p) - f(x')).$$

Question: Can we do the same for more general tropical kernels b?
Optimization on tropical function spaces

Take a (max-plus) kernel $b : X \times Y \to \mathbb{R}$, and recall what is the range

$$Rg(B) := \{ \sup_{y \in Y} b(\cdot, y) + a_y | a_y \in \mathbb{R} \cup \{-\infty\} \}.$$

Given a subset $\hat{X} = \{x_m\}_{m \in I}$, define

$$Rg_{\partial \hat{X}}(B) := \left\{ f \in Rg(B) | \forall m \in I, \exists p_m \in Y \text{ maximizing:} \right\}
\begin{align*}
&\quad f(x_m) = \sup_{p \in Y} b(x_m, p) - \sup_{x' \in X} (b(x', p) - f(x')) \end{align*}.$$

When $b = \langle \cdot, \cdot \rangle$, each p_m can be interpreted as a subgradient at x_m. There is a well-known property in convex regression, (Boyd and Vandenberghe, Convex Optimization[Section 6.5.5])

$$\min_{f \in CVEX} \sum |f(x_m) - \bar{y}_m|^2 \iff \min_{(p_m, y_m)_{m \in I} \in (\mathbb{R}^d \times \mathbb{R})^M} \sum |y_m - \bar{y}_m|^2.$$

Question: Can we do the same for more general tropical kernels b?
Proposition (Tropical interpolation)

Let \mathcal{I} be a nonempty index set, given $(x_m, y_m)_{m \in \mathcal{I}} \in (X \times \mathbb{R})^\mathcal{I}$, setting $\hat{X} = \{x_m\}_{m \in \mathcal{I}}$, the three following statements are equivalent:

i) there exists $f \in \text{Rg}_{\partial \hat{X}}(B)$ such that $y_m = f(x_m)$ for all $m \in \mathcal{I}$;

ii) there exists $(p_m)_{m \in \mathcal{I}} \in (Y)^\mathcal{I}$ such that $y_m = f^0(x_m)$ for all $m \in \mathcal{I}$, for

$$f^0(\cdot) := \max_{m \in \mathcal{I}} b(\cdot, p_m) - b(x_m, p_m) + y_m;$$

iii) there exists $(p_m)_{m \in \mathcal{I}} \in (Y)^\mathcal{I}$ such that $y_n - y_m \geq b(x_n, p_m) - b(x_m, p_m)$ for all $n, m \in \mathcal{I}$.
Optimization on tropical function spaces: representer theorem

Corollary (Representer theorem)

Given points \((x_m)_{m \in I} \in X^I\) and a function \(L : \mathbb{R}^I \rightarrow \mathbb{R}\), fix \(\hat{X} = \{x_m\}_{m \in I}\). Then, if the problem

\[
\min_{f \in \text{Rg}(B)} L((f(x_m))_{m \in I})
\]

has a solution \(\bar{f} \in \text{Rg}_{\partial-\hat{X}}(B)\) with finite values \((f(x_m))_{m \in I} \in \mathbb{R}^I\), it also has a solution \(f^0\) as in Proposition 1-ii) which can be obtained solving

\[
\min_{(p_m, y_m)_{m \in I} \in (Y \times \mathbb{R})^M} L((y_m)_{m \in I})
\]

s.t. \(y_n - y_m \geq b(x_n, p_m) - b(x_m, p_m), \forall n, m \in I\).

Conversely, if (10) has a solution, then it is also a solution in \(\text{Rg}_{\partial-\hat{X}}(B)\) of (9).

WE DO NOT NEED ANY PROPERTY OF THE KERNEL \(b\)!
Recall Aronszajn’s theorem

Theorem

Given a kernel $k : X \times X \rightarrow \mathbb{R}$, the three following properties are equivalent:

i) k is a positive semidefinite kernel, i.e. a kernel being both:

- symmetric: $\forall x, y \in X, \ k(x, y) = k(y, x)$, and
- positive: $\forall M \in \mathbb{N}^*, \forall (a_m, x_m) \in (\mathbb{R} \times X)^M, \sum_{n,m=1}^{M} a_n a_m k(x_n, x_m) \geq 0$;

ii) there exists a Hilbert space $(\mathcal{H}, (\cdot, \cdot)_\mathcal{H})$ and a feature map $\Phi : X \rightarrow \mathcal{H}$ such that

- $\forall x, y \in X, \ k(x, y) = (\Phi(x), \Phi(y))_\mathcal{H}$;

iii) k is the reproducing kernel of the Hilbert space (RKHS) of functions $\mathcal{H}_k := \overline{\mathcal{H}_{k,0}}$, the completion for the pre-scalar product $(k(\cdot, x), k(\cdot, y))_{k,0} = k(x, y)$ of the space $\mathcal{H}_{k,0} := \text{span} \{ k(\cdot, x) \}_{x \in X}$, in the sense that

- $\forall x \in X, \ k(\cdot, x) \in \mathcal{H}_k$ and $\forall f \in \mathcal{H}, \ f(x) = (f, k(\cdot, x))_{\mathcal{H}}$.
Main (informal) theorem: Aronszajn’s analogue

Theorem (Tropical analogue of Aronszajn theorem)

Given a kernel $b : X \times X \to \mathbb{R} \cup \{-\infty\}$, the three following properties are equivalent

1) **b is a tropically positive semidefinite kernel**, i.e. symmetric and $b(x, x) + b(y, y) \geq b(x, y) + b(y, x)$;

2) **there exists a factorization of b by a feature map** $\psi : X \to \mathbb{R}^Z_{\max}$ for some set Z, $b(x, y) = \sup_{z \in Z} \psi(x, z) + \psi(y, z)$;

3) **b is the sesquilinear reproducing kernel** of a max-plus space of functions $Rg(B)$, the max-plus completion of $\left\{ \sup_{n \in \{1, \ldots, N\}} a_n + b(\cdot, x_n) \mid N \in \mathbb{N}^*, a_n \in \mathbb{R}, x_n \in X \right\}$, and b defines a tropical Cauchy-Schwarz inequality over \mathbb{R}^X.

Some kernels b exhibit analogue properties to RKHSs! Are they useful? TBC
Full analogy between Hilbertian and tropical kernels

Dedicated to kernel lovers.\(^4\)

<table>
<thead>
<tr>
<th>Concept</th>
<th>Hilbertian kernel</th>
<th>Tropical kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmetry</td>
<td>(k(x, y) = k(y, x))</td>
<td>(b(x, y) = b(y, x))</td>
</tr>
<tr>
<td>positivity</td>
<td>(\sum_{i,j} a_i a_j k(x_i, x_j) \geq 0)</td>
<td>(b(x, x) + b(y, y) \geq b(x, y) + b(y, x))</td>
</tr>
<tr>
<td>feature map</td>
<td>(k(x, y) = (\Phi(x), \Phi(y))_\mathbb{C})</td>
<td>(b(x, y) = \sup_{z \in Z} \psi(x, z) + \psi(y, z))</td>
</tr>
<tr>
<td>duality bracket</td>
<td>(\langle \mu, f \rangle_{\mathbb{R}^X \times \mathbb{R}^X} = \int_X f(y) d\mu(y))</td>
<td>(\langle \hat{g}, f \rangle = \sup_{x \in X} f(x) - \hat{g}(x))</td>
</tr>
<tr>
<td>kernel operator</td>
<td>(K(\mu)(x) = \int_X k(x, y) d\mu(y))</td>
<td>(\hat{B}(\hat{\hat{f}})(x) = \sup_{y \in X} b(x, y) - \hat{\hat{f}}(y))</td>
</tr>
<tr>
<td>monotone operator</td>
<td>(\langle \mu, K(\mu) \rangle_{\mathbb{R}^X \times \mathbb{R}^X} \geq 0)</td>
<td>(\langle \hat{f}, \hat{B}\hat{f} \rangle + \langle \hat{g}, \hat{B}\hat{g} \rangle \geq \langle \hat{f}, \hat{B}\hat{g} \rangle + \langle \hat{g}, \hat{B}\hat{f} \rangle)</td>
</tr>
<tr>
<td>function space</td>
<td>(\mathcal{H}k = \text{span}{k(\cdot, x)}{x \in X})</td>
<td>(\text{Rg}(B) = {\sup_{x \in X} [a_x + b(\cdot, x)]</td>
</tr>
<tr>
<td>reproducing property</td>
<td>(f(x) = (k(\cdot, x), f(\cdot))_{\mathcal{H}_k})</td>
<td>(\hat{g}(x) = \langle \hat{B}\hat{g}, \hat{B}\delta^T \rangle = (\hat{B}\hat{g})(x))</td>
</tr>
</tbody>
</table>

Now back to minimizing functions rather than over functions.

c-concavity

Definition (c-concavity)

We say that a function $f : X \rightarrow \mathbb{R}$ is c-concave if there exists a function $h : Y \rightarrow \mathbb{R}$ such that

$$f(x) = \inf_{y \in Y} c(x, y) + h(y),$$

for all $x \in X$. If f is c-concave, then we can take $h(y) = f^c(y) = \sup_{x' \in X} f(x') - c(x', y)$.

NB: Costs c are the opposite of the tropical kernels b (sign convention problem).

For $c = \frac{L}{2} \|x - y\|^2$, c-concave $\Leftrightarrow \nabla^2 f \leq L$.
Majorization–minimization

Let $f : X \to \mathbb{R}$ where X is any set. Choose another set Y and a function $c(x, y)$. Define the upperbound

$$f(x) \leq \phi(x, y) := c(x, y) + f^c(y) := c(x, y) + \sup_{x' \in X} f(x') - c(x', y)$$ \hspace{1cm} (12)

Do alternating minimization (AM) of the surrogate

$$y_{n+1} = \arg\min_{y \in Y} c(x_n, y) + f^c(y),$$ \hspace{1cm} (13)

$$x_{n+1} = \arg\min_{x \in X} c(x, y_{n+1}) + f^c(y_{n+1}).$$ \hspace{1cm} (14)
Majorization–minimization

Let $f : X \to \mathbb{R}$ where X is any set. Choose another set Y and a function $c(x, y)$. Define the upperbound

$$f(x) \leq \phi(x, y) := c(x, y) + f^c(y) := c(x, y) + \sup_{x' \in X} f(x') - c(x', y) \quad (12)$$

Do alternating minimization (AM) of the surrogate

$$y_{n+1} = \arg\min_{y \in Y} c(x_n, y) + f^c(y), \quad (13)$$
$$x_{n+1} = \arg\min_{x \in X} c(x, y_{n+1}) + f^c(y_{n+1}). \quad (14)$$

If we can differentiate and $f(x) = \inf_y c(x, y) + f^c(y)$ (c-concavity) then we can write (applying the envelope theorem $\nabla f(x) = \nabla_1 \phi(x, \bar{y}(x)))$

$$-\nabla_x c(x_n, y_{n+1}) = -\nabla f(x_n), \quad (15)$$
$$\nabla_x c(x_{n+1}, y_{n+1}) = 0. \quad (16)$$
Sketch of alternating minimization

\[y_{n+1} = \arg\min_{y \in Y} c(x_n, y) + f^c(y), \]
\[x_{n+1} = \arg\min_{x \in X} c(x, y_{n+1}) + f^c(y_{n+1}). \]
Gradient descent with a general cost - Examples

\[-\nabla_x c(x_n, y_{n+1}) = -\nabla f(x_n),\]
\[\nabla_x c(x_{n+1}, y_{n+1}) = 0.\]

In the following: \(Y = X\), and \(c\) is minimal on the diagonal \(\{x = y\}\), so \(x_{n+1} = y_{n+1}\)

i) Gradient descent: \(c(x, y) = \frac{L}{2} \|x - y\|^2\) and \(x_{n+1} - x_n = -\frac{1}{L} \nabla f(x_n)\).

ii) Mirror descent: \(c(x, y) = u(x|y)\), so \(\nabla u(x_{n+1}) - \nabla u(x_n) = -\nabla f(x_n)\).
Gradient descent with a general cost - Examples

\[-\nabla_x c(x_n, y_{n+1}) = -\nabla f(x_n), \]
\[\nabla_x c(x_{n+1}, y_{n+1}) = 0.\]

In the following: \(Y = X\), and \(c\) is minimal on the diagonal \(\{x = y\}\), so \(x_{n+1} = y_{n+1}\)

i) Gradient descent: \(c(x, y) = \frac{L}{2}||x - y||^2\) and \(x_{n+1} - x_n = -\frac{1}{L} \nabla f(x_n)\).

ii) Mirror descent: \(c(x, y) = u(x|y)\), so \(\nabla u(x_{n+1}) - \nabla u(x_n) = -\nabla f(x_n)\).

iii) Natural gradient descent: \(c(x, y) = u(y|x)\), so \(x_{n+1} - x_n = -(\nabla^2 u(x_n))^{-1} \nabla f(x_n)\).

iv) A nonlinear gradient descent: \(c(x, y) = \ell(x - y)\), so \(x_{n+1} - x_n = -\nabla \ell^*(\nabla f(x_n))\).

v) Riemannian gradient descent: \((M, g)\) a Riemannian manifold. Take \(X = Y = M\) and \(c(x, y) = \frac{L}{2} d^2(x, y)\), so \(x_{n+1} = \exp_{x_n}(-\frac{1}{L} \nabla f(x_n))\).
Gradient descent with a general cost - Examples

\[-\nabla_x c(x_n, y_{n+1}) = -\nabla f(x_n),\]
\[\nabla_x c(x_{n+1}, y_{n+1}) = 0.\]

In the following: \(Y = X\), and \(c\) is minimal on the diagonal \(\{x = y\}\), so \(x_{n+1} = y_{n+1}\)

i) Gradient descent: \(c(x, y) = \frac{L}{2} \|x - y\|^2\) and \(x_{n+1} - x_n = -\frac{1}{L} \nabla f(x_n)\).

ii) Mirror descent: \(c(x, y) = u(x|y)\), so \(\nabla u(x_{n+1}) - \nabla u(x_n) = -\nabla f(x_n)\).

iii) Natural gradient descent: \(c(x, y) = u(y|x)\), so \(x_{n+1} - x_n = -(\nabla^2 u(x_n))^{-1} \nabla f(x_n)\).

iv) A nonlinear gradient descent: \(c(x, y) = \ell(x - y)\), so \(x_{n+1} - x_n = -\nabla \ell^*(\nabla f(x_n))\).

v) Riemannian gradient descent: \((M, g)\) a Riemannian manifold. Take \(X = Y = M\) and \(c(x, y) = \frac{L}{2} d^2(x, y)\), so \(x_{n+1} = \exp_{x_n}(-\frac{1}{L} \nabla f(x_n))\),

Cool, but what do you need to converge?

\(\leftrightarrow\) Something like \(L\)-smoothness and \(\mu\)-strong convexity
c-cross-convexity

Consider the sequence of AM iterates, starting from any x_0,

$$y_n \rightarrow x_n \rightarrow y_{n+1}$$

We say that f is λ-strongly c-cross-convex for $\lambda \geq 0$ if, for all $x, y_n \in X \times Y$,

$$f(x) - f(x_n) \geq c(x, y_{n+1}) - c(x, y_n) + c(x_n, y_n) - c(x_n, y_{n+1}) + \lambda (c(x, y_n) - c(x_n, y_n)).$$

c-concavity ($f(x) = \inf_y c(x, y) + f^c(y)$) implies, since $f^c(y_{n+1}) = f(x_n) - c(x_n, y_{n+1})$,

$$f(x) - f(x_n) \leq c(x, y_{n+1}) - c(x_n, y_{n+1}).$$

These conditions extend L-smoothness and (strong) convexity when $c(x, y) = \frac{L}{2} \|x - y\|^2$.

i) Suppose that f is c-concave. Then we have the descent property+stopping criterion

$$f(x_{n+1}) \leq f(x_n) - [c(x_n, y_{n+1}) - c(x_{n+1}, y_{n+1})] \leq f(x_n),$$

$$\min_{0 \leq k \leq n-1} [c(x_k, y_{k+1}) - c(x_{k+1}, y_{k+1})] \leq \frac{f(x_0) - f^*}{n}.$$

ii) Suppose in addition that f is c-cross-convex. Then for any $x \in X$, $n \geq 1$,

$$f(x_n) \leq f(x) + \frac{c(x, y_0) - c(x_0, y_0)}{n}. \quad (17)$$

iii) Suppose in addition that f is λ-strongly c-cross-convex for some $\lambda \in (0, 1)$. Then for any $x \in X$, $n \geq 1$, setting $\Lambda := (1 - \lambda)^{-1} > 1$

$$f(x_n) \leq f(x) + \frac{\lambda (c(x, y_0) - c(x_0, y_0))}{\Lambda^n - 1}. \quad (18)$$
What have we seen? What can you see more in the articles?

Linear optimal control/estimation duality

LQ optimal control ⊂ kernel methods. New formulas for the covariances of GPs induced by linear SDEs!

Global optimization of smooth functions

Kernel Sum-of-Squares use smoothness against curse of dimensionality!

Tropical kernels

Representer theorems still hold in max-plus settings! There are also analogies with Hilbertian framework and applications to value functions.

c-concavity for revisiting optimization algorithms!

c-concavity and c-cross-convexity generalize smoothness and convexity and encompass many algorithms! New assumptions for global convergence of natural gradient descent/Newton
What have we seen? What can you see more in the articles?

Linear optimal control/estimation duality
LQ optimal control \subset kernel methods. New formulas for the covariances of GPs induced by linear SDEs!

Global optimization of smooth functions
Kernel Sum-of-Squares use smoothness against curse of dimensionality!

Tropical kernels
Representer theorems still hold in max-plus settings! There are also analogies with Hilbertian framework and applications to value functions.

c-concavity for revisiting optimization algorithms!
c-concavity and c-cross-convexity generalize smoothness and convexity and encompass many algorithms! New assumptions for global convergence of natural gradient descent/Newton

Thank you for your attention!

