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Motivation: extending gradient descent
Take a C2 function f : Rd → R, L > 0 and consider gradient descent

xn+1 − xn = −1
L∇f (xn). (1)

To have ∥∇f (xn)∥ n →∞−→ 0, L-smoothness (∇2f ≤ L Id) suffices, reading as a “descent lemma”

f (x ′) ≤ f (x) + ⟨∇f (x), x ′ − x⟩ + L
2∥x − x ′∥2. (2)

Gradient descent is just minimization of the upper bound!

To obtain (sub)linear convergence of f (xn), we need (strong) convexity to hold for a λ ≥ 0

f (x) + ⟨∇f (x), x ′ − x⟩ + λ

2 ∥x − x ′∥2 ≤ f (x ′). (3)

There are three objects: i) an algorithm; ii) a regularizer; iii) a class of functions
How to generalize this setting when ∥x − x ′∥2 is “replaced” by c(x , y)?
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Systematic majorization–minimization with a cost
Let f : X → R where X is any set. Choose another set Y and a function c(x , y). Define the
upperbound

f (x) ≤ ϕ(x , y) := c(x , y) + f c(y) := c(x , y) + sup
x ′∈X

f (x ′) − c(x ′, y) (4)

Do alternating minimization (AM) of the surrogate

yn+1 = argmin
y∈Y

c(xn, y) + f c(y), (5)

xn+1 = argmin
x∈X

c(x , yn+1) + f c(yn+1). (6)

If the setting allows to differentiate and f (x) = f cc(x) = infy c(x , y) + f c(y) (c-concavity)
then we can write (applying the envelope theorem ∇f (x) = ∇1ϕ(x , ȳ(x)))

−∇xc(xn, yn+1) = −∇f (xn), (7)
∇xc(xn+1, yn+1) = 0. (8)

For a quadratic c, we recover gradient descent!
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Visual sketch of alternating minimization

xnxn+1

x 7→ f (x)
x 7→ ϕ(x , yn+1) = c(x , yn+1) + f c(yn+1)

among the upperbounds ϕ(·, y)

If f (x) = infy ϕ(x , y), then infx f (x) = infx ,y ϕ(x , y)
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Convergence rates
Consider the sequence of AM iterates, starting from any x0,

yn → xn → yn+1

We say that f is c-cross-convex if, for all x , yn ∈ X × Y ,
f (x) − f (xn) ≥ c(x , yn+1) − c(x , yn) + c(xn, yn) − c(xn, yn+1).

e.g. 3-point inequality (c Bregman), discrete EVI (c Riemann), specific Lyapunov function. . .

c-concavity (f (x) = infy c(x , y) + f c(y)) implies, since f c(yn+1) = f (xn) − c(xn, yn+1),
f (x) − f (xn) ≤ c(x , yn+1) − c(xn, yn+1).

For c(x , y) = L
2 ∥x − y∥2, we get

⟨∇f (xn), x −xn⟩ ≤ f (x)− f (xn) ≤ L
2 ∥x −xn+1∥2 − 1

2L∥∇f (xn)∥2 = ⟨∇f (xn), x −xn⟩+ L
2 ∥x −xn∥2

Suppose that f is c-concave and c-cross-convex, and x∗ = argminX f . Then

f (xn) − f (x∗) ≤ c(x∗, y0) − c(x0, y0)
n . (9)

Linear rates and local characterization of c-concavity and c-cross-convexity also exist.
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Alternating minimization (AM)
Let ϕ(x , y) : X × Y → R where X , Y are any sets. Perform an alternating minimization (AM)

yn+1 = argmin
y∈Y

ϕ(xn, y)

xn+1 = argmin
x∈X

ϕ(x , yn+1),
(10)

No topological requirements! Just existence and uniqueness of iterates (always assumed!)

“Paradoxically, the apparent lack of sophistication may also account for the unpopularity [of
block coordinate descent] as a subject for investigation by optimization researchers, who have
usually been quick to suggest alternative approaches in any given situation.”

Coordinate Descent Algorithms, Stephen J. Wright, MathProg B, 2015

Many algorithms are AM: alternating projections, Sinkhorn/IPFP, EM,. . .

Some results for AM exist, but based on L-smoothness or convexity
[Beck and Tetruashvili, 2013, Beck, 2015] or prox and KL-inequality [Attouch et al., 2010]
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Alternating minimization (AM)
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y∈Y

ϕ(xn, y)

xn+1 = argmin
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(11)

No topological requirements! Just existence and uniqueness of iterates (always assumed!)

Inspired by [Csiszár and Tusnády, 1984], we define:

Definition (Five-point property (FPP))

For λ ≥ 0, ϕ has the λ-FPP if for all x ∈ X , y , y0 ∈ Y , ∃x0, y1 s.t.

ϕ(x , y1) + (1 − λ)ϕ(x0, y0) ≤ ϕ(x , y) + (1 − λ)ϕ(x , y0). (λ-FP)

Note that (λ-FP) forces that y0 → x0 → y1 as in (11).



9/29

ϕ(x , y1) + (1 − λ)ϕ(x0, y0) ≤ ϕ(x , y) + (1 − λ)ϕ(x , y0). (λ-FP)

Theorem (Convergence rates for alternating minimization)

Suppose that ϕ has a minimizer. Then:
i) For all n ≥ 0, ϕ(xn+1, yn+1) ≤ ϕ(xn, yn+1) ≤ ϕ(xn, yn).

ii) If ϕ satisfies (λ-FP) for λ = 0. Then for any x ∈ X , y ∈ Y and any n ≥ 1,

ϕ(xn, yn) ≤ ϕ(x , y) + ϕ(x , y0) − ϕ(x0, y0)
n , so ϕ(xn, yn) − ϕ∗ = O(1/n)

iii) If ϕ satisfies (λ-FP) for some λ ∈ (0, 1). Then for any x ∈ X , y ∈ Y and any n ≥ 1,

ϕ(xn, yn) ≤ ϕ(x , y) + λ[ϕ(x , y0) − ϕ(x0, y0)]
Λn − 1 ,

where Λ := (1 − λ)−1 > 1. In particular ϕ(xn, yn) − ϕ∗ = O((1 − λ)n).
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Proof of convergence rate

ϕ(x , yn+1) + ϕ(xn, yn) ≤ ϕ(x , y) + ϕ(x , yn). (0-FP)

(i): ϕ(xn+1, yn+1) ≤ ϕ(xn, yn+1) ≤ ϕ(xn, yn) by definition of the iterates.
(ii): (0-FP) can be written as

ϕ(xn+1, yn+1) ≤ ϕ(x , y) + [ϕ(x , yn) − ϕ(xn, yn)] − [ϕ(x , yn+1) − ϕ(xn+1, yn+1)].

The last terms inside the brackets are nonnegative. Sum from 0 to n − 1 and use (i):

nϕ(xn, yn) ≤
n−1∑
k=0

ϕ(xk+1, yk+1) ≤ nϕ(x , y) + [ϕ(x , y0) − ϕ(x0, y0)] − [ϕ(x , yn) − ϕ(xn, yn)],

[Csiszár and Tusnády, 1984] had given a similar formula, shown convergence to ϕ∗ but . . . had
not seen the convergence rate!
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(Forward-Backward) Gradient descent with a general cost

Start with
f (x) + g(x) ≤ ϕ(x , y) := g(x) + c(x , y) + sup

x ′∈X
f (x ′) − c(x ′, y)

Do alternate minimization

yn+1 = argmin
y∈Y

c(xn, y) + f c(y) + g(xn), (12)

xn+1 = argmin
x∈X

c(x , yn+1) + f c(yn+1) + g(x). (13)

Let F (x) = infy ϕ(x , y) (c-concavity is f = F ), and assume we are allowed to differentiate, then

−∇xc(xn, yn+1) = −∇F (xn), (14)
∇xc(xn+1, yn+1) = ∇g(xn+1). (15)
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Gradient descent with a general cost - Examples

−∇xc(xn, yn+1) = −∇f (xn),
∇xc(xn+1, yn+1) = 0.

In the following: Y = X , and c is minimal on the diagonal {x = y}, so xn+1 = yn+1 (x -update)
i) Gradient descent: c(x , y) = L

2 ∥x − y∥2 and xn+1 − xn = − 1
L∇f (xn).

ii) Mirror descent: c(x , y) = u(x |y), so ∇u(xn+1) − ∇u(xn) = −∇f (xn).

iii) Natural gradient descent: c(x , y) = u(y |x), so xn+1 − xn = −(∇2u(xn))−1∇f (xn).

iv) A nonlinear gradient descent: c(x , y) = ℓ(x − y), so xn+1 − xn = −∇ℓ∗(∇f (xn)).

v) Riemannian gradient descent: (M, g) a Riemannian manifold. Take X = Y = M and
c(x , y) = L

2 d2(x , y), so xn+1 = expxn(− 1
L∇f (xn)),

We provide assumptions on f and c to obtain a (sub)linear convergence rate
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c-concavity

Definition (c-concavity)

We say that a function f : X → R is c-concave if there exists a function h : Y → R such that

f (x) = inf
y∈Y

c(x , y) + h(y), (16)

for all x ∈ X . If f is c-concave, then we can take h(y) = f c(y) = supx ′∈X f (x ′) − c(x ′, y).

f (x)
x 7→ c(x , y) + f c(y)

x 7→ c(x , y) + α

Figure: The c-transform of f . For a fixed y ∈ Y , the dashed line represents a function x 7→ c(x , y) + α
majorizing f . The smallest of such functions is x 7→ c(x , y) + f c(y), here represented in solid line.
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c-cross-convexity

We want f (x) − f (xn) ≥ c(x , yn+1) − c(x , yn) + c(xn, yn) − c(xn, yn+1) with
−∇xc(xn, yn+1) = −∇f (xn) and ∇xc(xn, yn) = 0.

Recall the cross-difference of c defined by
δc(x ′, y ′; x , y) := c(x , y ′) + c(x ′, y) − c(x , y) − c(x ′, y ′).

Definition (cross-convexity)

Take f and c C1. We say that f is c-cross-convex if for all x , x̄ ∈ X and any ȳ , ŷ ∈ Y verifying
∇xc(x̄ , ȳ) = 0 and −∇xc(x̄ , ŷ) = −∇f (x̄) we have

f (x) ≥ f (x̄) + δc(x , ȳ ; x̄ , ŷ). (17)

In addition let λ > 0. We say that f is λ-strongly c-cross-convex if we have

f (x) ≥ f (x̄) + δc(x , ȳ ; x̄ , ŷ) + λ(c(x , ȳ) − c(x̄ , ȳ)). (18)
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Local criteria
If X , Y ⊂ Rd , then we have a local criterion:

Theorem (Local criterion for c-concavity [Villani, 2009, Theorem 12.46])

Suppose that c ∈ C4(X × Y ) has nonnegative cross-curvature, ∇2
xy c(x , y) is everywhere

invertible, X and Y have c-segments. Let f be C2. Suppose that for all x̄ ∈ X, there exists
ŷ ∈ Y satisfying −∇xc(x̄ , ŷ) = −∇f (x̄) and such that

∇2f (x̄) ≤ ∇2
xxc(x̄ , ŷ).

Then f is c-concave. (Converse is also true)

If f is c-cross-convex then, whenever ∇xc(x̄ , ȳ) = 0 and −∇xc(x̄ , ŷ) = −∇f (x̄), we have

∇2f (x̄) ≥ ∇2
xxc(x̄ , ŷ) − ∇2

xxc(x̄ , ȳ). (19)

(Converse is maybe true, a semi-local condition with c-segments does exist though)
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Theorem (Corollary/Convergence rates for GD with general cost)

i) Suppose that f is c-concave. Then we have the descent property+stopping criterion

f (xn+1) ≤ f (xn) − [c(xn, yn+1) − c(xn+1, yn+1)] ≤ f (xn),

min
0≤k≤n−1

[c(xk , yk+1) − c(xk+1, yk+1)] ≤ f (x0) − f∗
n .

ii) Suppose in addition that f is c-cross-convex. Then for any x ∈ X , n ≥ 1,

f (xn) ≤ f (x) + c(x , y0) − c(x0, y0)
n . (20)

iii) Suppose in addition that f is λ-strongly c-cross-convex for some λ ∈ (0, 1). Then for any
x ∈ X , n ≥ 1, setting Λ := (1 − λ)−1 > 1

f (xn) ≤ f (x) + λ (c(x , y0) − c(x0, y0))
Λn − 1 , (21)

Forward-backward is also possible. But now, on to examples!
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Mirror descent
For u : X → R differentiable, consider

c(x , y) = u(x |y) := u(x) − u(y) − ⟨∇u(y), x − y⟩, (22)

We love it because
it generalizes the square of Euclidean distances;
it characterizes convexity, since u(x |y) ≥ 0 iff u is convex.

Recall our scheme

−∇xc(xn, yn+1) = −∇f (xn),
∇xc(xn+1, yn+1) = 0.

Our gradient descent thus gives

∇u(yn+1) − ∇u(xn) = −∇f (xn),
∇u(xn+1) = ∇u(yn+1).

Combining, we get mirror descent in gradient form ∇u(xn+1) − ∇u(xn) = −∇f (xn).
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Definition (Relative smoothness and convexity)

Let L > 0, λ > 0, and consider f C2.
i) f is smooth relatively to u if u − f is convex [Bauschke et al., 2017]. Equivalently, if

∇2f ≤ ∇2u, or if f (x ′|x) ≤ u(x ′|x), i.e. f (x ′) ≤ f (x) + ⟨∇f (x), x ′ − x⟩ + u(x ′|x).

ii) f is λ-strongly convex relatively to u [Lu et al., 2018] if f − λu is convex. Equivalently, if
∇2f ≥ λ∇2u, or if f (x ′|x) ≥ λu(x ′|x).

Naturally we want to minimize the upperbound given by 1.:

xn+1 = argmin
x∈X

ϕ̃(x , xn) = f (xn) + ⟨∇f (xn), x − xn⟩ + u(x |xn) = f (x) + (u − f )(x |xn). (23)

Buy we can also do
ϕ(x , y) = u(x |y) + f c(y).

Actually we have ϕ̃(x , ỹ) = ϕ(x , y) when ∇u(y) = ∇u(ỹ) − ∇f (ỹ) (just a reparameterization).
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Mirror descent: c-concavity and cross-convexity

Proposition (c-concavity is relative smoothness)

Suppose that ∇u is surjective as a map from X to X ∗. Then f is c-concave for
c(x , y) = u(x |y) if and only if f is smooth relatively to u.

Proposition (cross-convexity is convexity)

Take c(x , y) = u(x |y). Then f is c-cross-convex if and only if f is convex. More generally, let
λ > 0. Then f is λ-strongly c-cross-convex if and only if f is λ-strongly convex relatively to u.

We recover the classical convergence rates:
sublinear when f is convex and smooth relatively to u [Bauschke et al., 2017]
linear if in addition f is λ-strongly convex relatively to u [Lu et al., 2018].
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Riemannian gradient descent
For c(x , y) = L

2 d2(x , y) on a manifold M away from the cut locus, the relation ξ = −∇xc(x , y)
defines a tangent vector ξ ∈ TxM, i.e. for exp the (Riemannian) exponential map

y = expx (ξ/L).

We obtain as before xn+1 = expxn

(
− 1

L∇f (xn)
)
.

Proposition

Let c(x , y) = L
2 d2(x , y). Suppose that (M, g) has nonnegative sectional curvature. Then

i) f geodesically convex =⇒ f c-cross-convex.

ii) −g c-cross-concave =⇒ g geodesically convex.
Suppose that (M, g) has nonpositive sectional curvature. Then

i) f c-cross-convex =⇒ f geodesically convex.

ii) g geodesically convex =⇒ −g c-cross-concave.
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Natural gradient descent

Take Y = X and consider the cost with u C3, convex, with invertible Hessian

c(x , y) = u(y |x) = u(y) − u(x) − ⟨∇u(x), y − x⟩.

Consequently
−∇xc(x , y) = ∇2u(x)(y − x).

Our gradient descent thus gives

yn+1 = xn − ∇2u(xn)−1∇f (xn),
∇xc(xn+1, yn+1) = 0.

Combining, we get natural gradient descent: xn+1 − xn = −∇2u(xn)−1∇f (xn).
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Lemma (Natural gradient descent: c-concavity and cross-convexity)

Let f : X → R be twice differentiable.
i) f is c-concave if and only if for all x , ξ,

∇2f (x)(ξ, ξ) ≤ ∇3u(x)
(
∇2u(x)−1∇f (x), ξ, ξ

)
+ ∇2u(x)(ξ, ξ); (24)

ii) Let λ ≥ 0. f is λ-strongly c-cross-convex if and only if f ◦ ∇u∗ is convex, for all x , ξ,

∇2f (x)(ξ, ξ) ≥ ∇3u(x)
(
∇2u(x)−1∇f (x), ξ, ξ

)
+ λ∇2u(x)(ξ, ξ). (25)

These assumptions give new global rates for NGD as well as for Newton!
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Newton
Let Y = X and consider the cost

c(x , y) = f (y |x) = f (y) − f (x) − ⟨∇f (x), y − x⟩.

Then gradient descent with general cost reads

xn+1 − xn = −∇2f (xn)−1∇f (xn). (26)

This is Newton’s method. Let 0 ≤ λ < 1 and consider the (affine-invariant!) property:

0 ≤ ∇3f (x)
(
(∇2f )−1(x)∇f (x), ξ, ξ

)
≤ (1 − λ)∇2f (x)(ξ, ξ), ∀x , ξ ∈ X . (27)

First inequality is f ◦ ∇f ∗ convex. This is not self-concordance (ex vs log(x)), which reads

|∇3f (x)(ξ, ξ, ξ)| ≤ 2M
(
∇2f (x)(ξ, ξ)

)3/2
, ∀x , ξ ∈ X , (28)

and our property gives global linear rates under (27) (for functions like eAx−b, appearing e.g. in
Cominetti/San Martin (1994))
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Riemannian gradient descent

i) f is c-concave;

ii) f has L-Lipschitz gradients;

iii) ∇2f ≤ Lg;

iv) f (x) ≤ f (x̄) + ⟨∇f (x̄), ξ⟩ + L
2 d2(x , x̄), where x = expx̄ (ξ).

Proposition

The following statements hold.
iii) ⇐⇒ iv)
Suppose that (M, g) has nonnegative curvature. Then i) =⇒ iii).
Suppose that (M, g) has nonpositive curvature. Then iii) =⇒ i).
ii) =⇒ iii)
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Conclusion: What is to be seen in the paper?
To minimize f on a set X , we choose a set Y and a cost c(x , y).
For ϕ(x , y) := c(x , y) + supx ′∈X f (x ′) − c(x ′, y), we did alternating minimization of ϕ

yn+1 = argmin
y∈Y

ϕ(xn, y)

xn+1 = argmin
x∈X

ϕ(x , yn+1).

There is a forward–backward version of this and we cover MD/NGD/RGD/Sinkhorn/EM. . .
(Sub)linear rates can be obtained based on upper/lower bounds

f (x) − f (xn) ≥ c(x , yn+1) − c(x , yn) + c(xn, yn) − c(xn, yn+1),
f (x) − f (xn) ≤ c(x , yn+1) − c(xn, yn+1).

c-concavity for revisiting optimization algorithms!
c-concavity and c-cross-convexity generalize smoothness and convexity and encompass many
algorithms! New assumptions for global convergence of natural gradient descent/Newton.

Thank you for your attention!
arXiv: Gradient descent with general cost with Flavien Léger
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POCS (Projection Onto Convex Sets) [Bauschke and Combettes, 2011]

Context: (H, ∥·∥) Hilbert space, B, C be two closed convex subsets of H.
Objective: Find x ∈ B ∩ C , based on initialization x0 ∈ H
The POCS algorithm searches for B ∩ C by successive projections. Given xn ∈ B,

yn+1 = argmin
y∈C

∥xn − y∥,

xn+1 = argmin
x∈B

∥x − yn+1∥.
(29)

There are at least two ways to write POCS as an alternating minimization method:
i) Take X = Y = H, with c(x , y) = 1

2∥x − y∥2 and g = ιB and h = ιC , set
ϕ(x , y) = c(x , y) + g(x) + h(y).

ii) Take X = B, Y = C and ϕ(x , y) = 1
2∥x − y∥2.

In both cases, we can do the analysis to get rates. Same results when ∥x − y∥ is replaced by
u(x |y) (Bregman projections).
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Expectation–Maximization (EM)

Context: X : observation space, Z : latent space, Θ : set of parameters, defining our our
statistical models {pθ ∈ P(X × Z) : θ ∈ Θ}.
Objective: Having observed µ ∈ P(X), find θ ∈ Θ maximizing the likelihood,

min
θ∈Θ

F (θ) = KL(µ|pXpθ), (30)

Use the data processing inequality: F (θ) = KL(µ|pXpθ) ≤ KL(π|pθ) =: Φ(θ, π).Equality holds
for π = µ(dx)

pXpθ(dx)pθ(dx , dz). The EM algorithm is [Neal and Hinton, 1998]:

πn+1 = argmin
π∈Π(µ,∗)

KL(π|pθn), (E-step)

θn+1 = argmin
θ∈Θ

KL(πn+1|pθ). (M-step)

It can be written as either mirror descent (convex if pθ = K ⊗ θ [Aubin-Frankowski et al., 2022]) or a
projected natural gradient descent (convex if pθ is an exponential family [Kunstner et al., 2021])
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Sinkhorn algorithm/Entropic optimal transport
Let (X, µ) and (Y, ν) be two probability spaces and take the set of couplings over X × Y (i.e.
joint laws) having marginal µ (resp. ν)

C = Π(µ, ∗), D = Π(∗, ν), Π(µ, ν) = Π(µ, ∗) ∩ Π(∗, ν)

Given ε > 0 and a µ ⊗ ν-measurable function b(x , y), the entropic optimal transport problem is

min
π∈Π(µ,ν)

KL(π|e−b/εµ ⊗ ν), where KL(π|π̄) =
∫

log (dπ/dπ̄) dπ (31)

The Sinkhorn algorithm solves (31) by initializing π0(dx , dy) = e−b(x ,y)/εµ(dx)ν(dy) and by
alternating “Bregman projections” onto Π(µ, ∗) and Π(∗, ν),

γn+1 = argmin
γ∈Π(µ,∗)

KL(γ|πn), (32)

πn+1 = argmin
π∈Π(∗,ν)

KL(π|γn+1). (33)
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γn+1 = argmin
γ∈Π(µ,∗)

KL(γ|πn), (34)

πn+1 = argmin
π∈Π(∗,ν)

KL(π|γn+1). (35)

The iterates of Sinkhorn (the ones above) are also given by

γn+1 = argmin
γ∈Π(µ,∗)

KL(πn|γ), (36)

πn+1 = argmin
π∈Π(∗,ν)

KL(π|γn+1). (37)

Csiszár and Tusnády show (??) directly [Csiszár and Tusnády, 1984, Section 3]. Alternatively
KL is a Bregman divergence and jointly convex, so

F (π) = inf
γ∈Π(µ,∗)

Φ(π, γ) = KL(pXπ|µ) is convex. KL(pXπn|µ) ≤ KL(π|γ0)
n .
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