Alternating minimization and gradient descent with c(x, y) cost

Pierre-Cyril Aubin-Frankowski
Postdoc at TU Wien - VADOR

One World Optimization Seminar in Vienna, June 2024
joint work with Flavien Léger (INRIA Paris)




Motivation: extending gradient descent

Take a C? function f : RY — R, L > 0 and consider gradient descent

1
Xp41 — Xp = —ZVf(x,,). (1)

To have ||[Vf(x,)|| "— 0, L-smoothness (V2f < LId) suffices, reading as a “descent lemma”
L
F(X) < F(x) + (VA(x) X = x) + = X% (2)

Gradient descent is just minimization of the upper bound!
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Motivation: extending gradient descent

Take a C? function f : RY — R, L > 0 and consider gradient descent

1
Xp41 — Xp = —ZVf(x,,). (1)

To have ||[Vf(x,)|| "— 0, L-smoothness (V2f < LId) suffices, reading as a “descent lemma”
L
F(X) < F(x) + (VA(x) X = x) + = X% (2)

Gradient descent is just minimization of the upper bound!

To obtain (sub)linear convergence of f(x,), we need (strong) convexity to hold for a A > 0
A
Slx = X2 < £(x). (3)

There are three objects: i) an algorithm; ii) a regularizer; iii) a class of functions
How to generalize this setting when |[x — x||? is “replaced” by c(x, y)?

f(x)+ (VF(x),x" —x) +



Systematic majorization—minimization with a cost

Let f: X — R where X is any set. Choose another set Y and a function c(x,y). Define the
upperbound

Fx) = @l y) = claoy) + F5(y) = clx y) + sup. F(x') = c(x'y) (4)

Do alternating minimization (AM) of the surrogate

Yn+1 = argmin c(xa, y) + £(y), (3)
yey
Xp1 = argmin c(x, yni1) + £(Ynt1)- (6)

xeX



Systematic majorization—minimization with a cost

Let f: X — R where X is any set. Choose another set Y and a function c(x,y). Define the
upperbound

Fx) = @l y) = claoy) + F5(y) = clx y) + sup. F(x') = c(x'y) (4)

Do alternating minimization (AM) of the surrogate

Ynt1 = argmin c(xp, y) + £(y), (5)
yey

Xng1 = argmin ¢(x, Ynt1) + £ (Vnr1). (6)
xeX

If the setting allows to differentiate and f(x) = f“(x) = inf, c(x, y) + f°(y) (c-concavity)
then we can write (applying the envelope theorem Vf(x) = Vi¢(x, y(x)))

_VXC(Xna)/n+1) = —Vf(Xn), (7)
Vxc(Xnt1, Ynt1) = 0. (8)

For a quadratic ¢, we recover gradient descent!



Visual sketch of alternating minimization

among the upperbounds ¢(-, y)

X = ¢(X7Yn+1) = C(Xayn-i-l) + fc(yn—l—l)

If f(x)=inf, ¢(x,y), then inf, f(x) =inf,, &(x,y)




Convergence rates

Consider the sequence of AM iterates, starting from any xp,
Yn — Xp — Yn+1

We say that f is c-cross-convex if, for all x,y, € X x Y,

f(X) - f(X,,) > C(Xa)/nJrl) - C(Xv)/n) =+ C(Xna}/n) - C(Xna)/n+1)~

e.g. 3-point inequality (¢ Bregman), discrete EVI (¢ Riemann), specific Lyapunov function. ..
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Convergence rates

Consider the sequence of AM iterates, starting from any xp,
Yn — Xp — Yn+1
We say that f is c-cross-convex if, for all x,y, € X x Y,
f(X) - f(Xn) > C(vanJrl) - C(X7Yn) + C(Xm)/n) - C(Xnayn+1)'
c-concavity (f(x) = inf, c(x,y) + f<(y)) implies, since f(ynt1) = f(xn) — c(Xn, Ynt1),

f(X) - f(Xﬂ) < C(Xa)/n+1) - C(Xnv)/nJrl)'
For c(x,y) = 5lx — y|]?, we get

(VF(xn), x =) < £() = F(xa) < Lllx=xas1]2 = EIVFn)IIZ = (VF(x0), x =) + 5 1 x =l

Suppose that f is c-concave and c-cross-convex, and x, = argminy f. Then

f(Xn) - f(X*) < C(X*vyO) ; C(X07y0). (9)

Linear rates and local characterization of c-concavity and c-cross-convexity also exist.



What are we going to see?

© Motivation

© Alternating minimization and GradDesc with GenCost

© c-concavity and c-cross-convexity

@ Examples



Alternating minimization (AM)
Let ¢(x,y): X x Y — R where X, Y are any sets. Perform an alternating minimization (AM)

Yntl = argrr;in &(Xn, y)

< (10)
Xp41 = argmin ¢(X>Yn+1)7

xeX

No topological requirements! Just existence and uniqueness of iterates (always assumed!)
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No topological requirements! Just existence and uniqueness of iterates (always assumed!)

“Paradoxically, the apparent lack of sophistication may also account for the unpopularity [of
block coordinate descent] as a subject for investigation by optimization researchers, who have
usually been quick to suggest alternative approaches in any given situation.”

Coordinate Descent Algorithms, Stephen J. Wright, MathProg B, 2015



Alternating minimization (AM)
Let ¢(x,y): X x Y — R where X, Y are any sets. Perform an alternating minimization (AM)

Ynt1 = argmin ¢(x,, y)
vey

Xp41 = argmin ¢(X> }/n—l-l)a
xeX

(10)

No topological requirements! Just existence and uniqueness of iterates (always assumed!)

“Paradoxically, the apparent lack of sophistication may also account for the unpopularity [of
block coordinate descent] as a subject for investigation by optimization researchers, who have
usually been quick to suggest alternative approaches in any given situation.”

Coordinate Descent Algorithms, Stephen J. Wright, MathProg B, 2015

Many algorithms are AM: alternating projections, Sinkhorn/IPFP, EM,. ..

Some results for AM exist, but based on L-smoothness or convexity
[Beck and Tetruashvili, 2013, Beck, 2015] or prox and KL-inequality [Attouch et al., 2010]



Alternating minimization (AM)
Let ¢(x,y): X X Y — R where X, Y are any sets. Perform an alternating minimization (AM)

Ynt1 = argmin ¢(xn, y)
yey (11)

Xp1 = argmin ¢(X7Yn+1)7
xeX

No topological requirements! Just existence and uniqueness of iterates (always assumed!)

Inspired by [Csiszar and Tusnady, 1984], we define:

Definition (Five-point property (FPP))

For A > 0, ¢ has the A\-FPP if for all x € X, y, o € Y, Ix0, y1 s.t.

d(x,y1) + (1 = N)d(x0, o) < o(x,y) + (1 — N)o(x, yo). (A-FP)

Note that (A-FP) forces that yo — xo — y1 as in (11).




d(x,y1) + (1 = A)d(x0, o) < o(x,y) + (1 — A)o(x, y0)- (A-FP)

Theorem (Convergence rates for alternating minimization)

Suppose that ¢ has a minimizer. Then:

I) For all n > Or ¢(X"+17yn+1) < ¢(Xn7yn+1) < ¢(Xn,Yn)-
i) If ¢ satisfies (A\-FP) for A = 0. Then for any x € X,y € Y and any n > 1,

) + o(x, o) — ¢(X0’y0)7 50 ¢(Xn, ¥n) — ¢« = O(1/n)

¢(Xna}/n) < ¢(X,y n
iii) If ¢ satisfies (\-FP) for some A € (0,1). Then for any x € X,y € Y and any n > 1,

A[¢(X7y)_¢(x ) Y )]

d)(Xna)/n) < ¢(XvY)

where A := (1 — \)™1 > 1. In particular ¢(xpn, yn) — ¢« = O((1 — A)").




Proof of convergence rate

¢(X>yn+l)+d)(xn;}/n) < ¢(X,y)+¢(X,yn). (O_FP)
(1) d(Xnt1, Ynt1) < A(Xn, Yntr1) < d(xn, yn) by definition of the iterates.
(ii): (0-FP) can be written as

A(Xni1, Ynr1) < O(x,y) 4 [0(x, ¥n) = O(Xn, ¥n)] = [6(X, Yni1) = P(Xns1s Yni1)]-

The last terms inside the brackets are nonnegative. Sum from 0 to n — 1 and use (i):

n—1

nd(xn, ¥n) < Y (k1 Yiea1) < nd(x, y) + [6(x, y0) — ¢(x0, ¥0)] = [6(x, ¥n) = & (xn, yn)],

k=0



Proof of convergence rate

¢(X>YH+1)+¢(XnaYn) < ¢(X7)/)+¢(X>yn)' (O'FP)

(1) d(Xnt1, Ynt1) < A(Xn, Yntr1) < d(xn, yn) by definition of the iterates.
(ii): (0-FP) can be written as

P(xnt1, Y1) < ¢(x,¥) +[8(x; ¥n) = ¢(xn, yn)] = [6(X, ynt1) = (X112, Yar1)]-
The last terms inside the brackets are nonnegative. Sum from 0 to n — 1 and use (i):

n—1

nd(xn, ¥n) < Y (k1 Yiea1) < nd(x, y) + [6(x, y0) — ¢(x0, ¥0)] = [6(x, ¥n) = & (xn, yn)],

k=0

[Csiszar and Tusnady, 1984] had given a similar formula, shown convergence to ¢, but ... had
not seen the convergence rate!



(Forward-Backward) Gradient descent with a general cost

Start with

Flx) +8(x) = 90xy) = g(x) +clx,y) + sup. F(x') = c(x',y)

Do alternate minimization

Yni1 = argng/in c(xn,y) + £ (y) + g(xn), (12)
ye

Xnt1 = argn;(in c(X, Yni1) + £ (Ynr1) + g(x). (13)
xXe

Let F(x) = inf, ¢(x,y) (c-concavity is f = F), and assume we are allowed to differentiate, then

_vxC(XnaYn-H) = _VF(Xn)7 (14)
Vxc(Xnt1, Ynt1) = V& (Xnt1)- (15)



Gradient descent with a general cost - Examples

—Vxc(Xn, Yn+1) = =V (xn),
VXC(Xn+1,yn+1) =0.
In the following: Y = X, and c is minimal on the diagonal {x = y}, so xp4+1 = ¥n+1 (x-update)
i) Gradient descent: c(x,y) = %Hx — y[1? and xpi1 — X0 = — LV (xn).

ii) Mirror descent: c(x, y) = u(x]y), so Vu(xpt1) — Vu(xs) = =V F(xn).



Gradient descent with a general cost - Examples

T ynit) = —VF(xn),
Vxc(Xnt1, yny1) = 0.

In the following: Y = X, and c is minimal on the diagonal {x = y}, so xp4+1 = ¥n+1 (x-update)
i) Gradient descent: c(x,y) = 5||x — y||> and Xpt1 — xo = — 1V (xp).

) Mirror descent: c(x,y) = u(x|y), so Vu(xnt+1) — Vu(xn) = =V £(xy).
) Natural gradient descent: c(x,y) = u(y|x), 50 Xpr1 — Xpn = —(V2u(x)) "LV F(xn).

iv) A nonlinear gradient descent: c(x,y) = £(x — y), 50 Xpt1 — xp = —VL(VF(xp)).
)

v) Riemannian gradient descent: (M, g) a Riemannian manifold. Take X = Y = M and
c(x,y) = %dz(x,y), SO Xpi1 = expxn(—%Vf(x,,)),

We provide assumptions on f and c to obtain a (sub)linear convergence rate



c-concavity

Definition (c-concavity)

We say that a function f: X — R is c-concave if there exists a function h: Y — R such that

() = inf c(x,y) + h(y), (16)

for all x € X. If f is c-concave, then we can take h(y) = f°(y) = sup,cx F(X') — c(x', y).

X (X, y) +a ,

x = c(x,y) + f(y)




C-Cross-convexity

We want f(X) — f(X”) = C(X’y’“Ll) o C(van) + C(Xn7YH) o C(Xnv)/nJrl) with
—Vxc(Xn, ¥n+1) = —VF(xn) and Vyc(xp, yn) = 0.

Recall the cross-difference of ¢ defined by

(X, yix,y) = c(x,y") + (X, y) — c(x,y) — c(x,y').

Definition (cross-convexity)

Take f and ¢ C1. We say that f is c-cross-convex if for all x,X € X and any y,y € Y verifying
Vxe(x,¥) =0 and —Vic(x,y) = —VF(Xx) we have

f(x) > f(x)+ dc(x,¥: %, 7). (17)

In addition let A > 0. We say that f is A-strongly c-cross-convex if we have

f(x) = £(X) + dc(x, y: %, §) + Ac(x,y) — c(X, 7). (18)




Local criteria

If X,Y C R, then we have a local criterion:

Theorem (Local criterion for c-concavity [Villani, 2009, Theorem 12.46])

Suppose that ¢ € C*(X x Y) has nonnegative cross-curvature, V3,c(x,y) is everywhere
invertible, X and Y have c-segments. Let f be C?. Suppose that for all x € X, there exists
y € Y satisfying —Vc(X,y) = —Vf(x) and such that

V3f(x) < V2.c(%,9).

Then f is c-concave. (Converse is also true)

If f is c-cross-convex then, whenever V,c(x,y) =0 and —V,c(x,y) = —VF(x), we have
VEf(x) 2 Viec(%,9) = Vie(x, 7)- (19)

(Converse is maybe true, a semi-local condition with c-segments does exist though)




Theorem (Corollary/Convergence rates for GD with general cost)

i) Suppose that f is c-concave. Then we have the descent property+stopping criterion

f(Xnt1) < F(xn) — [c(Xn, Ynr1) — c(Xnt1, Ynr1)] < F(xn),

) f(Xo) - f;k
_ < — .
ogrlpglg—l[c(xk’yk+l) C(Xk+17)/k+1)] = n

i) Suppose in addition that f is c-cross-convex. Then for any x € X,n > 1,

Flxn) < () + 10— Cl0so) (20)

iii) Suppose in addition that f is \-strongly c-cross-convex for some \ € (0,1). Then for any
x € X,n>1, setting A== (1 —\)71 >1

A (e(x, y0) — c(x0, 0))
An—1 ’

f(xn) < f(x)+ (21)

Forward-backward is also possible. But now, on to examples!



Mirror descent
For u: X — R differentiable, consider

c(x,y) = u(xly) = u(x) — u(y) = (Vu(y),x — y),

We love it because

@ it generalizes the square of Euclidean distances;

@ it characterizes convexity, since u(x|y) > 0 iff u is convex.
Recall our scheme

_vxC(Xna)/n-H) = _Vf(xn),
vxC(Xn—i-la}/n—l—l) =0.
Our gradient descent thus gives

Vu(ynt1) — Vu(xy) = =V £(xn),
Vu(xnt1) = Vu(ynt1).

Combining, we get mirror descent in gradient form Vu(x,11) — Vu(xp) = =V (xp).



Definition (Relative smoothness and convexity)

Let L >0, A > 0, and consider f C2.
i) f is smooth relatively to u if u— f is convex [Bauschke et al., 2017]. Equivalently, if
V2f < V2u, or if f(X'|x) < u(xX|x), i.e. F(x') < F(x)+ (VF(x),x" — x) + u(x|x).

ii) fis A-strongly convex relatively to u [Lu et al., 2018] if f — Au is convex. Equivalently, if
V2f > AV2u, or if f(x'|x) > Au(x'|x).

Naturally we want to minimize the upperbound given by 1.:

Xpi1 = at;(gg(in &(X,xn) = f(xn) + (VF(xn),x — xn) + u(x|xn) = F(x) + (v — F)(x|xn). (23)

Buy we can also do
¢(x,y) = u(x|y) +<(y).
Actually we have ¢(x, 7) = ¢(x, y) when Vu(y) = Vu(y) — VF(7) (just a reparameterization).



Mirror descent: c-concavity and cross-convexity

Proposition (c-concavity is relative smoothness)

Suppose that Vu is surjective as a map from X to X*. Then f is c-concave for
c(x,y) = u(xly) if and only if f is smooth relatively to u.

Proposition (cross-convexity is convexity)

Take c(x,y) = u(x|y). Then f is c-cross-convex if and only if f is convex. More generally, let
A > 0. Then f is A\-strongly c-cross-convex if and only if f is \-strongly convex relatively to u.

We recover the classical convergence rates:
@ sublinear when f is convex and smooth relatively to u [Bauschke et al., 2017]

e linear if in addition f is A-strongly convex relatively to u [Lu et al., 2018].



Riemannian gradient descent

For c(x,y) = 5d?(x,y) on a manifold M away from the cut locus, the relation £ = —V,c(x, y)
defines a tangent vector £ € T, M, i.e. for exp the (Riemannian) exponential map

y = exp(§/L).

We obtain as before x,1 = exp,_ ( — %Vf(x,,)).

Proposition

Let c(x,y) = %dz(x,y). Suppose that (M, g) has nonnegative sectional curvature. Then
i) f geodesically convex = f c-cross-convex.
ii) —g c-cross-concave — g geodesically convex.

Suppose that (M, g) has nonpositive sectional curvature. Then

i) f c-cross-convex = f geodesically convex.

i) g geodesically convex => —g c-cross-concave.

elaRiels




Natural gradient descent

Take Y = X and consider the cost with u C3, convex, with invertible Hessian
c(x,y) = ulylx) = uly) — u(x) = (Vu(x),y — x).

Consequently
—Vxe(x,y) = VZu(x)(y — x).

Our gradient descent thus gives

Y+l = Xn — Vzu(x,,)*IVf(x,,),

VXC(X,H_]_7 yn+1) =0.

Combining, we get natural gradient descent: x,11 — X, = —V2u(x,) "1V F(xp).



Lemma (Natural gradient descent: c-concavity and cross-convexity)

Let f: X — R be twice differentiable.

i) f is c-concave if and only if for all x,¢&,

V2E(x)(£,€) < V2u(x)(V2u(x)T'VF(x), €, €) + Vu(x)(&, €); (24)

i) Let A > 0. f is A\-strongly c-cross-convex if and only if f o Vu* is convex, for all x,&,

V2E(x)(&,€) = V2u(x)(V2u(x) TVF(x), €, €) + AV2u(x)(€, §). (25)

v,

These assumptions give new global rates for NGD as well as for Newton!



Newton
Let Y = X and consider the cost
c(x,y) = fylx) = f(y) = f(x) = (VF(x),y — x).
Then gradient descent with general cost reads
Xni1 — Xn = —V2F(xn) IV F(xp). (26)
This is Newton's method. Let 0 < A < 1 and consider the (affine-invariant!) property:
0 < V() (V) TH(x)VF(x),6,€) < (1= NVF(x)(6,€), Yx,EeX, (27)
First inequality is f o V* convex. This is not self-concordance (&* vs log(x)), which reads
V(€. < 2M(VPF((EE) T, geX, (28)

and our property gives global linear rates under (27) (for functions like e~ appearing e.g. in
Cominetti/San Martin (1994))



Riemannian gradient descent

i) f is c-concave;

i)
ii) f has L-Lipschitz gradients;
i) V2f < Lg;

)

f(x) < (%) + (VF(),€) + 5d°(x, X), where x = expz(€).

iv

Proposition

The following statements hold.
o iii) == iv)
@ Suppose that (M,g) has nonnegative curvature. Then i) = iii).
@ Suppose that (M, g) has nonpositive curvature. Then iii) => i).
o ii) = iii)




Conclusion: What is to be seen in the paper?

To minimize f on a set X, we choose a set Y and a cost c(x, y).
For ¢(x,y) = c(x,y) + supycx f(x") — c(x’, y), we did alternating minimization of ¢

Ynt1 = argmin ¢(xp, y)
yey

Xpt1 = argmin (X, yny1)-
xeX

There is a forward—backward version of this and we cover MD/NGD/RGD/Sinkhorn/EM. ..
(Sub)linear rates can be obtained based on upper/lower bounds
f(x) = f(xn) = c(x; ynt1) — c(x; ¥n) + €(Xn, ¥n) — (Xn, Yn+1),
f(X) - f(X”) < C(van+1) - C(menJrl)'

c-concavity for revisiting optimization algorithms!

c-concavity and c-cross-convexity generalize smoothness and convexity and encompass many
algorithms! New assumptions for global convergence of natural gradient descent/Newton.




Conclusion: What is to be seen in the paper?

To minimize f on a set X, we choose a set Y and a cost c(x, y).
For ¢(x,y) = c(x,y) + supycx f(x") — c(x’, y), we did alternating minimization of ¢

Ynt1 = argmin ¢(xp, y)
yey

Xpt1 = argmin (X, yny1)-
xeX
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arXiv: Gradient descent with general cost with Flavien Léger
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c-concavity for revisiting optimization algorithms!

c-concavity and c-cross-convexity generalize smoothness and convexity and encompass many
algorithms! New assumptions for global convergence of natural gradient descent/Newton.




POCS (Projection Onto Convex Sets) [Bauschke and Combettes, 2011]

Context: (H, ||-||) Hilbert space, B, C be two closed convex subsets of H.
Objective: Find x € BN C, based on initialization xp € H
The POCS algorithm searches for BN C by successive projections. Given x, € B,

Ynt1 = argmin||x, — y/|,
yeC

Xp+1 = argmin||x — ypy1|.
xeB

(29)



POCS (Projection Onto Convex Sets) [Bauschke and Combettes, 2011]

Context: (H, ||-||) Hilbert space, B, C be two closed convex subsets of H.
Objective: Find x € BN C, based on initialization xp € H
The POCS algorithm searches for BN C by successive projections. Given x, € B,

Yn+1 = arg"éinllxn =yl

e (29)
Xp1 = argmin||x — ypy1.

xEB

There are at least two ways to write POCS as an alternating minimization method:
i) Take X = Y = H, with c(x,y) = 3||x — y||> and g = tg and h = ¢, set
¢(x,y) = c(x,y) + &(x) + h(y)
i) Take X = B, Y = C and ¢(x,y) = [|x — y|*.
In both cases, we can do the analysis to get rates. Same results when ||x — y|| is replaced by
u(x|y) (Bregman projections).



Expectation—Maximization (EM)

Context: X : observation space, Z : latent space, © : set of parameters, defining our our
statistical models {py € P(X x Z) : § € ©}.
Objective: Having observed 1 € P(X), find 6 € © maximizing the likelihood,

min F(6) = KL(ulpxpe), (30)

Use the data processing inequality: F(6) = KL(u|pxpo) < KL(7|pg) =: ®(6, 7).Equality holds
for m = —42I 5 (dx, dz). The EM algorithm is [Neal and Hinton, 1998]:

pxpo(dx)
Tnt1 = argmin KL(7|pg,), (E-step)
mEM(p,%)
Ont1 = argmin KL(mp41|pg)- (M-step)
0cO

It can be written as either mirror descent (convex if py = K ® 6 [Aubin-Frankowski et al., 2022]) or a
projected natural gradient descent (convex if py is an exponential family [Kunstner et al., 2021])



Sinkhorn algorithm /Entropic optimal transport

Let (X, ) and (Y, v) be two probability spaces and take the set of couplings over X x Y (i.e.
joint laws) having marginal p (resp. v)

C=M(u,*), D=N(xv), M(u,rv)="N(w*x)NMN(x,v)

Given £ > 0 and a 1 ® v-measurable function b(x, y), the entropic optimal transport problem is

min KL(rle /4@ v).  where KL(7T|7_r):/|og(d7f/d7‘r) dr (31)
mell(u,v



Sinkhorn algorithm /Entropic optimal transport

Let (X, ) and (Y, v) be two probability spaces and take the set of couplings over X x Y (i.e.
joint laws) having marginal p (resp. v)

C=M(u,*), D=N(xv), M(u,rv)="N(w*x)NMN(x,v)

Given £ > 0 and a 1 ® v-measurable function b(x, y), the entropic optimal transport problem is

min KL(rle /4@ v).  where KL(w|7‘r):/ log (dn/dz) drr (31)
mell(u,v

The Sinkhorn algorithm solves (31) by initializing mo(dx, dy) = e=2(¥)/2p(dx)v(dy) and by
alternating “Bregman projections” onto M(u, %) and M(x,v),

Yn+1 = argmin KL(~y|m,), (32)
YEN(p,%)
Tnt1 = argmin KL(7|vn41)- (33)

meM(x*,v)




Y1 = argmin KL(y|m,), (34)
YEM(p,%)

Tnt1 = argmin KL(7|vpt1)- (35)
meN(x,v)

The iterates of Sinkhorn (the ones above) are also given by

Yn+1 = argmin KL(m,|7), (36)
veN(p,*)

Tnt1 = argmin KL(7|vns1)- (37)
meN(+.v)

Csiszar and Tusnady show (?7?) directly [Csiszar and Tusnady, 1984, Section 3]. Alternatively
KL is a Bregman divergence and jointly convex, so
KL(7|0)

F(r)= inf &(m,v) = KL(pxm|p) is convex. KL(pxmp|p) < ————.
YEM (%) n
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