Beyond metric settings,
gradient descent and flow with c(x,y) cost

Pierre-Cyril Aubin

Researcher CERMICS (Optimisation team), ENPC

in collaboration with
Flavien Léger (INRIA Paris)

Giacomo Enrico Sodini, Ulisse Stefanelli (Uni Vienna)

11/03/2025 GAT LPSM Paris-Cité



My type of questions so far: what are the relations between

e concepts, e.g. kernels Hilbertian or tropical
e objective functions f and geometry c

e optimization algorithms, e.g. mirror and natural gradient descent



My type of questions so far: what are the relations between

e concepts, e.g. kernels Hilbertian or tropical
e objective functions f and geometry c

e optimization algorithms, e.g. mirror and natural gradient descent
For today, essentially:

e many discrete-time descent algorithms look similar, can they be unified to study them
together?

— yes, through alternating minimization (AM)

e the continuous-time formulation of gradient flows has been extended to metric spaces,
can we go beyond d??

— yes, with general costs, when it’s about evolution variational inequalities (EVTI)



What are we going to see today?

© Motivation from discrete-time

© Alternating minimization and GradDesc with GenCost

© c-EVI and continuous-time



Motivation 1: extending implicit gradient descent and EVIs
Take a C! function ¢ : R = R, 7 > 0 and consider the implicit gradient descent

Tn+l — Tn = _TVQ('rnJrl)' (1)

It is trivially an alternating minimization of a ¢ : R x R — R

o(x) < Ol a') = glw) + o llo — @)



Motivation 1: extending implicit gradient descent and EVIs
Take a C! function ¢ : R = R, 7 > 0 and consider the implicit gradient descent

Tn+l — Tn = _TVQ('rnJrl)' (1)
It is trivially an alternating minimization of a ¢ : R x R — R
1
9(z) < ¢, 2') = g(2) + o—[lz — 2'||*, (2)

When 7 — 0, we get the gradient flow 2/(t) = —Vg(xy), or, if g is convex, we have the
equivalent evolution variational inequality (EVI)

2
% (W) < g(gj) — g(mt) Yt € (0, +OO), T € Rd

_ 2 _ |2 _ 2
obtained as a limit of the discrete EVI; [2nei=elt  llon—el® ”‘T”“QTI”H < g(x) — g(@nt1).

2T 2T



Motivation 1: extending implicit gradient descent and EVIs
Take a C! function ¢ : R = R, 7 > 0 and consider the implicit gradient descent

Tn+l — Tn = _Tv9($n+1)' (1)
It is trivially an alternating minimization of a ¢ : R x R — R
1
9(z) < ¢, 2') = g(2) + o—[lz — 2'||*, (2)

When 7 — 0, we get the gradient flow 2/(t) = —Vg(xy), or, if g is convex, we have the
equivalent evolution variational inequality (EVI)

2
% (“331521'||> < g(gj) — g(mt) Yt € (0, +OO), T € Rd

2 |2 _ 2
obtained as a limit of the discrete EVI; [2nsiel®  len—ol” ”‘T”“QTI”H < g(z) —g(zn41).

2T 2T

How to generalize this setting when ll=—2l?/2r is “replaced” by ¢, (z,y)?



Motivation 2: extending explicit gradient descent
Take a C? function f:R? = R, 7 > 0 and consider the explicit gradient descent

Tpy1l — T = —TV f(Tp). (3)
To have ||V f(z,)|| "— 0, 1/r-smoothness (V2f < 1/71d) suffices, as a “descent lemma”
1
F(@) < ¢(z,2) = f(2) + (VI(@),2’ —2) + o[z = 2|" (4)

Gradient descent is just minimization of the upper bound!



Motivation 2: extending explicit gradient descent
Take a C? function f:R? = R, 7 > 0 and consider the explicit gradient descent

Tpy1l — T = —TV f(Tp). (3)

To have ||V f(z,)|| "— 0, 1/r-smoothness (V2f < 1/71d) suffices, as a “descent lemma”
F@') < Bl o) 1= f@) + (VS(@). o' =) + ol — /| 8
Gradient descent is just minimization of the upper bound!
To obtain (sub)linear convergence of f(z,), we use (strong) convexity, i.e. for a A > 0
F@) + (V@) o’ —a)+ Slle — 'l < F(a) o)

There are three objects: i) an algorithm; ii) a regularizer; iii) a class of functions



Motivation 2: extending explicit gradient descent
Take a C? function f:R? = R, 7 > 0 and consider the explicit gradient descent

Tpy1l — T = —TV f(Tp). (3)

To have ||V f(z,)|| "— 0, 1/r-smoothness (V2f < 1/71d) suffices, as a “descent lemma”

1
F(@) < ¢(z,2) = f(2) + (VI(@),2’ —2) + o[z = 2|" (4)
Gradient descent is just minimization of the upper bound!
To obtain (sub)linear convergence of f(z,), we use (strong) convexity, i.e. for a A > 0
A
f@) + (Vf@),a’ = 2) + Sl = 2/|* < f(a"). ()

There are three objects: i) an algorithm; ii) a regularizer; iii) a class of functions
How are they related? Can we get an EVI for the explicit case too?



Systematic majorization—minimization with a cost

Let f,g: X — R where X is any set. Choose another set Y and a function
c: X xY = RU{+oc0}. Define the upperbound

f(@) +9(x) < o(z,y) = g(x) + c(z,y) + jf;ﬁ)([f(x/) — (2, y)] (6)

=f<(y)

Do alternating minimization (AM) of the surrogate

Yn+1 = argmin c(zn, y) + f(y) + g9(zn), (7)
yey

Tpg1 = argr;l(in (@, Yns1) + f Yny1) + g(x). (8)
xre

No topological requirements! Just existence and uniqueness of iterates (always assumed in
this talk)



Visual sketch of alternating minimization for g =0

among the upperbounds ¢(-,y)

T = AT, Ynr1) = (2, Ynr1) + F(Ynt1)

If f(z) = inf, ¢(x,y), then inf, f(z) = inf, , ¢(x,y)




Systematic majorization—minimization with a cost

Let f,g: X — R where X is any set. Choose another set Y and a function ¢(x,y). Define
the upperbound

f(@) +9(x) < 6@, y) = (@) + clw,y) + f(y) = 9(@) + clw, ) + sup f(') = cla’,y) (9)
Do alternating minimization (AM) of the surrogate

Ynt1 = argergin c(zn,y) + f(y) + g(xn), (10)
)

Tpt1 = argn)l(in c(, Ynt1) + [ (Yns1) + g(x). (11)
TEe



Systematic majorization—minimization with a cost

Let f,g: X — R where X is any set. Choose another set Y and a function ¢(x,y). Define
the upperbound

f(@) +g(x) < o(x,y) = g(x) + c(z,y) + f(y) = g(x) + c(z,y) + sup f(z') —c(a’,y) (9)

r'eX
Do alternating minimization (AM) of the surrogate
Ynt1 = argmin c(zn, y) + f(y) + g(an), (10)
ye
g1 = BN oz, yni1) + [ (Yn11) + g(2). (11)
Te

If the setting allows to differentiate and f(x) = f*(x) = infy c(x,y) + f°(y) (c-concavity)
then we can write (applying the envelope theorem V f(z) = Vi¢(z,y(x)))

_vazc(xnyyn-i-l) = —Vf(xn), (12)
Val(Tnt1, Yn+1) = —Vg(Tn1)- (13)

For a quadratic ¢, we recover forward—backward gradient descent!



Gradient descent with a general cost - Examples g =0

—Vale(Tn, Ynt1) = =V f(zn), (y-update)
Vaee(@nt1, Ynt1) = 0. (z-update)
In the following: ¥ = X, and ¢ is minimal on the diagonal {x = y}, 80 Zp+1 = Yn+1
Gradient descent %HCE —y|I? Tptl — Tp = —%Vf(xn)
Mirror descent! u(zly) Vu(zpt1) — Vu(z,) = =V f(zy,)

!Bregman divergence of u : X — R convex and differentiable is u(z|y) == u(z) — u(y) — (Vu(y),z — y).
E.g. the Kullback—Leibler divergence KL(z,y) = ¥;z; In(=i/y,) for the entropy u(z) = X;z; In(z;) over the

dmplex



Gradient descent with a general cost - Examples g =0

—Vzc(a:n, yn+1) = —Vf(l’n), (y’update)
Vaee(@nt1, Ynt1) = 0. (z-update)

In the following: ¥ = X, and ¢ is minimal on the diagonal {x = y}, 80 Zp+1 = Yn+1

Gradient descent %HCE —y|I? Tptl — Tp = —%Vf(xn)
Mirror descent! u(x|y) Vu(xps1) — Vu(zy) = =V f(x,)
Natural gradient descent u(y|zx) Tpi1 — p = —(V2u(z,)) 'V f(2,)
Pre-conditionned gradient descent | #(x — y) Tpgl — Tp = —VI(Vf(zy))
Riemannian gradient descent éd?w(x, Y) Tpal = exprn(—%v f(zn))

!Bregman divergence of u : X — R convex and differentiable is u(z|y) == u(z) — u(y) — (Vu(y),z — y).
E.g. the Kullback—Leibler divergence KL(z,y) = ¥;z; In(i/y,) for the entropy u(z) = X;z; In(z;) over the

dmplex



Gradient descent with a general cost - Examples g =0

—Vae(Tn, Ynt+1) = =V f(xn), (y-update)
Vaee(@nt1, Ynt1) = 0. (z-update)
In the following: ¥ = X, and ¢ is minimal on the diagonal {x = y}, 80 Zp+1 = Yn+1
Gradient descent %HCE —y|I? Tptl — Tp = —%Vf(xn)
Mirror descent! u(zly) Vu(zpt1) — Vu(z,) = =V f(zy,)
Natural gradient descent u(y|zx) Tpi1 — p = —(V2u(z,)) 'V f(2,)
Pre-conditionned gradient descent | #(x — y) Tpgl — Tp = —VI(Vf(zy))
Riemannian gradient descent Ld3 (z,y) Tn1 = exp,, (—1V f(zn))

We now provide assumptions on f and ¢ to obtain a (sub)linear convergence rate.

!Bregman divergence of u : X — R convex and differentiable is u(z|y) == u(z) — u(y) — (Vu(y),z — y).
E.g. the Kullback—Leibler divergence KL(z,y) = ¥;z; In(i/y,) for the entropy u(z) = X;z; In(z;) over the

dmplex



Convergence rates for the explicit case g = 0
Consider the sequence of AM iterates, starting from any xq,
Yn — Tp =2 Yn+1
We say that f is c-cross-convex if f dominates a cross-difference (McCann, 1999)
f({L’) - f(mn) > C(mvynJrl) - C(l‘, yn) + C(‘Tna yn) - C(.Tn, yn+1) VZL’, Yn € X xY.

e.g. 3-point inequality (¢ Bregman), discrete EVI (¢ Riemann), specific Lyapunov
function. . .



Convergence rates for the explicit case g =0
Consider the sequence of AM iterates, starting from any xq,

Yn =7 Tn =7 Yn+l
We say that f is c-cross-convex if f dominates a cross-difference (McCann, 1999)
f(@) — f(zn) > c(z,ynt+1) — c(x,yn) + c(zn, Yn) — (Tn, Ynt1) VT, yn € X X Y.
c-concavity (f(x) = infy c¢(x,y) + f(y)) implies, since f(yn+1) = f(an) —
f(@) = f(zn) < c(z,yn41) — c(@n, Yn+1)-

C(xna yn+1)7



Convergence rates for the explicit case g = 0
Consider the sequence of AM iterates, starting from any xq,
Yn — Tn — Yn+1
We say that f is c-cross-convex if f dominates a cross-difference (McCann, 1999)
f(@) = f(zn) = c(@, ynt1) — (T, yn) + c(Tnsyn) — c(@n, Ynt1) V2, yn € X X Y.
c-concavity (f(x) = infy c¢(x,y) + f(y)) implies, since f(yn+1) = f(an) —

f(.%‘) - f(xn) < C(.’L’,yn-H) - c(mnayn-i-l)’
For ¢(z,y) = 5|z — y||? and f € CYRLR), we get z, =y, and Tppp1 — T = —7V f(2)

C(Qﬁn, yn+1)7

(Vf(xn),z —xp) < f(z) = f(20) < ng - anrlH2 - %va(xn)HQ (Vf(zn),x — x5) +



Convergence rates for the explicit case g = 0
Consider the sequence of AM iterates, starting from any xq,
Yn =7 Tn =7 Yn+l
We say that f is c-cross-convex if f dominates a cross-difference (McCann, 1999)
f(@) — f(zn) > c(z,ynt+1) — c(x,yn) + c(zn, Yn) — (Tn, Ynt1) VT, yn € X X Y.
c-concavity (f(x) = infy c¢(x,y) + f(y)) implies, since f(yn+1) = f(an) —

f(.%') - f(xn) < C(-’L',yn+1) - c(xnayn-i-l)’
For ¢(z,y) = 5|z — y||? and f € CYRLR), we get z, =y, and Tppp1 — T = —7V f(2)

C(x’na yn+1)7

(Vf(n),x —an) < f(2) = flen) < Hx — @~ *HVf( P = (Vf(zn), 2 — @n)

J— (g 2
+ 5w =zl

Suppose that f is c-concave and c-cross-convex, and z, = argminy f. Then

Flan) - Sl < Lonto) —lTo,10),

n

(14)

Linear rates and local characterization of c-concavity and c-cross-convexity also exist.



Alternating minimization (AM)
Let ¢(x,y): X xY — R where X,Y are any sets. Perform an alternating minimization

Yn+1 = argmin ¢(z,, y)
yey

. (15)
Tp+1 = argmin (b(:L', yn-i-l),
zeX

Many algorithms are AM: alternating projections, Sinkhorn/IPFP, EM,. ..

Definition (Five-point property (FP) inspired by [Csiszar and Tusnady, 1984])
For A > 0, ¢ has the \-FP if Vyg € Y, 3xg,y; s.t. Va,y

o(z,y1) + (1 = A)o(z0,50) < &(x,y) + (1 — N)o(z, yo)- (A-FP)

Note that (A-FP) forces that yo — zo — y1 as in (15).



¢(z,y1) + (1 = N)o(zo,v0) < o(z,y) + (1 — N)o(x, %0). (A-FP)

Theorem (Convergence rates for alternating minimization)

Suppose that ¢ has a minimizer. Then:

Z) For alln >0, ¢(Zni1,Yn+1) < O0(Tny Ynt1) < &(Tn, Yn)-
it) If ¢ satisfies (\-FP) for A =0. Then for any x € X,y € Y and any n > 1,
x,90) — &(xo, 1
Sy < ola,y) + LEILZ A0 oo 4, y) — 6. = O(1/m)

n

1i) If ¢ satisfies (A\-FP) for some X € (0,1). Then for any x € X,y €Y and anyn > 1
) If ) y Y y :

)\{Qﬁ(l@/g) - ¢($0,y0)]
AP 1 ’

A(Tn, yn) < O(x,y) +

where A == (1 — \)~' > 1. In particular ¢(zn, yn) — ¢s = O((1 — A)™).




Proof

¢(~T7 yn—i-l) + d)(l'n, yn) < ¢($, y) + ¢($, yn)' (O‘FP)

(i): ¢($n+1,yn+1) < (@, Ynt1) < @(xn, yn) by definition of the iterates.
(ii): (0-FP) can be written as

H(Tn+1,Ynt1) < O(2,y) + [0(2,Yn) — ¢(Tn, Yn)| = [D(%, Ynt1) — P(Tnt1, Ynt1)]-

The last terms inside the brackets are nonnegative. Sum from 0 to n — 1 and use (i):

n—1

n(zs(xnv yn) < Z (,b(karh yk+1) < nd)(x, y) + [(Z)(IL‘, yO) - <f’(1’07 yO)] - [¢($, yn) - ¢(xn7 yn)]7

k=0



Proof

Cb(l’, yn—i-l) + ¢(xn7 yn) < ¢($, y) + ¢($7 yn)' (O‘FP)

(i): ¢($n+1,yn+1) < (@, Ynt1) < @(xn, yn) by definition of the iterates.
(ii): (0-FP) can be written as

H(Tn+1,Ynt1) < O(2,y) + [0(2,Yn) — ¢(Tn, Yn)| = [D(%, Ynt1) — P(Tnt1, Ynt1)]-

The last terms inside the brackets are nonnegative. Sum from 0 to n — 1 and use (i):

n—1

nqs(xnv yn) < Z ¢(xk+17 ykJrl) < nd)(x, y) + [d’(% yO) - ¢($0, yO)] - [¢($, yn) - ¢(xn7 yn)]7

k=0

[Csiszar and Tusnddy, 1984] had given a similar formula, shown convergence to ¢, but
.. had not seen the convergence rate!



Theorem (Corollary/Convergence rates for GD with general cost)

i) Suppose that f is c-concave. Then we have the descent property+stopping criterion

f(@nt1) < f@n) = [6(@n, ynt1) = c(@nt1, Y1) < fn),

, f(®@o) — fs
_ < —
oggcnglgfl[c(xk’yk—i_l) C(Ik+1ayk+1)] = -

it) Suppose in addition that f is c-cross-convex. Then for any x € X,n > 1,

o) < f(o) + A2 = AT 0) (16)

iti) Suppose in addition that f is \-strongly c-cross-convez for some X € (0,1). Then for
any x € X,n > 1, setting A == (1 —\)"1 >1

A (e(z, y0) — (w0, Y0))
Ar—1 ’

First primal-primal proof of 1/» rate for Sinkhorn with unbounded ground cost. Now, on to EVIs!

flan) < flz) +

(17)

V.




For ¢(x,y) = g(x) + @ and ¢: X x X — Ry with ¢(x,z) = 0, the \-FP reads

P(z,y1) + (1 = N)é(xo,90) < ¢z, y) + (1 = N)d(x,90), V2,9, 4o (A-FP)

c(x,an)T— c(x, zp) n c(anrTl,xn) n )\c(;mxn) —:(anrthn) < (1- )

9(x) = g(xnt1)) Vo, yn

For A\ =0, (X, d) a metric space and ¢(x,y) = @, we get the discrete EVI of
[Ambrosio et al., 2008, Corollary 4.1.3]!



For ¢(z,y) = g(z) + @ and ¢: X x X = Ry with ¢(z,z) = 0, the A\-FP reads

d(z,y1) + (1 = N)o(xo,y0) < d(x,y) + (1 = N)d(w,y0), V2,9, Y0 (A-FP)

c(x,an)T— c(x, zp) n c(anrTl,xn) n )\c(;mmn) —:(anrthn) < (1- )

9(x) = g(xnt1)) Vo, yn

For A\ =0, (X, d) a metric space and ¢(x,y) = M, we get the discrete EVI of

2
[Ambrosio et al., 2008, Corollary 4.1.3]!

In practice, for p+ 1 = ﬁ, we start from a notion of ¢/r-cross-concavity of —g, i.e.

C(I‘, x'rb+1) - 0(177 wn) + c($rL+1> Jf"n,)
T

+ pe(z, xn) < g(x) — g(xpny1) Vo, z, € X. (18)



For ¢(z,y) = g(z) + @ and ¢: X x X = Ry with ¢(z,z) = 0, the A\-FP reads

d(z,y1) + (1 = N)o(xo,y0) < d(x,y) + (1 = N)d(w,y0), V2,9, Y0 (A-FP)

(@, Tnt1) — c(z, zp) n A(Tnt1,Tn) n )\c(;mmn) —c(Tnt1,%n) < (1- )

T T T g(.’E) _g(anrl)) Vx,yn

For A\ =0, (X, d) a metric space and ¢(x,y) = @, we get the discrete EVI of

[Ambrosio et al., 2008, Corollary 4.1.3]!

In practice, for p+ 1 = ﬁ, we start from a notion of ¢/r-cross-concavity of —g, i.e.

C(I‘, x'rb+1) - 0(177 wn) + c($rL+1> Jf"n,)

. + pe(z, xn) < g(x) — g(xpny1) Vo, z, € X. (18)

For 7 — 0 and some continuity of g and ¢, there is a limiting curve satisfying
Vic(x] ,xy) _
T

“lim, ¢ —Vg(x;)” and more precisely a c-EVI:

d
ac(w,mt) +p-c(r,m) < g(x) —g(zy) Vte (0,+00), z € X.



© c-EVI and continuous-time



Gradient flows

In a Hilbert space X
[Komura, Crandall, Pazy, Kato, Brézis, ...]

2+ V(ar) = 0

L]
¢ o Paradigmatic evolution mode
e Optimization tool
Underlying, there is the squared norm ||z — y||?
U

@ What if we have just a metric space d(z,y)?
[Ambrosio, Gigli, Savaré, 2008]

@ What if we have just a generic cost c(z,y)?
[Aubin, Sodini, Stefanelli, 20257]



Recap of the EVI metric formulation

Unfortunately x} = —V¢(x) is not suitable for the metric context (V undefined etc).

However, taking inner product with x; — x where x € X is arbitrary,

e — 2l = (2,20 = (& — 2, V() < B(a) — 6(z0) — Gz — 2

where we assumed that ¢ is A-convex, i.e. for all z,z € X

(¢~ 2, Vo(@) < 0(x) — 6(@) ~ 17 — 2"



Recap of the EVI metric formulation

Unfortunately x} = —V¢(x) is not suitable for the metric context (V undefined etc).

However, taking inner product with x; — x where x € X is arbitrary,
A
Sl — al? = (o — x, p) = (@ — 24, Vo(a)) < dla) — (1) — 5”% — x|
where we assumed that ¢ is A-convex, i.e. for all T,z € X
_ _ _ A 9
(& =2, V() < ¢(z) - ¢(2) — 5 llz — 2"

Evolution variational inequality:
x : [0,00) — dom ¢ starting from z° € dom ¢ is a EVI solution if

a1
dt 2

d? (x4, ) + ng(xt, z) < ¢(x) — p(x) ae. t >0, Vr (EVI)




Other gradient flow formulations
Defining metric derivative/slope

AT d(%f’ 'Tt—f—h) — . qb(ﬂf) - ¢(y)
|zy| = hli)Igl+ — |Vo|(z) = max (0, hr;lj;lp Ty >

there are two other metric formulations: EDI and EDE, Energy Dissipation (In)Equality

1t 1t

5 [l [196R@) ar < o(a) - ol (EDY)

1t 712 1t 2

5 [l ar+ 5 [ VoP@) dr = 6(a) - é(a) (EDE)
These correspond to the energy identity %¢($t+) = —3|z}> — 3|Vo X (z) = — |2}

But only the EVI formulation ensures uniqueness and contractivity:

——d*(zy, ) + %dQ(:Et, x) < ¢(x) — Pp(xy) a.e. t >0, Vo (EVI)




Glimpse of metric setting literature

EVI in metric setting have been considered in
@ Smooth and complete Riemannian manifolds
e Nonpositively curved (NPC) spaces [Mayer, Jost]
e Positively curved (PC) in the Alexandrov sense [Ohta, Savaré, Gigli, Kuwada]

o Wasserstein-Kantorovich-Rubinstein space (Pa(X), dyy2)
[Ambrosio, Gigli, Savaré, Ohta]

e RCD(K, ) spaces [Ambrosio, Gigli, Mondino, Savaré, Erbar, Sturm, Kuwada]

and also extended/adapted to cover

@ Reaction-diffusion equations and systems
[Kondratyev, Monsaingeon, Vorotnikov, Liero, Mielke, Savaré

o Viscoelasticity [Mielke, Ortner, Sengiil, Friedrich, Kruzik
e Markov chains [Maas, Mielke

@ Jump processes [Erbar, Tse, Rossi, Savaré, Peletier

J
]
]
]



General-cost setting

Aim: replace d with a general cost ¢: X x X — [0, 00)

Asymmetric distances have already been considered

[Rossi, Mielke, Savaré, 2008], [Chenchiah, Rieger, Zimmer, 2009]
[Ohta, Zhao, 2024]

For today’s presentation I keep:
e symmetry: c¢(z,y) = c(y, )
e nondegeneracy: c(z,y) =0 & x =y

but I drop the triangle inequality and the continuity of ¢

(some of our results hold for asymmetric and/or degenerate costs, as well)



General-cost setting: First examples

o Consistency
. 1 2 . 1 5
Hilbert: c(x,y) = §Hx —y|*, Metric: c(z,y) = §d (x,y)

@ Doubly nonlinear flows
co(z,y) =z —y)
e Continuous problem: dv(z') + d¢(x) 3 0
o Mirror descent
c(z,y) = P(x) —dy) — dv(y)(z —y)
e Discrete scheme: %(&p(x,) — 0Y(xi—1)) + 0p(x;) 2 0
e Continuous problem: (9 (x))" + dé(z) 3 0



General-cost setting: Examples of interest

e Kullback-Leibler divergence in P(X) x P(X)
du
00 else

@ Sinkhorn divergence
Entropic OT dissimilarity:

OT.(u,v) = min / c(z,y)dr(z,y) + eKL(m, p @ v)
mell(p,v) J X x X

Sinkhorn divergence:

1 1
Se(p,v) = OTe(u,v) — §OTE(,U,, p) — §OTE(V’ V)



General-cost setting: Assumptions

o Cost: ¢(z,y) =c(y,x) >0and ¢(z,y) =0 < xz=y

e Completeness: c-Cauchy sequences are c-convergent, i.e.,

(Tp,xm) = 0= 3T € X c(xy,z) >0

Coercivity: V7 € (0,1), Vy € X the map = — c(z,y)/7 + ¢(z) is coercive

Lower semicontinuity:
[c(xn,z) = 0] = [gb(a:) < limninf ¢(zyn) and c(z,y) < limninf c(ﬁn,y)}

@ c-cross-convexity: V1 € (0,1), Vzo, u € dom(¢), x1 € argmin (-, zo)/7 + ¢(+)

1,
Hr) — ola) < -

(c(z, o) — c(x1,20) — c(x,21)) — ;c(x,xl)

Initial value: 2% € dom(g)



General-cost setting

o A sufficient condition for c-cross-convexity is, for all z, g, 1, the existence of
v :[0,1] — X such that

P(v(1)) < tp(x) + (1=t)p(x1) — Ate(z, 21) + o(t)
c(y(t), z0) < te(x,x0) + (1—t)c(x1, x0) — te(z, 1) + o(t)

@ The assumptions are consistent with the metric setting in NPC/NNCC spaces, in
particular with Hilbert spaces.
Think of parallelogram: ||tz 4 (1 — t)x1 — zo||> = t]|z — zo||* + (1 — t)||z1 — zo||*> — t(1 — t)||z — z1||?

@ Minimizing Movements, as implicit Euler

1
x] € argmin,, (Tc(x,xf_l) + ‘75(5“))

(theory for explicit Euler is also possible)



EVI solution: equivalent formulations

@ Differential form:

a+
Ec(avt,:v) + Ac(zt, ) < d(w) — d(x¢)
o Integrated form:
c(xy,x) — c(xs, x) + )\/ c(xp, z)dr < (t—s) / o(x,)

e Exponential form:

e/\(t—s) -1

eMt=s) c(xy,x) — c(xs, ) < 3

(¢(x) — ¢(1))



EVI solution: properties
i) Existence: based on compatibility or c-cross-convexity

ii) Regularizing property and Energy identity: the limits below exist and we have

2¢(Tyh, Tt) d
2 . t+hy Lt 2
|x:t+’c = ,}g& T (e,) = —\9C£+|c vt >0

iii) A-Contractivity (and uniqueness):
oy, 7)) < e Mgy, 7)
< ii) and iii) are a consequence of the symmetry of ¢ ! They do not hold in general.
iv) Large-time behavior:
if A > 0 and z, is the (unique) minimum point of ¢

2ol a.) < d{w)—o(r.) < e Me(a®, 2.)

v) Stability w.r.t. initial conditions:

20 =20 = z,(t) =z VE>0



Conclusion

@ Presented a setting for gradient descent/flow with general costs, consistent with
previous metric theory

EVI solutions introduced & properties discussed, A-contractivity checked
Existence for GMM and EVI

Questions: new PDEs? Novel schemes? Interesting ¢ and ¢?
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Conclusion

Presented a setting for gradient descent/flow with general costs, consistent with
previous metric theory

EVI solutions introduced & properties discussed, A-contractivity checked
Existence for GMM and EVI

Questions: new PDEs? Novel schemes? Interesting ¢ and ¢?

Project originated from article with Flavien Léger (INRIA Paris), more on

https://pcaubin.github.io/

Thank you for your attention!

arXiv: Gradient descent with general cost with Flavien Léger



References 1

[ Ambrosio, L., Gigli, N., and Savaré, G. (2008).
Gradient flows in metric spaces and in the space of probability measures.
Lectures in Mathematics ETH Ziirich. Birkhauser Verlag, Basel, second edition.
[ Aubin-Frankowski, P-C., Korba, A., and Léger, F. (2022).
Mirror descent with relative smoothness in measure spaces, with application to Sinkhorn and EM.

In Advances in Neural Information Processing Systems (NeurIPS).
(https://arxiv.org/abs/2206.08873).

@ Bauschke, H. H. and Combettes, P. L. (2011).
Convex analysis and monotone operator theory in Hilbert spaces.
CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York.

@ Csiszdr, 1. and Tusnady, G. (1984).
Information Geometry and Alternating Minimization Procedures.

In Statistics and Decisions, pages 205-237. Oldenburg Verlag, Munich.


https://arxiv.org/abs/2206.08873

References 11

ﬁ Kunstner, F., Kumar, R., and Schmidt, M. W. (2021).

Homeomorphic-invariance of EM: Non-asymptotic convergence in KL divergence for exponential
families via mirror descent.

In AISTATS.
[§ Neal, R. M. and Hinton, G. E. (1998).

A view of the EM algorithm that justifies incremental, sparse, and other variants.

In Learning in Graphical Models, pages 355-368. Springer Netherlands.

[ Villani, C. (2009).
Optimal transport, volume 338 of Grundlehren der mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences].

Springer-Verlag, Berlin.

Old and new.



c-concavity

Definition (c-concavity)

We say that a function f: X — R is c-concave if there exists a function h: Y — R such
that

f(z) = inf c(z,y) + h(y), (19)
=

for all z € X. If f is c-concave, then we can take h(y) = f°(y) = supycx f(z) — c(2/,y).

T c(x,y) Fa

x = c(z,y) + f(y)

Figure: The c-transform of f. For a fixed y € Y, the dashed line represents a function

x +— c(x,y) + o majorizing f. The smallest of such functions is x — ¢(x,y) + f¢(y), here
represented in solid line.




c-cross-convexity

We want f(:E) - f(mn) > C(:L‘, yn+1) - C(Ia yn) + C(xm yn) - C(xm ynJrl) with
~Vul(Tn, Yni1) = =V f(2,) and Vec(zn, yn) = 0.

Recall the cross-difference of ¢ defined by
de(2' 4y 2,y) = c(z,y) + e(,y) — c(z,y) — c(,y).
Definition (cross-convexity)

Take f and ¢ C'. We say that f is c-cross-convex if for all z,Z € X and any 4, € Y
verifying V,c(Z,y) = 0 and —V,¢(z,9) = —V f(x) we have

f(@) 2 f(Z) + dc(x, 552, 9). (20)

In addition let A > 0. We say that f is A-strongly c-cross-convex if we have

f(@) 2 f(2) +0c(2, 45 2, 9) + Mc(z,y) — (2, 7)) (21)

R




Local criteria
If X,Y C R% then we have a local criterion:

Theorem (Local criterion for c-concavity [Villani, 2009, Theorem 12.46])

Suppose that ¢ € C*(X x Y) has nonnegative cross-curvature, V3, c(x,y) is everywhere
invertible, X and Y have c-segments. Let f be C?. Suppose that for all T € X, there exists
9 €Y satisfying —Vc(z,9) = =V f(Z) and such that

VEf(Z) < Vi, 9).

Then f is c-concave. (Converse is also true)

If f is c-cross-convex then, whenever V,c(z,y) = 0 and —V,¢(z,9) = —V f(Z), we have
V2£(Z) 2 V3,e(Z,9) — Viee(@, 7). (22)

(Converse is maybe true, a semi-local condition with c-segments does exist though)




POCS (Projection Onto Convex Sets)
[Bauschke and Combettes, 2011]

Context: (H, ||-||) Hilbert space, B, C be two closed convex subsets of H.
Objective: Find x € BN C, based on initialization zg € H

The POCS algorithm searches for B N C by successive projections. Given z, € B,
Yn+1 = argminl|z, —y,
yeC

(23)

Tpy1 = argmin||z — yp41]|-
zeB



POCS (Projection Onto Convex Sets)
[Bauschke and Combettes, 2011]

Context: (H, ||-||) Hilbert space, B, C be two closed convex subsets of H
Objective: Find x € BN C, based on initialization zg € H

The POCS algorithm searches for B N C by successive projections. Given x, € B
Yni1 = argmin|z, =y,
- (23)
Tnt1 = argmin||z — ynia||.
reB

There are at least two ways to write POCS as an alternating minimization method
i) Take X =Y = H, with ¢(z,y) =

Bl ) = cla. ) + g(x) + h(y).
ii) Take X = B, Y = C and ¢(z,y) =

tlz —y|? and g = 15 and h = ¢, set

sz =yl

In both cases, we can do the analysis to get rates. Same results when ||z — y|| is replaced
by u(z|y) (Bregman projections).



Expectation—-Maximization (EM)

Context: X : observation space, Z : latent space, © : set of parameters, defining our our
statistical models {pg € P(X x Z) : § € O}.
Objective: Having observed p € P(X), find § € © maximizing the likelihood,
in F'(0) = KLL 24
min F(6) (1lpxpe), (24)
Use the data processing inequality: F(0) = KL(u|pxps) < KL(7|pg) =: (0, 7). Equality
holds for m = 5 ;‘p(jé)m) po(dr,dz). The EM algorithm is [Neal and Hinton, 1998]:

Tn+1 = argmin KL(7|py,, ), (E-step)
mEIL ()
Ont1 = aregnéin KL(mp41|pg)- (M-step)
€

It can be written as either mirror descent (convex if pp = K ® 6 [Aubin-Frankowski et al., 2022]) or
a projected natural gradient descent (convex if py is an exponential family [Kunstner et al., 2021])



Sinkhorn algorithm/Entropic optimal transport

Let (X, 1) and (Y, v) be two probability spaces and take the set of couplings over X x Y
(i.e. joint laws) having marginal p (resp. v)

C=1(u,*), D=I(xv), II(u,v)=TI(u,*) NI(x,v)

Given € > 0 and a p ® v-measurable function b(z,y), the entropic optimal transport
problem is

11111(111 )KL(ﬂ\efb/Eu(X)y), where KL(7|7) = /log (dv/dx) dm (25)
mell(u,v



Sinkhorn algorithm/Entropic optimal transport

Let (X, 1) and (Y, v) be two probability spaces and take the set of couplings over X x Y
(i.e. joint laws) having marginal p (resp. v)

C=1(u,*), D=I(xv), II(u,v)=TI(u,*) NI(x,v)

Given € > 0 and a p ® v-measurable function b(z,y), the entropic optimal transport
problem is

11111(111 )KL(ﬂ\efb/Eu(Xw), where KL(7|7) = /log (dv/dx) dm (25)
mell(u,v

The Sinkhorn algorithm solves (25) by initializing 7o (dz, dy) = e~?@¥)/(da)v(dy) and
by alternating “Bregman projections” onto II(u, *) and II(x*,v),

Ynt+1 = argmin KL(~v|m,), (26)
YEM (%)
Tnt1 = argmin KL(7|v,41). (27)

meIl(x,v)




Ynt+1 = argmin KL(~y|m,), (28)
YEI(p,%)

Tnt1 = argmin KL(7|v,41). (29)
weIl(x*,v)

The iterates of Sinkhorn (the ones above) are also given by

Ynt+1 = argmin KL(m,|y), (30)
YEI(p,%)

Tnt1 = argmin KL(7|vn41). (31)
wEIl(x*,v)

Csiszar and Tusnady show FP directly [Csiszar and Tusnady, 1984, Section 3].
Alternatively KL is a Bregman divergence and jointly convez, so

F(m)= inf &(m,v) = KL(pxm|u) is convex. KL(pxm,|pn) <
YEL(p,%) n

KL(W"YO)‘




Natural gradient descent

Take Y = X and consider the cost with u C3, convex, with invertible Hessian

c(z,y) = ulylr) = u(y) — u(z) — (Vu(z),y — ).
Consequently
—Vae(z,y) = Viu(z)(y - z).

Our gradient descent thus gives

Yn+1 = Tn — VQU(IL‘n)_lVf(fEn),
Vee(Tni1, Yni1) = 0.

Combining, we get natural gradient descent: x, 1 — 2, = —V2u(z,) "'V f(2,).



Lemma (Natural gradient descent: c-concavity and cross-convexity)

Let f: X — R be twice differentiable.

i) f is c-concave if and only if for all z,&,
V2f(2)(€,€) < VPu(z)(Vu(z) 'V f(2),€,€) + Vu(@)(§, ); (32)

it) Let A > 0. f is A\-strongly c-cross-convez if and only if f o Vu* is convez, for all x,&,

V2f(2)(€,€) = Viu(@)(VPu(z) "'V f(2), £,€) + AVu(2)(£, €). (33)

o

These assumptions give new global rates for NGD as well as for Newton!



Newton
Let Y = X and consider the cost

c(z,y) = flylz) = fy) — f(z) = (V[f(z),y — ).
Then gradient descent with general cost reads
Tny1 — Tp = =V f(20) TV f(@0). (34)
This is Newton’s method. Let 0 < A < 1 and consider the (affine-invariant!) property:
0< V3f(@)(V2f) @)V f(2),6,€) < (1 - NV2f()(,€), Va.é€X.  (35)
First inequality is f o V f* convex. This is not self-concordance (e* vs log(x)), which reads
V2 f(2)(6,6,6) < 2M (V2 f(2)(€, €))7, Vo€ € X, (36)

and our property gives global linear rates under (35) (for functions like ¢4~ appearing
e.g. in Cominetti/San Martin (1994))
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