Data-driven approximation of differential inclusions and application to detection of transportation modes

Pierre-Cyril Aubin-Frankowski, Nicolas Petit

PhD student (École des Ponts ParisTech), CAS - Centre Automatique et Systèmes, MINES ParisTech

ECC 2020, May 2020

ParisTech

三 うくで

《曰》 《聞》 《臣》 《臣》

Problem formulation	MEB and SVDD	Guarantees on SVDD	Numerical experiments
0000	0000	0000	
Table of Conten	ts		

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 2/20

1 Problem formulation

- 2 MEB and SVDD
- 3 Guarantees on SVDD
- 4 Numerical experiments

●000	0000	0000	000000
Problem formulation	MEB and SVDD	Guarantees on SVDD	Numerical experiments

Problem formulation: approximating sets

Consider $N_0 > 1$ forced/controlled systems (f_i, U_i) , with $u(\cdot) \in U_i$

 $q'(t) = f_i(q(t), u(t)) \in \mathbb{R}^n$

How to identify the type (label *i*) of a given trajectory $q(\cdot)$? What if we do not know $u(\cdot)$, nor U_i , nor f_i ? Consider the couples (q, q')

$$egin{aligned} q'(t) \in F_i(q(t)) &:= \{f_i(q(t), u(t)) \,|\, u(\cdot) \in U_i\} \ \mathcal{K}_i &:= \{(q, q') \,|\, q' \in F_i(q)\} \subset \mathbb{R}^n imes \mathbb{R}^n \end{aligned}$$

The set-valued map F_i is identified with its graph K_i . Recall that

 $\mathsf{control} \ \mathsf{systems} \subset \mathsf{differential} \ \mathsf{inclusions}$

Assume that for each value of *i*, *labeled* samples of $(q(\cdot), q'(\cdot))$ are available. How to approximate the sets K_i ?

 Problem formulation
 MEB and SVDD
 Guarantees on SVDD
 Numerical experiments

 0 • 00
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000000
 000000000
 00000000

Motivation: Detection of transportation modes

Based on smartphone information such as GPS data, what is my mode of travel and when have I changed?

I do not know the controls applied, nor the equations for the vehicles I used.

Problem formulation	MEB and SVDD 0000	Guarantees on SVDD	Numerical experiments
_		· · · · · · · · · · · · · · · · · · ·	

A toy example of nonlinear system without inputs

$$q'(t) = - sin(\omega_i \cdot q(t)) \in \mathbb{R}$$

Generate ten trajectories for $\omega_1 = 1$ and $\omega_2 = 1/2$, plot the couples (q, q'),

00000 00000 00000		0000	0000	0000	000000
0000 000000	0000 0000 00000	0000	0000	0000	000000

A toy example of nonlinear system without inputs

$$q'(t) = -sin(\omega_i \cdot q(t)) \in \mathbb{R}$$

Generate ten trajectories for $\omega_1 = 1$ and $\omega_2 = 1/2$, plot the couples (q, q'), and consider a new trajectory of <u>unknown</u> type, guessing the type is **easy** in phase space

Problem formulation	MEB and SVDD	Guarantees on SVDD 0000	Numerical experiments

A toy example of nonlinear system with inputs

$$q'(t) = - extsim sin(\omega_i \cdot q(t)) + u(t) extsim with |u(t)| \leq rac{1}{2}$$

Generate ten trajectories with uniformly random bounded inputs for $\omega_1 = 1$ and $\omega_2 = 1/2$, plot the couples (q, q'),

Problem formulation	MEB and SVDD 0000	Guarantees on SVDD 0000	Numerical experiments
_	-	· · ·	

A toy example of nonlinear system with inputs

$$q'(t) = -sin(\omega_i \cdot q(t)) + u(t)$$
 with $|u(t)| \leq rac{1}{2}$

Generate ten trajectories with uniformly random bounded inputs for $\omega_1 = 1$ and $\omega_2 = 1/2$, plot the couples (q, q'), and consider a new trajectory of <u>unknown</u> type, guessing the type is **hard** in phase space

Delineeting	مبام مخ مام م		ad maan	
0000	0000	0000	000000	
Problem formulation	MEB and SVDD	Guarantees on SVDD	Numerical experiments	Numerical experiments

Delineating a graph to characterize a set-valued map

$$egin{aligned} q'(t) \in F_i(q(t)) &:= \{-sin(\omega_i \cdot q(t)) + u(t) \,|\, u(\cdot) \in L_\infty, |u(t)| \leq 1/2 \;\} \ & \mathcal{K}_i &:= \{(q,q') \,|\, q' \in F_i(q)\} \subset \mathbb{R}^2 \end{aligned}$$

- Our goal is to approximately delineate the graphs of the sets K_i
- If a $t \mapsto (q(t), q'(t))$ trajectory crosses a boundary *i*, it cannot be of type *i*.

Our approach: set approximation then anomaly detection!

Problem formulation	MEB and SVDD ○●○○	Guarantees on SVDD	Numerical experiments
How to delineat	e a set in a pla	ne?	

A "Stack Overflow"-like question by J.J. Sylvester (1857)

"It is required to find the least circle which shall contain a given system of points in a plane."^a

^aQuarterly journal of pure and applied mathematics, 1:79, 1857

Support Vector Data Description (SVDD) is the (nonlinear) kernelized version of the Minimal Enclosing Ball problem = = -> = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = -> < = = < = -> < = = < = -> < = = < = = < = = < = < = = < = = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < = < =

Problem formulation	MEB and SVDD	Guarantees on SVDD 0000	Numerical experiments
Reproducing ker	nel Hilbert sp	aces (RKHS)	in one slide

A RKHS $(\mathcal{F}_k(X), \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$ is a Hilbert space of real-valued functions over a set X if one of the following is satisfied (Aronszajn, 1950 [2])

 $\exists k: X \times X \to \mathbb{R} \text{ s.t. } k_x(\cdot) = k(x, \cdot) \in \mathfrak{F}_k(X) \text{ and } f(x) = \langle f, k_x \rangle_{\mathfrak{F}_k}$

$$k ext{ is s.t. } \exists \, \Phi_k : X o \mathfrak{F}_k(X) ext{ s.t. } k(x,y) \ = \ \langle \Phi_k(x), \Phi_k(y)
angle_{\mathfrak{F}_k}$$

k is s.t. $\mathbf{G} = [k(x_i, x_j)]_{i,j=1}^n \succeq 0$ and $\mathcal{F}_k(X) := \overline{\operatorname{span}(\{k_x(\cdot)\}_{x \in X})},$ i.e. the completion for the pre-scalar product $\langle k_x, k_y \rangle_{k,0} = k(x, y)$

Classical kernels for $X = \mathbb{R}^d$ include the Gaussian and linear kernels

$$k_{\sigma}(x,y) = \exp\left(-\|x-y\|_{\mathbb{R}^d}^2/(2\sigma^2)
ight) \quad k_{\mathsf{lin}}(x,y) = \langle x,y
angle_{\mathbb{R}^d}$$

There is a one-to-one correspondence between positive definite kernels k and RKHSs $\mathcal{F}_k(X)$.

Problem formulation	MEB and SVDD 0000	Guarantees on SVDD •000	Numerical experiments
-			

Gaussian SVDD is an orthogonal projection

$$k_{\sigma}(x,y) = \exp\left(-\|x-y\|_{\mathbb{R}^d}^2/(2\sigma^2)
ight)$$
 and $X_N = \{x_i\}_{i \leq N} \subset \mathbb{R}^d$

Lemma (SVDD with Gaussian kernels k_{σ})

The center f_{σ} of the minimal enclosing ball B_{σ}^{SVDD} in the RKHS $\mathcal{H}_{\sigma}(\mathbb{R}^d)$ of $\Phi_{\sigma}(X_N) := \{k_{\sigma}(x_i, \cdot)\}_{i \leq N}$ is the orthogonal projection of 0 onto $\operatorname{co}(\Phi_{\sigma}(X_N))$ (convex hull). Its radius R_{σ} satisfies:

$$R_{\sigma} = \sqrt{1 - \|f_{\sigma}\|_{\sigma}^2} \text{ where } f_{\sigma}(\cdot) = \sum_{i=1}^{N} \overline{\alpha}_i k_{\sigma}(x_i, \cdot) = \operatorname*{arg \, min}_{f \in \operatorname{co}(\Phi_{\sigma}(X_N))} \|f\|_{\sigma}^2$$

 $x \in K^{SVDD}_{\sigma} := \Phi^{-1}_{\sigma}(B^{SVDD}_{\sigma})$ iff a simple testing criterion holds:

$$\sum_{i,j\leq N} \overline{\alpha}_i \overline{\alpha}_j k_\sigma(x_i, x_j) = \|f_\sigma\|_\sigma^2 \leq f_\sigma(x) = \sum_{i\leq N} \overline{\alpha}_i k_\sigma(x_i, x)$$

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ < ℃ 11/20</p>

Geometrical perspective: Gaussian kernel embedding

Problem formulation	MEB and SVDD 0000	Guarantees on SVDD 00●0	Numerical experiments
Gaussian SVDD	is set-consister	nt	

The representation is usually sparse (only a few coefficients of f_{σ}

are not 0), it is also consistent.

Proposition (Set-consistency of SVDD)

The estimate K_{σ}^{SVDD} of X_N by the SVDD algorithm for Gaussian kernels satisfies the following two properties

•
$$\exists M > 0, \forall \sigma > 0, K_{\sigma}^{SVDD} \subset X_N + B_{\mathbb{R}^d}(0, M)$$

•
$$\forall \epsilon > 0, \ \exists \sigma_0 > 0, \ \forall 0 < \sigma \leq \sigma_0, \ K_{\sigma}^{SVDD} \subset X_N + B_{\mathbb{R}^d}(0, \epsilon)$$

i.e. the sequence $(K_{\sigma}^{SVDD})_{\sigma>0}$ is bounded and, for σ small enough, it lies in a neighborhood of X_N for the norm of \mathbb{R}^d .

Problem formulation	MEB and SVDD	Guarantees on SVDD	Numerical experiments
0000	0000	0000	000000

In the limit case, when N tends to ∞ , if X_{∞} is dense in a given compact $K \subset \mathbb{R}^d$, then K_{σ}^{SVDD} is dense as well and lies in a neighborhood of K.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 の�� 14/20

NA			1
Problem formulation	MEB and SVDD	Guarantees on SVDD	Numerical experiments
	0000	0000	•00000

Motivation: Detection of transportation modes

We apply the SVDD algorithm to draw boundaries around the training sets in phase space (speed-acceleration).

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ ○ 15/20

of

0000	0000	0000	00000
0000	0000	0000	00000
Problem formulation	MEB and SVDD	Guarantees on SVDD	Numerical experiments

Toy model of car and bike, forced to asymptotically track a reference velocity signal $v_{req}(\cdot)$ stemming from an urban-part of the NEDC cycle (New European Driving Cycle):

$$\begin{aligned} m\dot{v}(t) &= -kv^2(t) + u(t) \\ \text{where } u(t) &:= \begin{cases} -F_{max} \text{ if } k_p(v_{req}(t) - v(t)) < -F_{max} \\ F_{max} \text{ if } k_p(v_{req}(t) - v(t)) > F_{max} \\ k_p(v_{req}(t) - v(t)) \text{ otherwise} \end{cases} \end{aligned}$$

Table: List of parameters of the NEDC simulation

	m	k	k _p	F _{max}	$\max(v_{req})$
Car	1 T	0.27	20	2 kN	80 km/h
Bike	100 kg	0.5	20	30 N	30 km/h

Problem formulation	MEB and SVDD	Guarantees on SVDD	Numerical experiments
0000	0000	0000	

Example of tracking a reference velocity signal $v_{req}(\cdot)$

 $m\dot{v}(t) = -kv^2(t) + \operatorname{sat}_{F_{max}}(k_p(v_{req}(t) - v(t)))$

- Piecewise affine *v_{req}*
- Random breakpoints
- First order response v

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 17/20

Figure: Estimate sets K_{σ}^{SVDD} of theoretical dynamical limits (filled areas) by SVDD on simulation data, when varying the number of training points

0000	0000	0000	000000
0000	0000	0000	000000
Problem formulation	MEB and SVDD	Guarantees on SVDD	Numerical experiments

Figure: Estimate sets K_{σ}^{SVDD} of theoretical dynamical limits (filled areas) by SVDD on simulation data, when adding 10% uniform noise with a modification of SVDD to mitigate noise (see article)

Problem formulation	MEB and SVDD 0000	Guarantees on SVDD	Numerical experiments
NI · I ·	1		

Figure: Estimate sets K_{σ}^{SVDD} of theoretical dynamical limits (filled areas) by SVDD on simulation data, when testing membership of a given trajectory to a class, by computing $\varphi_i(t) := f_{\sigma_i,i}(x(t)) - \|f_{\sigma_i,i}\|_{\sigma_i}^2$ (positivity means the trajectory crossed the boundary)

Problem formulation	MEB and SVDD 0000	Guarantees on SVDD	Numerical experiments
Conclusion			

Through differential inclusions and kernel methods we

- reformulated an identification task as a problem of learning sets
- presented the SVDD algorithm [3], proving it was consistent w.r.t to the sampled set for Gaussian kernels and small σ
- applied it to both simulated and real data for detection of transportation modes

Thank you for your attention!

Not seen in the talk, to be found in the article:

- formulation of SVDD to mitigate noise in the samples
- stability of SVDD to variations of σ for the Gaussian kernel

Problem formulation	MEB and SVDD 0000	Guarantees on SVDD	Numerical experiments
References I			

- D. J. Elzinga and D. W. Hearn, "The minimum covering sphere problem," *Management Science*, vol. 19, pp. 96–104, sep 1972.
- N. Aronszajn, "Theory of reproducing kernels," *Transactions of the American Mathematical Society*, vol. 68, pp. 337–337, mar 1950.
- D. M. J. Tax and R. P. W. Duin, "Support vector data description," *Machine Learning*, vol. 54, pp. 45–66, jan 2004.
- B. Martin, V. Addona, J. Wolfson, G. Adomavicius, and Y. Fan, "Methods for real-time prediction of the mode of travel using smartphone-based GPS and accelerometer data," *Sensors*, vol. 17, p. 2058, sep 2017.