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Problem formulation: approximating sets

Consider N0 > 1 forced/controlled systems (fi ,Ui ), with u(·) ∈ Ui

q′(t) = fi (q(t), u(t)) ∈ Rn

How to identify the type (label i) of a given trajectory q(·)? What
if we do not know u(·), nor Ui , nor fi? Consider the couples (q, q′)

q′(t) ∈ Fi (q(t)) := {fi (q(t), u(t)) | u(·) ∈ Ui}
Ki := {(q, q′) | q′ ∈ Fi (q)} ⊂ Rn × Rn

The set-valued map Fi is identified with its graph Ki . Recall that

control systems ⊂ differential inclusions

Assume that for each value of i , labeled samples of (q(·), q′(·)) are
available. How to approximate the sets Ki?
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Motivation: Detection of transportation modes

Based on smartphone
information such as
GPS data, what is my
mode of travel and
when have I changed?

I do not know the con-
trols applied, nor the
equations for the vehi-
cles I used.
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A toy example of nonlinear system without inputs

q′(t) = −sin(ωi · q(t)) ∈ R

Generate ten trajectories for ω1 = 1 and ω2 = 1/2, plot the
couples (q, q′),

and consider a new trajectory of unknown type,
guessing the type is easy in phase space
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A toy example of nonlinear system with inputs

q′(t) = −sin(ωi · q(t)) + u(t) with |u(t)| ≤ 1
2

Generate ten trajectories with uniformly random bounded inputs
for ω1 = 1 and ω2 = 1/2, plot the couples (q, q′),

and consider a
new trajectory of unknown type, guessing the type is hard in phase
space
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Delineating a graph to characterize a set-valued map

q′(t) ∈ Fi (q(t)) := {−sin(ωi · q(t)) + u(t) | u(·) ∈ L∞, |u(t)| ≤ 1/2 }
Ki := {(q, q′) | q′ ∈ Fi (q)} ⊂ R2
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Our goal is to approx-
imately delineate the
graphs of the sets Ki

If a t 7→ (q(t), q′(t))
trajectory crosses a
boundary i , it cannot
be of type i .

Our approach: set approximation then anomaly detection!
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How to delineate a set in a plane?

A "Stack Overflow"-like question by J.J. Sylvester (1857)
"It is required to find the least circle which shall contain a given
system of points in a plane."a

aQuarterly journal of pure and applied mathematics, 1:79, 1857

An answer ([1]) in 1972 related
to quadratic programming

Minimal Enclosing Ball (MEB)

min
c∈Rd ,R

R2

s.t. ∀ i ≤ N, ‖xi − c‖Rd ≤ R
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Support Vector Data Description (SVDD) is the (nonlinear)
kernelized version of the Minimal Enclosing Ball problem.
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Reproducing kernel Hilbert spaces (RKHS) in one slide

A RKHS (Fk(X ), 〈·, ·〉Fk ) is a Hilbert space of real-valued functions
over a set X if one of the following is satisfied (Aronszajn, 1950 [2])

∃ k : X ×X → R s.t. kx (·) = k(x , ·) ∈ Fk(X ) and f (x) = 〈f , kx 〉Fk

k is s.t. ∃Φk : X → Fk(X ) s.t. k(x , y) = 〈Φk(x),Φk(y)〉Fk

k is s.t. G = [k (xi , xj)]ni ,j=1 < 0 and Fk(X ) := span({kx (·)}x∈X ),
i.e. the completion for the pre-scalar product 〈kx , ky 〉k,0 = k(x , y)

Classical kernels for X = Rd include the Gaussian and linear kernels

kσ(x , y) = exp
(
−‖x − y‖2Rd/(2σ2)

)
klin(x , y) = 〈x , y〉Rd

There is a one-to-one correspondence between positive definite
kernels k and RKHSs Fk(X ).
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Convex optimization perspective: MEB vs SVDD

MEB [1]

min
c∈Rd ,R

R2

s.t. ∀ i ≤ N, ‖xi − c‖Rd ≤ R
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SVDD [3]

min
f ∈Hk ,R

R2

s.t. ∀ i ≤ N, ‖k(xi , ·)− f (·)‖Hk ≤ R
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Dual problem of SVDD and MEB

min
{α∈RN

+ |
∑N

i=1 αi =1}
αTGα− αTdiag(G) with G := (k(xi , xj))i ,j≤N
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Gaussian SVDD is an orthogonal projection

kσ(x , y) = exp
(
−‖x − y‖2Rd/(2σ2)

)
and XN = {xi}i≤N ⊂ Rd

Lemma (SVDD with Gaussian kernels kσ)

The center fσ of the minimal enclosing ball BSVDD
σ in the RKHS

Hσ(Rd ) of Φσ(XN) := {kσ(xi , ·)}i≤N is the orthogonal projection
of 0 onto co(Φσ(XN)) (convex hull). Its radius Rσ satisfies:

Rσ =
√
1− ‖fσ‖2σ where fσ(·) =

N∑
i=1

αikσ(xi , ·) = arg min
f ∈co(Φσ(XN ))

‖f ‖2σ

x ∈ KSVDD
σ := Φ−1

σ (BSVDD
σ ) iff a simple testing criterion holds:∑

i ,j≤N
αiαjkσ(xi , xj) = ‖fσ‖2σ ≤ fσ(x) =

∑
i≤N

αikσ(xi , x)
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Geometrical perspective: Gaussian kernel embedding
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Gaussian SVDD is set-consistent

The representation is usually sparse (only a few coefficients of fσ
are not 0), it is also consistent.

Proposition (Set-consistency of SVDD)

The estimate KSVDD
σ of XN by the SVDD algorithm for Gaussian

kernels satisfies the following two properties
∃M > 0, ∀σ > 0, KSVDD

σ ⊂ XN + BRd (0,M)
∀ ε > 0, ∃σ0 > 0, ∀ 0 < σ ≤ σ0, KSVDD

σ ⊂ XN + BRd (0, ε)

i.e. the sequence (KSVDD
σ )σ>0 is bounded and, for σ small enough,

it lies in a neighborhood of XN for the norm of Rd .
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In the limit case, when N tends to ∞, if X∞ is dense in a given
compact K ⊂ Rd , then KSVDD

σ is dense as well and lies in a
neighborhood of K .
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Motivation: Detection of transportation modes

We apply the SVDD algorithm to draw boundaries around the
training sets in phase space (speed-acceleration).

0 5 10 15

v(m/s)

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

a(
m

/s
2
)

Bike
Bus
Car
Rail
Walk

Five modes of
transportation

(Differentiated)
GPS data ([4])

Overlapping
SVDD envelopes

Various σi used



16/20

Problem formulation MEB and SVDD Guarantees on SVDD Numerical experiments

Numerical simulation on two vehicles - 1

Toy model of car and bike, forced to asymptotically track a reference
velocity signal vreq(·) stemming from an urban-part of the NEDC
cycle (New European Driving Cycle):

mv̇(t) = −kv2(t) + u(t)

where u(t) :=


−Fmax if kp(vreq(t)− v(t)) < −Fmax
Fmax if kp(vreq(t)− v(t)) > Fmax
kp(vreq(t)− v(t)) otherwise

Table: List of parameters of the NEDC simulation

m k kp Fmax max(vreq)
Car 1 T 0.27 20 2 kN 80 km/h
Bike 100 kg 0.5 20 30 N 30 km/h
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Numerical simulation on two vehicles - 2

Example of tracking a reference velocity signal vreq(·)

mv̇(t) = −kv2(t) + satFmax (kp(vreq(t)− v(t)))
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Numerical simulation on two vehicles - 3
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Figure: Estimate sets KSVDD
σ of theoretical dynamical limits (filled areas)

by SVDD on simulation data, when varying the number of training points
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Numerical simulation on two vehicles - 3
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Figure: Estimate sets KSVDD
σ of theoretical dynamical limits (filled areas)

by SVDD on simulation data, when adding 10% uniform noise with a
modification of SVDD to mitigate noise (see article)
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Numerical simulation on two vehicles - 3

0 2 4 6 8 10 12 14 16 18

v (ms-1)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

a 
(m

s-2
)

test data

0 200 400 600 800 1000

t (s)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

v 
(m

s-1
)

car membership
bike membership

Figure: Estimate sets KSVDD
σ of theoretical dynamical limits (filled areas)

by SVDD on simulation data, when testing membership of a given
trajectory to a class, by computing ϕi (t) := fσi ,i (x(t))− ‖fσi ,i‖2

σi
(positivity means the trajectory crossed the boundary)
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Conclusion

Through differential inclusions and kernel methods we

reformulated an identification task as a problem of learning sets

presented the SVDD algorithm [3], proving it was consistent w.r.t
to the sampled set for Gaussian kernels and small σ

applied it to both simulated and real data for detection of trans-
portation modes

Thank you for your attention!

Not seen in the talk, to be found in the article:

formulation of SVDD to mitigate noise in the samples
stability of SVDD to variations of σ for the Gaussian kernel
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