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What are state constraints?

Estimation Control

=(t)

Upper/Lower constraints zp.,, and 2,

Optimal trajectory with SOC constraints (ball covering)

— = +Optimal trajectory with discretized constraints (5 = 0)
1
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a(t) =t
Side information Physical constraints
< compensates small number of — provides feasible trajectories in
samples or excessive noise path-planning

Ubiquitous and both handled as a constrained optimization problem
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Optimal control as optimization over vector spaces

Optimization over RV

min _ £(x)
x € RN

s.t.
gi(x) =0+ v €R,
hj(x) <0+ p; € Ry
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Optimal control as optimization over vector spaces

Optimization over Hilbert spaces

min  L(x)
xeTF

s.t.
gi(x) =0+ v €R,
hj(X) <0<« JUFS R+

e.g. F a Sobolev space H(RN R)

v
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Optimal control as optimization over vector spaces

Optimization over Hilbert spaces | Nonlinear Optimal Control

min  £(x) min L(x(+), u(+))
xeT x(:)ec® u(-)elr
s.t. s.t.
gi(x) =0+ v € R, X'(t) = f(x,u) < p(t) € RV,
hj(x) <0< pj e Ry hi(x(t)) <0,Vt < 1;(-) € BV
e.g. F a Sobolev space HY(RN,R) | Non-reflexive Banach spaces. . .

o’ 4
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Optimal control as optimization over vector spaces

Optimization over Hilbert spaces | Linear Optimal Control

min  £(x) min L(x(+),u(+))
xeT x(-) € C%u(’) € I?
S.t. s.t.
gi(x) =0+ v € R, X'(t) = Ax 4 Bu < p(t) € RV,
hi(x) <0« p; € Ry Cx(t) < d(t), Vt <+ ;(-) € BV
e.g. J a Sobolev space H'(RN,R) ) (Reflexive) Hilbert spaces?
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Optimal control as optimization over vector spaces

Optimization over Hilbert spaces | Linear Optimal Control

min  £(x) min L(x(+),u(+))
xeT x(-) € C%u(’) € I?
S.t. s.t.
gi(x) =0+ v € R, X'(t) = Ax 4 Bu < p(t) € RV,
hi(x) <0« p; € Ry Cx(t) < d(t), Vt <+ ;(-) € BV
e.g. J a Sobolev space H'(RN,R) ) (Reflexive) Hilbert spaces?

How do you compute on an infinite dimensional space?
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Optimal control as optimization over vector spaces

Optimization over Hilbert spaces | Linear Optimal Control

min  L(x)
xeJ
S.t.

gi(x) =0+ v €R,

e.g. F a Sobolev space H(RN R)

(Reflexive) Hilbert spaces?

min L(x(-), u(:
() oomy ¢ 12 (x(-),u())

s.t.
X'(t) 2= Ax + Bu + p(t) € RV,
Cx(t) < d(t), Vt <« () € BV

How do you compute on an infinite dimensional space?

How do you compute with BV dual vectors?
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Optimal control as optimization over vector spaces

Optimization over Hilbert spaces | Linear Optimal Control

min  L(x)
xeJ
S.t.

gi(x) =0+ v €R,

e.g. F a Sobolev space H(RN R)

(Reflexive) Hilbert spaces?

min L(x(-), u(:
() oomy ¢ 12 (x(-),u())

s.t.
X'(t) 2= Ax + Bu + p(t) € RV,
Cx(t) < d(t), Vt <« () € BV

How do you compute on an infinite dimensional space?

What if your Hilbert space was not any Hilbert space but a RKHS?
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Reproducing kernel Hilbert spaces (RKHS) at a glance (1)

A RKHS (Fx, (,-)7,) is a Hilbert space of real-valued® functions over a set
T if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

Jk:TxT = Rs.t. k() = k(-, t) € F and £(t) = (F(-), ke(-)) 7, ]

the topology of (F, (-,-)7,) is stronger than pointwise convergence
i.e. 0t : f +— f(t) is continuous for all x for f € Fy.

£(8) = ()] = [{F — fo, kel < IF = Fallillkelle = I = fall e/ k(2 1)

!There is a natural extension to vector-valued RKHSs (more on this later).
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Reproducing kernel Hilbert spaces (RKHS) at a glance (1)

A RKHS (Fx, (,-)7,) is a Hilbert space of real-valued® functions over a set
T if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

Jk:TxT = Rs.t. k() = k(-, t) € F and £(t) = (F(-), ke(-)) 7, J
the topology of (F, (-,-)7,) is stronger than pointwise convergence
i.e. 0t : f +— f(t) is continuous for all x for f € Fy. J

[£(t) = fa(t)| = [{F — o, ke)il < (I = fallillkellie = If = fallic/K(2, 1)
kisst. Aoy : T — Fy s.t. k(t,S) = <¢k(t),¢k(5)>§k, (Dk(t) = kt() J

kiss.t. G=[k(ti, t)]],_; = 0 and Fy := span({ke(-)}te), i.e. the
completion for the pre-scalar product (k¢ (), ks(-))x.0 = k(t,s)

!There is a natural extension to vector-valued RKHSs (more on this later).
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Reproducing kernel Hilbert spaces (RKHS) at a glance (2)

@ There is a one-to-one correspondence between kernels k and RKHSs
(Fk, (-, -)5,)- Changing T or (-, )7, changes the kernel k.

e For T C RY, Sobolev spaces H*(7T) satisfying s > d/2 are RKHSs. For
T = R? their (Matérn) kernels are well known. Classical kernels include

kGauss(t,s) = exp <_||t - 5”[%@/(20-2)) kin(t,s) = (t,s)gd
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Reproducing kernel Hilbert spaces (RKHS) at a glance (2)

@ There is a one-to-one correspondence between kernels k and RKHSs
(Fk, (-, -)5,)- Changing T or (-, )7, changes the kernel k.

e For T C RY, Sobolev spaces H*(7T) satisfying s > d/2 are RKHSs. For
T = R? their (Matérn) kernels are well known. Classical kernels include

Kauss(t,5) = exp (||t = 5[[24/(202))  kin(t,5) = (t, 5)gs
Identifying k and F is hard! Example for Sobolev spaces, d =1, T =R,
o H' with (f, g = 2 [° fg + f'g'dt

k(t,s) = 7 (exp(—|t — s|) + exp(—t = 5)).
o H (£(0) = 0) with (-, )
k(t,s) = 5 (exp(—t = s|) — exp(—t — 5))..

e H} with (f,g),_,é = [ f'g'dt has for kernel k(t,s) = min(t,s).
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© How to optimize over a RKHS
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Two essential tools for computations

Representer Theorem (e.g. [Schdlkopf et al., 2001])

Let L: (T xR x R)N — RU {oo}, strictly increasing Q : Ry — R, and

F € argmin L ((tn, Y, F(tn))neag ) + 2 (1£14)
feFy

Then 3 (an)nen € RN st. f(-) = > ne[n] ank(tn, *)

< Optimal solutions lie in a finite dimensional subspace of F.

Finite number of evaluations = finite number of coefficients

<Z tn, Z b k Sma' >k = Z Z anbmk(tnasm)

ne[N] me[M] ne[N] me[N']

< On this finite dimensional subspace, no need to know (Fy, (-,-)s,).
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Example: 1D kernel ridge regression (KRR)

Estimating a function
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Example: 1D kernel ridge regression (KRR)

Estimating a function
N

+ 1 2 2
s min — — f(ty)|"+ A||f
| b AP NI,
o . . Applying the representer theorem
2 + +
A W Y - Unconstrained KRR f = Z,’Yﬂ anke,,
or 4+
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Example: 1D kernel ridge regression (KRR)

Estimating a function

| = — ()2 + N |If
;TE";k nz_:\yn (ta)” + A IF113,

Applying the representer theorem

Unconstrained KRR f = Zn 1ankt,,,
=(G+ NX-Id)!
with Gram matrix G = [k(t;, tj)],-,jg/v

2
+NA

N

>

n=1

N

Yn — Zaik(th tn)

i=1

N
Zanktn(')

n=1

= ||y—G04||]§,\,+N)\o[r Ga
Fk

Convex and differentiable. Optimality: 0 = G(—y + Ga + NAa)
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Example: 1D kernel ridge regression (KRR)

Estimating a function

N

1 2 2
fn;'gpkﬁr;b/n_f(tn)‘ +)‘||fH"fk

s.t.(0 < f(t), Vt € [-2,2]]

Unconstrained KRR f = ZN anke,,

n=1

o =(G+Nx-Id)ly

here is not nonnegative around 0.5!
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Example: 1D kernel ridge regression (KRR)

Estimating a function

N

1 2 2
min an::l\yn — f(ta)[* + A If]l5,

s.t.(0 < f(t), Vt € [-2,2]]

Unconstrained KRR f = ZN anke,,

n=1

a=(G+ N\ Id) 1y

here is not nonnegative around 0.5!

-2 -1.5 -1 -0.5 0 0.5 1 15 2 25

Infinite number of evaluations = no representer theorem!

How to modify the problem to ensure constraint satisfaction?
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© Vector spaces of linear controlled trajectories as VRKHSs
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Linearly-constrained Linear Quadratic Regulator (LQR)

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints

min, / x(5) T Q(£)x(t) + u(t)TR(£)u(t)]dt
s.t.
x(0) = xo,
X'(t) = A(t)x(t) + B(t)u(t), a.e. in [0, T],

ci(t)"x(t) < di(t), Yt e [0, T],Vie [1,P],

with state x(t) € RV, control u(t) € RM, A(-) € L}(0, T), B(-) € L?(0, T),
Q(t) =0 and R(t) = rldy (r > 0)
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Linearly-constrained Linear Quadratic Regulator (LQR)

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints with @ =0 and R = Idyy

X(r.r)lfﬁ )+ / (t)||2m dt
s.t.
x(0) = xo,
xX'(t) = A(t)x(t) + B(t)u(t), a.e. in [0, T],
ci(t)"x(t) < di(t), Yt e [0, T],Vie{l,...,P},

with state x(t) € RV, control u(t) € RM, A(-) € L}(0, T), B(-) € L?(0, T),
x(:) : [0, T] — RN absolutely continuous and u(-) € L2(0, T).
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Why are state constraints difficult to study?

o Theoretical obstacle: Pontryagine's Maximum Principle involves not only
an adjoint vector p(t) but also measures/BV functions v(t) supported at
times where the constraints are saturated. You cannot just backpropagate
the Hamiltonian system from the transversality condition.

@ Numerical obstacle: Time discretization of constraints may fail e.g.

Speed cameras in traffic control

In between two cameras, drivers
always break the speed limit.

" Camera
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Objective: Turn the state-constrained LQR into “KRR"

We have a vector space S of controlled trajectories x(-) : [0, T] — RN
S:={x(:)|Fu(-) € L3(0, T) s.t. X'(t) = A(t)x(t) + B(t)u(t) a.e. }
The space of controlled trajectories S depends on [0, T], A(-), B(:).

LQR (Linear Quadratic Regulator) | “KRR" (Kernel Ridge Regression)

i g(x(T)) + lu(-) 20,7y i g(x( )+ AlIx()I13
u(-)eL?(0,T)

(t)TX( t) < di(t),t €[0,T],i <P | ci(t)"x(t) < di(t),t €[0,T],i <P ]

Is S a RKHS? For which inner product?
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Vector-valued reproducing kernel Hilbert space (VRKHS)

Definition (VRKHS)

Let T be a non-empty set. A Hilbert space (F,(-,-)x) of RN-vector-
valued functions defined on T is a vVRKHS if there exists a matrix-valued
kernel K : T x T — RNXN such that the reproducing property holds:

K(,t)p €Tk, p f(t)=(f,K(,t)p)x, forteT, pcRN fecFy

Necessarily, K has a Hermitian symmetry: K(s,t) = K(t,s)"

There is also a one-to-one correspondence between K and (Fk, (-, ) )
[Micheli and Glaunes, 2014], so changing T or (-, ), changes K.
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Representer theorem in vVRKHSs

Theorem (Representer theorem with constraints, Aubin 2020)

Let (Fk,(-,-)x) be a vVRKHS defined on a set T. For a “loss” L : RNo —
R U {400}, strictly increasing “regularizer” Q : Ry — R, and constraints
d; : RNi — R, consider the optimization problem

Feargmin L (cj1f(to1),---r g flton)) + 2(IIfllx)
feFk

s.t.
Aillfllk < di(chf(tin), - ciln f(tin)), Vi € [1, P].
Then there exists {Pi,m}me[[l,N,-]] c RN and aim € R such that

_ N )
f= Z/P:o D B 5 o 2 o LR [0 e = @ g e
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Application to linear control systems with quadratic cost

S = {x(-) e WH|Ju(:) € L?(0, T) s.t. X'(t) = A(t)x(t)+B(t)u(t) a.e. }
Given x(-) € S, for the pseudoinverse B(t)® of B(t), set
u(t) == B(t)°[x'(t) — A(t)x(t)] a.e.in[0, T].

(x1(-), x2(")) i = x1(0) "x2(0) + /OT up(t) T ua(t)dt

(S, (-,-)k) is a vRKHS with uniformly continuous K(-,-).

|| - Ik is a Sobolev-like norm split into two semi-norms

Ix()k = IIX(O)H2+/T 1B(£)°(x'(¢) = A(t)x(¢))||Pdt .
—— Jo

()1,

()1,
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Splitting S into subspaces and identifying their kernels

So = {x() [ X'(t) = A(t)x(t), a.e. in [0, T]}  [Ix()l%, = [Ix(0)]>
Sy = {x(-)| x(-) € S and x(0) = 0} Ix(llk, = luC)E20,7y-
AsS=85PD Sy, K = Ky + Ki.
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Splitting S into subspaces and identifying their kernels

So = {x() [X'(t) = A(t)x(t), a.e.in [0, T]}  [Ix()lI%, = IIx(0)II?
Su = {x(-)[x(:) € § and x(0) = 0} Ix()le, = luC) 0, 7y-
As S = Sy @ Sy, K = Ko + Ki. Since dim(Sp) = N, for ®4(t,s) € RMN
the state-transition matrix s — t of x'(7) = A(7)x(7)

Ko(s, t) = ®a(s,0)Pa(t,0)"
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Splitting S into subspaces and identifying their kernels

So = {x() [ X'(t) = A(t)x(t), a.e. in [0, T]}  [Ix()l%, = [Ix(0)]>
Sy = {x(-)| x(-) € S and x(0) = 0} IxO & = luC) 20, 7y-

AsS=S50dS,, K = Ky + Ki. Since dim(So) = N, for (DA(t, S) e RNN
the state-transition matrix s — t of x'(7) = A(7)x(7)

KO(Sv t) = (DA(Ss O)q)A(ta O)T
Identify Ky using only the reproducing property and that for x(-) € S,

x(t) = d4(t, 0)x +/¢Am Yu(r)dr. (1)

B(s)"®a(t,s)T Vs<t,
0 Vs > t.

O Ki(s,t) = A(s)Ki(s, t) + B(s)Us(s) a.e. in [0, T] with K1(0,t) = 0.

For fixed t, define a control matrix U;(s) := {

Ku(s, t) = /Omm(s’t) B a(s, 7)B(r)B(r) T da(t, ) dr.
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Examples: controllability Gramian /transversality condition

Steer a point from (0,0) to (T, x7), with e.g. g(x(T)) = ||xr — x(T)||3,

Relaxed planning (g € C! convex)

Exact planning (x(T) = x7)

_ 1 _ 1
min_ e (X(T)) + SOz, min g(x(T)) + SOz, 7)
x(0)=0 x(0)=0

As, x(0) = 0, applying the representer theorem: I pr, X(-) = Ki(-, T)pT

Transversality Condition

Controllability Gramian

0=V (p ~ g(Ky (T, T)p) + ép%(n T)p) (p7)

.
Ki(T, T):/ SA(T, 7)B(T)B(r) T d(T, 7) " dr
@ = Ki(T, T)(Ve(Ki(T, T)pT) + PT)-

)_<(T) = XT < XT € |m(K1(T, T)) Take p1 = —Vg(>‘<(T))
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@ Dealing with state constraints in kernel regression
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Dealing with an infinite number of constraints

No representer theorem for: c(t)"x(t) < d,Vt € [0, T]
Discretize on {tm}mermy C [0, T]?

c(tm) " x(tm) < d,¥Ym € [1, M]

No guarantees!
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Dealing with an infinite number of constraints

No representer theorem for: c(t)"x(t) < d,Vt € [0, T]
Discretize on {tm}mem) C [0, T]?

Nl IX() i + €(tm) " x(tm) < d,Ym € [1, M]

Second-Order Cone (SOC) constraints: {f | ||Af + b||x < c'f + d}
SOC comes from adding a buffer, 1, > 0, to a discretization, {tm}me[m]

LPc QP c SOCP c SDP
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Dealing with an infinite number of constraints

No representer theorem for: c(t)"x(t) < d,Vt € [0, T]
Discretize on {tm}mem) C [0, T]?

Nl IX() i + €(tm) " x(tm) < d,Ym € [1, M]

Second-Order Cone constraints: {f | ||Af + b|[x < c'f +d}
SOC comes from adding a buffer, 1, > 0, to a discretization, {tm}me[m]

The choice nm||x(+)||k is related to continuity moduli: How to choose 7,7
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Deriving SOC constraints through continuity moduli

Take 6 >0 and tst. [t —tm| <6

|c(8) 'x(t) = c(tm) "x(tm)| = [(x(-), K, t)c(t) = K(:, tm)c(tm)) k|
<xClle  sup IK(, )e(t) = K, tm)e(tm)l

{t]lt—tm|<}

=

”/m(6)
wm(x,6) == sup () x(t) = c(tm) " x(tm)| < mm(8) X ()1
{t]t—tm|<d}
For a covering [0, T| = Ume[,\/,][tm — Omy tm + Om)

“o(t)Tx(t) < d,Vt € [0, T]" & “c(tm)  x(tm) + wm(x,d) < d,¥m € [M]"
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Deriving SOC constraints through continuity moduli

Take 6 >0 and tsit. [t —tm| <O

() "x(t) = c(tm) "x(tm)| = [(x(), K(, t)e(t) = K(:, tm)c(tm)) k|
<xC)lle  sup - JIK(, 0)e(t) = K, tm)e(tm) |l i

{t][t—tm|<6}
nm(8)
win(x,6) = sup [e(t) " x(t) = c(tm) x(tm)| < nm(0)lIx(-) Ik
{t]lt—tm|<5}

For a covering [0, T] = Upeip[tm — dm. tm + O]

“e(t) ' x(t) <d Vte[0, T]" < “c(tm) x(tm)+nmllx()|| < d ,Ym e [M]"

IK (- t)e(t) = K(-, tm)e(tm)llic -=c(£) " K (2, £)c(t) + c(tm) " K(tm, tm)c(tm)
—2¢(tm) " K (tm, t)c(t)

Since the kernel is smooth, for c(:) € C% § — 0 gives 1m(5) — 0.
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Deriving SOC constraints through continuity moduli

Take 6 >0 and tst. [t —ty| <6

|e(8) 'x(t) = c(tm) "x(tm)| = [(x(-), K(:, t)c(t) = K(:, tm)c(tm)) k|
<x(lk  sup JIK(, t)e(t) = K(, tm)e(tm)l x

{t][t—tm|<d}
Nm(5)
win(x,6) = sup [e(t)Tx(t) = c(tm) " X(tm)| < 1m(8)[Ix()llx
{t]lt—tm|<5}

For a covering [0, T|C Ume[M][tm — Omy tm + O]
“c(t)TX(t) <d(t),Vte [0, T|" < “c(tm)Tx(tm)—i—nmHX(~)H < dm,¥Ym € [M]"

with di = inf ¢ (6, — 5.t 9()-
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From affine state constraints to SOC constraints
Take (tm,dm) such that [0, T] C Unepr,nppltm — Oms tm + dm], define
Ni(Om, tm) = sup K5 tm)ci(tm) — K(-, t)ci(t) |k,

t € [tm—6m,tm+0m]N[0, T]
di(6m, tm) = di(t).

We have strengthened SOC constraints that enable a representer theorem

inf
t € [tm—0m,tm+0m]N[0, T]

11Oy ) 1) |+ € (tm) " x(Em) < di(Bmy tm), ¥ m € [1, Np],¥i € [1, P]
D
ci(t)"x(t) < di(t), Yt €0, T],Vie[1,P]

Lemma (Uniform continuity of tightened constraints)

As K(-,-) is UC, if ¢i(-) and d;(-) are C°-continuous, when § — 0T, n;(-, t)
converges to 0 and d;(-, t) converges to di(t), uniformly w.r.t. t.
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Main theorem [Aubin-Frankowski, 2020]

(H-gen) A(-) € L}(0, T) and B(-) € L%(0, T), ci(-) and d;(-) are C°.
(H-sol) ci(0)xp < d;(0) and there exists a trajectory x(-) € S satisfying
strictly the affine constraints, as well as the initial condition.?

(H-obj) g(+) is convex and continuous.

Theorem (Existence and Approximation by SOC constraints)

Both the original problem and its strengthening have unique optimal
solutions. For any p > 0, there exists § > 0 such that for all (0m)mef1,no],

with [0, T] C Unepr,no[tm — Om, tm + Om] satisfying 6> MaX me[1,No] Om»

1 _ _ _
— - sup_[%,(t) = X()]| < I%(-) = x()llk < p-
YK telo,T]

with Yk = SUPtefo, 1], pemy /P K(E, E)p.

%(H-sol) is implied for instance by an inward-pointing condition at the boundary.
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© Numerical examples
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To solve a state-constrained LQR through kernel regression, we have to

o identify the kernel K(s, t) related to [0, T], A and B (and Q and R)
@ strengthen the infinite affine constraints to finite SOC constraints
@ apply a representer theorem to the SOC-tightened problem

@ solve a finite dimensional SOCP over the covectors p;

Two examples: a submarine and a pendulum
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Numerical example: submarine in a cavern

Original control problem

it / lu(t)Pdt
T

z(-)eW?L u(-)eL?(T,R)
s.t.
z(0) =0, 2(0)=0,
#(t) = —z(t) + u(t), Vt € T,
2(t) € [zow(t), Zup(t)], VE € T.
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Numerical example: submarine in a cavern

Original control problem Rewriting in standard form
i /\u(t)\zdt T /\u(t)\zdt

z(-)eEW?L u(-)eL?(T,R) x(-)ecO,u(-)eL?

S.t. S.t.
2(0) =0, 2(0) =0, x(0) =
2(t) = —z(t) + u(t), Vt € T, X'(t) :e Ax(t) + Bu(t),
z(t) € [ziow(t), Zup(t)], V£ € T. x1(t) € [zow(t), zup(t)], VE € T

y

X: @,A: (8 11) 5= @
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Numerical example: submarine in a cavern

RKHS regression Rewriting in standard form

. 2 2
min x(- (t)|“dt
x(-) € S, IOl x(~)€g0un )eL? / lu(z)
s.t. .t.

x1(t) € [ziow(t), Zup(t)], VEET | x(0) =
x'(t) =e Ax(t) + Bu(t),
( ) [Zlow(t)azup(t)], VteT

v

Su={x()|x(-) € S and x(0) = 0} [Ix()I%, = lu(-)lZ10.1-
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Numerical example: submarine in a cavern

3k

RKHS regression Al

: 2
min - xC)ll
X(- € Oy £

S.t.
x1(t) € [zow(t), zup(t)], VE €T

C L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
t

Su = {x()|x(-) € S and x(0) = 0} [x()I%, = llu(-)320.7)-

min(s,t)
Ki(s, t) = / es=ABBT (t-TAT 47
0
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Numerical example: submarine in a cavern

RKHS regression

min (Il
x() € Sy “
S.t.
Xl(t) S [Zlow,ma Zup,m]a

YVt € [tm— Om,tm+ Im], Vm € [M]

L L L
04 05 06 07 08 09 1
t

C L L
0 01 02 03

Su = {x()|x(-) € S and x(0) = 0} [x()I%, = llu(-)320.7)-

min(s,t)
Ki(s, t) = / es=ABBT (t-TAT 47
0
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Numerical example: submarine in a cavern

RKHS regression

min _ [|x(-)lIx
x(-) € Sy - s.
s.t.
Xl(tm) S [zlow,mvzup,m]a
vt ot bt yme V] | | BT
0 0.1 0.‘2 ?;V 0.4 0.‘5 0.6 0.7 0.‘8 0.9 1
t
M M
)_(() = Z Kl('; tm)pm = Z OémKl(', tm)em
m=1 m=1
min(s,t) T
Ki(s,t) = / es=MABBT elt=7A 47
0
Dec 2020 26 / 31
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Numerical example: submarine in a cavern

RKHS regression
min IxC)NI%,
X( ') G Su
s.t.
X1 ( tm) S [Zlow,ma Zy p,m] + TIm ||X() H K1) ol ——— Optimal trajectory with SOC constraints (ball covering)
al . Opti rajectory with discretized constraints (n = 0)
Yt ftm—Smrtmt+—omt, Vm € [M] T e he b
v St ‘ A N 7 ‘ ‘ ‘ ‘ ‘ ‘ ,
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
M M
)_(() = Z Kl('7 tm)pm = Z Olml'(l('y tm)em
m=1 m=1

min(s,t)
Kl(S, t) — / e(sz)ABBTe(th)ATdT
0
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Numerical example: submarine in a cavern

RKHS regression

. )12
X(}f)nlensu [Ix ()%,

s.t.

Xl(tm) S [Zlow,mazup,m] + 77m||X(')HK17

Optimal trajectory with SOC constraints (ball covering)
4| |= = +Optimal trajectory with discretized constraints (n = 0)
Upper/Lower constraints 2jpu,m and zupm % 1 ||2(-)||
- |tm ém? Em ém]? vm € [M ] Functions from Gaussian RIKHS used to generate the bounds
v St I n I I ,
0 01 02 03 04 05 06 07 08 09 1
t

)_(() = Z Kl(': tm)pm = Z Olml'(l('y tm)em

m=1

m=1

min(s,t)
Kl(S, t) — / e(sz)ABBTe(th)ATdT
0

Pierre-Cyril Aubin-Frankowski State-constrained LQR through LQ kernel Dec 2020

26 / 31



Numerical example 1: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

min  —x(T) + Au()[? A< 1
e R L0l

(x(0) =05, %(0)=0, w(0)=0, x(T/3)=05 x(T)=0
(%(t) = —10x(t) + w(t), Ww(t) =u(t),ae in[0, T]
(x(t) € [-3,+00[, w(t) €[-10,10],Vt € [0, T]]

[ o\

x(t) w(t)

w(t)=u(t)

X(t)
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Numerical example 1: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

—X(T) + MuO) oo,y A <1

X))
(x(0) =05, %(0)=0, w(0)=0, x(T/3)=05 x(T)=0
[x(t) = —10x(t) + w(t), w(t)= u(t), a.e. in|0, T]}

(x(t) € [-3,+00[, w(t) €[-10,10],Vt € [0, T]]

Converting affine state constraints to SOC constraints, applying rep. thm

nslx()ll — x(tm) < 3, ) = KO + K(. T/3)ors
e XC)ll K + w(tm) < 10,
M) ke — w(tm) < 10 +K(. Thpr + Z K(-stm)p

Most of computational cost is related to the controIIablllty Gramlans
Ki(s,t) = fomm(s’t) e(s=MABBT e(t=7)A" 41 which we have to approximate.
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Numerical example 2: constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]]

Angle x() Velocity x(-) Couple w(-)

N W A g o

-0.2

\
/
0.4 N/
SOC constraints (N,=200) 5 .
-0.6 [ | — discretized constraints
-4
0 0.5 1 0 0.5 1 0 0.5 1

Figure: Comparison of SOC constraints (guaranteed 7),,) vs discretized constraints
(nw = 0) for Np = 200.
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Numerical example 2: constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]]

Angle x() Velocity x(-) Couple w(-)

-0.2

;\\//,
0.4
SOC constraints (N,=200) 5 .
-0.6 [ | — discretized constraints
-4
0 0.5 1 0 0.5 1

Figure: Comparison of SOC constraints (guaranteed 7),,) vs discretized constraints
(nw = 0) for Np = 200 - Chattering phenomenon like for traffic cameras!.
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Numerical example 2: constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]]

Angle x() Velocity x(-) Couple w(-)
6
0.6 5
10
0.4 4 359
7.23
3
0.2 2.07
2 1.81
x 0 *x 1 5y
[0
-0.2
1
0.4 N,=200 2
N, =400 -10
06 N, =800 3
-4
0 05 1 0 0.5 1 0 0.5 1

t t t

Figure: Comparison of SOC constraints for varying Np and guaranteed 7,,.
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Numerical example 2: constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]]

Angle x() Velocity x(-) Couple w(-)

6
5

10,
4

2.83

: 054 O
2

x w1 15 5 4
oG

1 -5
0.4 ,= 0.05 (guaranteed) 2

n,=0.01 -10
06 7, 0.001 3
-4

0 05 1 0 0.5 1 0 0.5 1

t t t

Figure: Comparison of SOC constraints for varying n,, and Np = 200.
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Pushing RKHSs beyond/Revisiting classical LQR

For RKHSs

@ Control constraints do not correspond to continuous evaluations
< limits of RKHS pointwise theory (e.g. x' = u € L2([0, T],[~1,1]) a.e.)

@ Successive linearizations of nonlinear system lead to changing kernels
< a single kernel may not be sufficient (e.g. x" = fi, ()X + flu, (v a-e.)

@ Non-quadratic costs for linear systems do not lead to Hilbert spaces
< you may need Banach kernels (e.g. ||u(-)||%2(0’7.) = [luC)l20,7))
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Pushing RKHSs beyond/Revisiting classical LQR

For RKHSs

@ Control constraints do not correspond to continuous evaluations
< limits of RKHS pointwise theory (e.g. x' = u € L2([0, T],[~1,1]) a.e.)

@ Successive linearizations of nonlinear system lead to changing kernels
< a single kernel may not be sufficient (e.g. x" = fi, ()X + flu, (v a-e.)

@ Non-quadratic costs for linear systems do not lead to Hilbert spaces
< you may need Banach kernels (e.g. ||u(-)||%2(0’7.) = [luC)l20,7))

For control theory
@ To each evaluation at time t corresponds a covector p; € RV

— Representer theorem well adapted for state constraints, but unsuitable
for control constraints. Reverts the difficulty w.r.t. PMP approach.

@ The Gramian of controllability generates trajectories

< This allows for close-form solutions in continuous-time.
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Take-home messages

“Control problems can be seen as a form of machine
learning with more constraints and less samples.”

“The unconstrained LQR is a subset of kernel regression.”
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Contributions and Future problems

State-constrained LQR can be interpreted as a kernel regression which

@ allows to revisit classical notions from the kernel viewpoint,

o allows to deal with the difficult problem of state constraints.

Open questions:

e From fixed [tp, T] to varying to — Riccati equation
o Density of controlled trajectories in C° — Controllability issues

@ Operator-valued kernels — controlled PDE with state constraints
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Contributions and Future problems

State-constrained LQR can be interpreted as a kernel regression which

@ allows to revisit classical notions from the kernel viewpoint,

o allows to deal with the difficult problem of state constraints.

Open questions:

e From fixed [tp, T] to varying to — Riccati equation
o Density of controlled trajectories in C° — Controllability issues

@ Operator-valued kernels — controlled PDE with state constraints

Thank you for your attention!
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Annex: Van Loan’s trick for time-invariant Gramians

Use matrix exponentials as in [Van Loan, 1978]

Qc

o

IA:Q(t) = eAt

/:_3(t) = e‘ATt

" t T

Go(t) = [ et"DAQe ™ dr
0

Pierre-Cyril Aubin-Frankowski

_AT

_ (R(8) G(B)
)A>‘< 0 F3<A>>
min(s,t)

e(S—T)A BBT e(t—T)AT dr

Kl(sa t) = /
0
Set Q¢ = BR™!B'.

>
)
—~~
~
p—
4‘

For s < t, Ki(s,t) = Ga(s)

>
N
~—~
~
N
*4

State-constrained LQR through LQ kernel

For t <'s, Ki(s,t) = Fa(s)
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Annex: Green kernels and RKHSs

Let D be a differential operator, D* its formal adjoint. Define the Green
function Gp-px(y) : @ = R s.t. D*D Gp«p «x(y) = 6x(y) then, if the
integrals over the boundaries in Green's formula are null, for any f € Fy

f(x) Z/Qf()/)D*DGD*D,x(Y)dy = /QDf()/)DGD*D,x(Y) =: (f, Gp+Dx) 7,
so k(t,s) = Gp+px(y) [Saitoh and Sawano, 2016, p61]. For vector-valued
contexts, e.g. Fx = W2(RY,RY) and D*D = (1 — 0?A)*

component-wise, see [Micheli and Glaunes, 2014, p9].

Alternatively, in 1D, D Gp x(y) = 6x(y), the kernel associated to the inner
product [ Df(y)Dg(y)dy for the space of f “null at the border" writes as

K(ts) = /Q Gox(2)Gp,y (2)dz

see [Berlinet and Thomas-Agnan, 2004, p286] and [Heckman, 2012].
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Annex: IPC gives strictly feasible trajectories

(H-sol) C(0)xp < d(0) and there exists a trajectory x°(-) € S satisfying

strictly the affine constraints, as well as the initial condition.

(H1) A(-) and B(:) are C°. C(-) and d(-) are C! and C(0)xg < d(0).

(H2) There exists M, > 0s.t., for all t € [0, T] and x € RV satlsfylng
C(t)x < d(t), and ||x|| < (1 + |Ixo||) e TIAC oo 0. 1)+ TMullBC)lloe o, 7)
there exists u; x € MyBp such that

Vie {jlg(t) x=di(t)}, ci(t) x—d/(t)+ci(t) " (A(t)x+B(t)urx) < O.

This is an inward-pointing condition (IPC) at the boundary.

Lemma (Existence of interior trajectories)

If (H1) and (H2) hold, then (H-sol) holds.
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Annex: control proof main idea, nested property

ni(9,t) :=sup [[K(-, t)ci(t) — K(-,s)ci(s)llk,  wi(d, t) := sup|di(t) — di(s)],
di(0m, tm) :=inf di(s), overs € [tm — Om,tm+Im] N[0, T]
For € € RP, the constraints we shall consider are defined as follows
Vo= {x() € S| C()x(t) < d(t), Ve € [0, T},
Vsfin = {x(-) € S| 7 (Om; tm)IX(| + C(tm)x(tm) < d(Gpm, tm), ¥ m € [1, No]},
Vsine = {x() € S| T (6, 1) |Ix()llx + & (5,£) + C(t)x(t) < d(¢), Yt € [0, T]},
Vo = {x(:) € 8| € + C(t)x(t) < d(t), Vt € [0, T]}.

Proposition (Nested sequence)

Let Omax 1= Maxmepi,ng] Om- For any 6 > Omax, if, for a given yo > 0,
€ > supsco, 71[Mi (9, t)yo + wi(6, t)], then we have a nested sequence

(V2 NyoBk) C Vs,inf C Vs,fin C Vo.

Only the simpler V> constraints matter!
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