State-constrained Linear-Quadratic Optimal Control in light of the LQ reproducing kernel

Pierre-Cyril Aubin-Frankowski

PhD student (École des Ponts ParisTech), CAS - Centre Automatique et Systèmes, MINES ParisTech

https://pcaubin.github.io/

December 2020

PSI ★

École des Ponts ParisTech

What are state constraints?

Estimation

Side information

 \hookrightarrow compensates small number of samples or excessive noise

Physical constraints

Ubiquitous and both handled as a constrained optimization problem

Pierre-Cyril Aubin-Frankowski

State-constrained LQR through LQ kernel

Dec 2020 2 / 31

Table of Contents

1 Optimal control as optimization over vector spaces

2 How to optimize over a RKHS

Vector spaces of linear controlled trajectories as vRKHSs

- 4 Dealing with state constraints in kernel regression
- 5 Numerical examples

Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel methods, June 2020, https://arxiv.org/abs/2011.02196

Optimization over \mathbb{R}^N

Optimization over Hilbert spaces min $\mathcal{L}(x)$ $x \in \mathcal{F}$ s.t. $g_i(x) = 0 \leftrightarrow \nu_i \in \mathbb{R},$ $h_i(x) \leq 0 \leftrightarrow \mu_i \in \mathbb{R}_+$ e.g. \mathcal{F} a Sobolev space $H^1(\mathbb{R}^N,\mathbb{R})$

Optimization over Hilbert spaces	Nonlinear Optimal Control
$\min_{\substack{x \in \mathcal{F} \\ ext{ s.t. }}} \mathcal{L}(x)$	$ \begin{array}{ll} \min & \mathcal{L}(x(\cdot), u(\cdot)) \\ x(\cdot) \in \mathcal{C}^0, u(\cdot) \in L^p \\ \text{s.t.} \end{array} $
$g_i(x) = 0 \leftrightarrow u_i \in \mathbb{R},$ $h_j(x) \le 0 \leftrightarrow \mu_j \in \mathbb{R}_+$	$x'(t) \stackrel{\text{a.e.}}{=} f(x, u) \leftrightarrow p(t) \in \mathbb{R}^N,$ $h_j(x(t)) \le 0, \forall t \leftrightarrow \psi_j(\cdot) \in BV$

Optimization over Hilbert spaces	Linear Optimal Control
$\min_{\substack{x \in \mathcal{F} \\ ext{ s.t. }}} \mathcal{L}(x)$	$\min_{\substack{x(\cdot) \in \mathcal{C}^0, u(\cdot) \in L^2 \\ \text{s.t.}}} \mathcal{L}(x(\cdot), u(\cdot))$
$egin{aligned} g_i(x) &= 0 \leftrightarrow u_i \in \mathbb{R}, \ h_j(x) &\leq 0 \leftrightarrow \mu_j \in \mathbb{R}_+ \end{aligned}$	$egin{aligned} & x'(t) \stackrel{ ext{a.e.}}{=} Ax + Bu & \leftrightarrow p(t) \in \mathbb{R}^N, \ & Cx(t) \leq d(t), orall t & \leftrightarrow \psi_j(\cdot) \in BV \end{aligned}$
e.g. ${\mathfrak F}$ a Sobolev space $H^1({\mathbb R}^N,{\mathbb R})$	(Reflexive) Hilbert spaces?

Optimization over Hilbert spaces	Linear Optimal Control
$\min_{\substack{x \in \mathcal{F} \\ ext{s.t.}}} \mathcal{L}(x)$	$\min_{\substack{x(\cdot) \in \mathcal{C}^0, u(\cdot) \in L^2 \\ \text{s.t.}}} \mathcal{L}(x(\cdot), u(\cdot))$
$egin{aligned} g_i(x) &= 0 \leftrightarrow u_i \in \mathbb{R}, \ h_j(x) &\leq 0 \leftrightarrow \mu_j \in \mathbb{R}_+ \end{aligned}$	$egin{aligned} x'(t) \stackrel{ ext{a.e.}}{=} Ax + Bu &\leftrightarrow p(t) \in \mathbb{R}^N, \ Cx(t) &\leq d(t), orall t \leftrightarrow \psi_j(\cdot) \in BV \end{aligned}$
e.g. ${\mathcal F}$ a Sobolev space $H^1({\mathbb R}^N,{\mathbb R})$	(Reflexive) Hilbert spaces?

How do you compute on an infinite dimensional space?

Optimization over Hilbert spaces	Linear Optimal Control
$\min_{\substack{x \in \mathcal{F} \\ s \neq t}} \mathcal{L}(x)$	$\min_{\substack{x(\cdot) \in \mathcal{C}^0, u(\cdot) \in L^2 \\ \text{s.t.}}} \mathcal{L}(x(\cdot), u(\cdot))$
$egin{aligned} & g_i(x) = 0 &\leftrightarrow u_i \in \mathbb{R}, \ & h_j(x) \leq 0 &\leftrightarrow \mu_j \in \mathbb{R}_+ \end{aligned}$	$x'(t) \stackrel{\text{a.e.}}{=} Ax + Bu \leftrightarrow p(t) \in \mathbb{R}^N,$ $Cx(t) \leq d(t), \forall t \leftrightarrow \psi_j(\cdot) \in BV$
e.g. ${\mathcal F}$ a Sobolev space $H^1({\mathbb R}^N,{\mathbb R})$	(Reflexive) Hilbert spaces?

How do you compute on an infinite dimensional space?

How do you compute with BV dual vectors?

Pierre-Cyril Aubin-Frankowski

Optimization over Hilbert spaces	Linear Optimal Control
$egin{array}{ccc} \min & \mathcal{L}(x) \ x \in \mathcal{F} \ ext{ s.t. } \end{array}$	$\min_{\substack{x(\cdot) \in \mathcal{C}^0, u(\cdot) \in L^2 \\ \text{s.t.}}} \mathcal{L}(x(\cdot), u(\cdot))$
$egin{aligned} g_i(x) &= 0 \leftrightarrow u_i \in \mathbb{R}, \ h_j(x) &\leq 0 \leftrightarrow \mu_j \in \mathbb{R}_+ \end{aligned}$	$egin{aligned} & x'(t) \stackrel{ ext{a.e.}}{=} Ax + Bu \leftrightarrow p(t) \in \mathbb{R}^N, \ & \mathcal{C}x(t) \leq d(t), orall t \leftrightarrow \psi_j(\cdot) \in BV \end{aligned}$
e.g. ${\mathcal F}$ a Sobolev space $H^1({\mathbb R}^N,{\mathbb R})$	(Reflexive) Hilbert spaces?

How do you compute on an infinite dimensional space?

What if your Hilbert space was not any Hilbert space but a RKHS?

Pierre-Cyril Aubin-Frankowski

Reproducing kernel Hilbert spaces (RKHS) at a glance (1)

A RKHS $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$ is a Hilbert space of real-valued¹ functions over a set \mathcal{T} if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

 $\exists k: \mathfrak{T} \times \mathfrak{T} \to \mathbb{R} \text{ s.t. } k_t(\cdot) = k(\cdot, t) \in \mathfrak{F}_k \text{ and } f(t) = \langle f(\cdot), k_t(\cdot) \rangle_{\mathfrak{F}_k}$

the topology of $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$ is stronger than pointwise convergence i.e. $\delta_t : f \mapsto f(t)$ is continuous for all x for $f \in \mathcal{F}_k$.

 $|f(t) - f_n(t)| = |\langle f - f_n, k_t \rangle_k| \le ||f - f_n||_k ||k_t||_k = ||f - f_n||_k \sqrt{k(t, t)}$

¹There is a natural extension to vector-valued RKHSs (more on this later).

Pierre-Cyril Aubin-Frankowski

Reproducing kernel Hilbert spaces (RKHS) at a glance (1)

A RKHS $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$ is a Hilbert space of real-valued¹ functions over a set \mathcal{T} if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

 $\exists k : \mathfrak{T} imes \mathfrak{T} o \mathbb{R} \text{ s.t. } k_t(\cdot) = k(\cdot, t) \in \mathfrak{F}_k \text{ and } f(t) = \langle f(\cdot), k_t(\cdot) \rangle_{\mathfrak{F}_k}$

the topology of $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$ is stronger than pointwise convergence i.e. $\delta_t : f \mapsto f(t)$ is continuous for all x for $f \in \mathcal{F}_k$.

$$|f(t) - f_n(t)| = |\langle f - f_n, k_t \rangle_k| \le ||f - f_n||_k ||k_t||_k = ||f - f_n||_k \sqrt{k(t, t)}$$

 $k \text{ is s.t. } \exists \Phi_k : \mathbb{T} \to \mathfrak{F}_k \text{ s.t. } k(t,s) = \langle \Phi_k(t), \Phi_k(s) \rangle_{\mathfrak{F}_k}, \ \Phi_k(t) = k_t(\cdot)$

k is s.t. $\mathbf{G} = [k(t_i, t_j)]_{i,j=1}^n \succeq 0$ and $\mathcal{F}_k := \overline{\operatorname{span}(\{k_t(\cdot)\}_{t\in\mathcal{T}})}$, i.e. the completion for the pre-scalar product $\langle k_t(\cdot), k_s(\cdot) \rangle_{k,0} = k(t,s)$

Pierre-Cyril Aubin-Frankowski

¹There is a natural extension to vector-valued RKHSs (more on this later).

Reproducing kernel Hilbert spaces (RKHS) at a glance (2)

- There is a one-to-one correspondence between kernels k and RKHSs $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$. Changing \mathcal{T} or $\langle \cdot, \cdot \rangle_{\mathcal{F}_k}$ changes the kernel k.
- For $\mathfrak{T} \subset \mathbb{R}^d$, Sobolev spaces $\mathcal{H}^s(\mathfrak{T})$ satisfying s > d/2 are RKHSs. For $\mathfrak{T} = \mathbb{R}^d$ their (Matérn) kernels are well known. Classical kernels include $k_{\mathsf{Gauss}}(t,s) = \exp\left(-\|t-s\|_{\mathbb{R}^d}^2/(2\sigma^2)\right) \quad k_{\mathsf{lin}}(t,s) = \langle t,s \rangle_{\mathbb{R}^d}$

Reproducing kernel Hilbert spaces (RKHS) at a glance (2)

- There is a one-to-one correspondence between kernels k and RKHSs $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$. Changing \mathcal{T} or $\langle \cdot, \cdot \rangle_{\mathcal{F}_k}$ changes the kernel k.
- For $\mathfrak{T} \subset \mathbb{R}^d$, Sobolev spaces $\mathcal{H}^s(\mathfrak{T})$ satisfying s > d/2 are RKHSs. For $\mathfrak{T}=\mathbb{R}^d$ their (Matérn) kernels are well known. Classical kernels include $k_{\mathsf{Gauss}}(t,s) = \exp\left(-\|t-s\|_{\mathbb{R}^d}^2/(2\sigma^2)
 ight) \quad k_{\mathsf{lin}}(t,s) = \langle t,s
 angle_{\mathbb{R}^d}$ Identifying k and \mathcal{F}_k is hard! Example for Sobolev spaces, d = 1, $\mathcal{T} = \mathbb{R}_+$ • H^1 with $\langle f,g\rangle_{H^1} = \frac{2}{\pi} \int_0^\infty fg + f'g' dt$ $k(t,s) = \frac{\pi}{4} \left(\exp(-|t-s|) + \exp(-t-s) \right).$ • H_0^1 (f(0) = 0) with $\langle \cdot, \cdot \rangle_{H^1}$ $k(t,s) = \frac{\pi}{4} \left(\exp(-|t-s|) - \exp(-t-s) \right).$

• H_0^1 with $\langle f, g \rangle_{H_0^1} = \int_0^\infty f'g'dt$ has for kernel $k(t, s) = \min(t, s)$.

2 How to optimize over a RKHS

3 Vector spaces of linear controlled trajectories as vRKHSs

Dealing with state constraints in kernel regression

5 Numerical examples

Two essential tools for computations

Representer Theorem (e.g. [Schölkopf et al., 2001])

Let $L: (\mathfrak{T} \times \mathbb{R} \times \mathbb{R})^N \to \mathbb{R} \cup \{\infty\}$, strictly increasing $\Omega: \mathbb{R}_+ \to \mathbb{R}$, and

$$\overline{f} \in \underset{f \in \mathcal{F}_{k}}{\operatorname{arg\,min}} L\left(\left(t_{n}, y_{n}, f(t_{n})\right)_{n \in [N]}\right) + \Omega\left(\|f\|_{k}\right)$$

Then $\exists (a_n)_{n \in [N]} \in \mathbb{R}^N$ s.t. $\overline{f}(\cdot) = \sum_{n \in [N]} a_n k(t_n, \cdot)$

 \hookrightarrow Optimal solutions lie in a finite dimensional subspace of \mathcal{F}_k .

Finite number of evaluations \implies finite number of coefficients

Kernel trick

$$\langle \sum_{n\in[N]} a_n k(t_n,\cdot), \sum_{m\in[M]} b_m k(s_m,\cdot) \rangle_k = \sum_{n\in[N]} \sum_{m\in[N']} a_n b_m k(t_n,s_m)$$

 \hookrightarrow On this finite dimensional subspace, no need to know $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$.

Pierre-Cyril Aubin-Frankowski

Estimating a function

Estimating a function

$$\min_{f\in\mathcal{F}_k}\frac{1}{N}\sum_{n=1}^N|y_n-f(t_n)|^2+\lambda \|f\|_{\mathcal{F}_k}^2$$

Applying the representer theorem

Unconstrained KRR $\bar{f} = \sum_{n=1}^{N} \alpha_n k_{t_n}$,

Estimating a function

$$\min_{f\in\mathcal{F}_k}\frac{1}{N}\sum_{n=1}^N|y_n-f(t_n)|^2+\lambda \|f\|_{\mathcal{F}_k}^2$$

Applying the representer theorem

Unconstrained KRR $\overline{f} = \sum_{n=1}^{N} \alpha_n k_{t_n}$, $\alpha = (\mathbf{G} + N\lambda \cdot Id)^{-1}\mathbf{y}$ with Gram matrix $\mathbf{G} = [k(t_i, t_j)]_{i,j \leq N}$

$$\sum_{n=1}^{N} \left| y_n - \sum_{i=1}^{N} \alpha_i k(t_i, t_n) \right|^2 + N\lambda \left\| \sum_{n=1}^{N} \alpha_n k_{t_n}(\cdot) \right\|_{\mathcal{F}_k}^2 = \| \boldsymbol{y} - \boldsymbol{G} \boldsymbol{\alpha} \|_{\mathbb{R}^N}^2 + N\lambda \boldsymbol{\alpha}^\top \boldsymbol{G} \boldsymbol{\alpha}$$

Convex and differentiable. Optimality: $0 = G(-y + G\alpha + N\lambda\alpha)$

Pierre-Cyril Aubin-Frankowski

Estimating a function

$$\begin{split} \min_{f \in \mathcal{F}_k} \frac{1}{N} \sum_{n=1}^N |y_n - f(t_n)|^2 + \lambda \|f\|_{\mathcal{F}_k}^2 \\ \text{s.t.} \underbrace{\mathbf{0} \le f(t), \forall t \in [-2, 2]}_{\text{Jnconstrained KRR } \bar{f} = \sum_{n=1}^N \alpha_n k_{t_n}, \\ \alpha = (\mathbf{G} + N\lambda \cdot \text{Id})^{-1} \mathbf{y} \end{split}$$

here is not nonnegative around 0.5!

Estimating a function

Infinite number of evaluations \Rightarrow no representer theorem!

How to modify the problem to ensure constraint satisfaction?

2 How to optimize over a RKHS

3 Vector spaces of linear controlled trajectories as vRKHSs

Dealing with state constraints in kernel regression

5 Numerical examples

Problem of time-varying linear quadratic optimal control with finite horizon and affine inequality state constraints

$$\min_{\substack{x(\cdot),u(\cdot) \\ \text{s.t.}}} g(x(T)) + \int_0^T [x(t)^\top Q(t)x(t) + u(t)^\top R(t)u(t)] dt$$

s.t.
$$x(0) = x_0,$$

$$x'(t) = A(t)x(t) + B(t)u(t), \text{ a.e. in } [0, T],$$

$$c_i(t)^\top x(t) \le d_i(t), \forall t \in [0, T], \forall i \in [\![1, P]\!],$$

with state $x(t) \in \mathbb{R}^N$, control $u(t) \in \mathbb{R}^M$, $A(\cdot) \in L^1(0, T)$, $B(\cdot) \in L^2(0, T)$, $Q(t) \geq 0$ and $R(t) \geq r \operatorname{Id}_M (r > 0)$

Problem of time-varying linear quadratic optimal control with finite horizon and affine inequality state constraints with $Q \equiv 0$ and $R \equiv Id_M$

$$\min_{\substack{x(\cdot), u(\cdot)}} g(x(T)) + \int_0^T \|u(t)\|_{\mathbb{R}^M}^2 dt \text{ s.t.} x'(0) = x_0, x'(t) = A(t)x(t) + B(t)u(t), \text{ a.e. in } [0, T], c_i(t)^\top x(t) \le d_i(t), \forall t \in [0, T], \forall i \in \{1, \dots, P\},$$

with state $x(t) \in \mathbb{R}^N$, control $u(t) \in \mathbb{R}^M$, $A(\cdot) \in L^1(0, T)$, $B(\cdot) \in L^2(0, T)$, $x(\cdot) : [0, T] \to \mathbb{R}^N$ absolutely continuous and $u(\cdot) \in L^2(0, T)$.

Why are state constraints difficult to study?

- **Theoretical obstacle**: Pontryagine's Maximum Principle involves not only an adjoint vector p(t) but also measures/BV functions $\psi(t)$ supported at times where the constraints are saturated. You cannot just backpropagate the Hamiltonian system from the transversality condition.
- Numerical obstacle: Time discretization of constraints may fail e.g.

Speed cameras in traffic control

In between two cameras, drivers always break the speed limit.

Objective: Turn the state-constrained LQR into "KRR"

We have a vector space \mathcal{S} of controlled trajectories $x(\cdot): [0, \mathcal{T}] \to \mathbb{R}^N$

$$S := \{x(\cdot) \mid \exists u(\cdot) \in L^2(0, T) \text{ s.t. } x'(t) = A(t)x(t) + B(t)u(t) \text{ a.e. } \}$$

The space of controlled trajectories S depends on [0, T], $A(\cdot)$, $B(\cdot)$.

LQR (Linear Quadratic Regulator)	"KRR" (Kernel Ridge Regression)
$\min_{\substack{x(\cdot)\in\mathcal{S}\\u(\cdot)\in L^2(0,T)}} g(x(T)) + \ u(\cdot)\ ^2_{L^2(0,T)}$	$\min_{x(\cdot)\in\mathcal{S}} g(x(T)) + \lambda \ x(\cdot)\ _{\mathcal{S}}^{2}$
$egin{aligned} x(0) &= x_0 \ c_i(t)^ op x(t) &\leq d_i(t), t \in [0,T], i \leq P \end{aligned}$	$egin{aligned} x(0) &= x_0 \ c_i(t)^ op x(t) &\leq d_i(t), t \in [0,T], i \leq P \end{aligned}$

Is S a RKHS? For which inner product?

Pierre-Cyril Aubin-Frankowski

Definition (vRKHS)

Let \mathcal{T} be a non-empty set. A Hilbert space $(\mathcal{F}_{K}, \langle \cdot, \cdot \rangle_{K})$ of \mathbb{R}^{N} -vectorvalued functions defined on \mathcal{T} is a vRKHS if there exists a matrix-valued kernel $K : \mathcal{T} \times \mathcal{T} \to \mathbb{R}^{N \times N}$ such that the reproducing property holds:

$$\mathcal{K}(\cdot,t) p \in \mathfrak{F}_{\mathcal{K}}, \quad p^{ op} f(t) = \langle f, \mathcal{K}(\cdot,t) p
angle_{\mathcal{K}}, \quad ext{ for } t \in \mathfrak{T}, \ p \in \mathbb{R}^{\mathcal{N}}, f \in \mathfrak{F}_{\mathcal{K}}$$

Necessarily, K has a Hermitian symmetry: $K(s,t) = K(t,s)^{\top}$

There is also a one-to-one correspondence between K and $(\mathcal{F}_K, \langle \cdot, \cdot \rangle_K)$ [Micheli and Glaunès, 2014], so changing \mathcal{T} or $\langle \cdot, \cdot \rangle_K$ changes K.

Theorem (Representer theorem with constraints, Aubin 2020)

Let $(\mathcal{F}_{\mathcal{K}}, \langle \cdot, \cdot \rangle_{\mathcal{K}})$ be a vRKHS defined on a set \mathfrak{T} . For a "loss" $L : \mathbb{R}^{N_0} \to \mathbb{R} \cup \{+\infty\}$, strictly increasing "regularizer" $\Omega : \mathbb{R}_+ \to \mathbb{R}$, and constraints $d_i : \mathbb{R}^{N_i} \to \mathbb{R}$, consider the optimization problem

$$\begin{split} \overline{f} &\in \mathop{\mathrm{arg\ min}}_{f\in \mathcal{F}_{K}} \quad L\left(c_{0,1}^{\top}f(t_{0,1}),\ldots,c_{0,N_{0}}^{\top}f(t_{0,N_{0}})\right) + \Omega\left(\|f\|_{K}\right) \\ &\text{s.t.} \\ &\lambda_{i}\|f\|_{K} \leq d_{i}(c_{i,1}^{\top}f(t_{i,1}),\ldots,c_{i,N_{i}}^{\top}f(t_{i,N_{i}})), \forall i \in \llbracket 1,P \rrbracket. \end{split}$$

Then there exists $\{p_{i,m}\}_{m \in [\![1,N_i]\!]} \subset \mathbb{R}^N$ and $\alpha_{i,m} \in \mathbb{R}$ such that

$$\overline{f} = \sum_{i=0}^{P} \sum_{m=1}^{N_i} K(\cdot, t_{i,m}) p_{i,m}$$
 with $p_{i,m} = \alpha_{i,m} c_{i,m}$.

Application to linear control systems with quadratic cost

$$\begin{split} \mathcal{S} &:= \{x(\cdot) \in W^{1,1} \mid \exists \ u(\cdot) \in L^2(0, T) \text{ s.t. } x'(t) = A(t)x(t) + B(t)u(t) \text{ a.e. } \} \\ \text{Given } x(\cdot) \in \mathcal{S}, \text{ for the pseudoinverse } B(t)^{\ominus} \text{ of } B(t), \text{ set} \\ u(t) &:= B(t)^{\ominus}[x'(t) - A(t)x(t)] \text{ a.e. in } [0, T]. \\ \langle x_1(\cdot), x_2(\cdot) \rangle_{\mathcal{K}} &:= x_1(0)^\top x_2(0) + \int_0^T u_1(t)^\top u_2(t) \mathrm{d}t \end{split}$$

Lemma

 $(S, \langle \cdot, \cdot \rangle_{\kappa})$ is a vRKHS with uniformly continuous $K(\cdot, \cdot)$.

 $\|\cdot\|_{\mathcal{K}}$ is a Sobolev-like norm split into two semi-norms

$$\|x(\cdot)\|_{K}^{2} = \underbrace{\|x(0)\|^{2}}_{\|x(\cdot)\|_{K_{0}}^{2}} + \underbrace{\int_{0}^{T} \|B(t)^{\ominus}(x'(t) - A(t)x(t))\|^{2} \mathrm{d}t}_{\|x(\cdot)\|_{K_{1}}^{2}}.$$

Splitting ${\mathcal S}$ into subspaces and identifying their kernels

$$\begin{aligned} \mathcal{S}_0 &:= \{ x(\cdot) \, | \, x'(t) = A(t)x(t), \text{ a.e. in } [0, T] \} & \| x(\cdot) \|_{K_0}^2 = \| x(0) \|^2 \\ \mathcal{S}_u &:= \{ x(\cdot) \, | \, x(\cdot) \in \mathcal{S} \text{ and } x(0) = 0 \} & \| x(\cdot) \|_{K_1}^2 = \| u(\cdot) \|_{L^2(0,T)}^2. \end{aligned}$$

As $S = S_0 \oplus S_u$, $K = K_0 + K_1$.

Splitting ${\mathcal S}$ into subspaces and identifying their kernels

 $\begin{aligned} \mathcal{S}_0 &:= \{ x(\cdot) \,|\, x'(t) = A(t)x(t), \text{ a.e. in } [0, T] \} & \|x(\cdot)\|_{K_0}^2 = \|x(0)\|^2 \\ \mathcal{S}_u &:= \{ x(\cdot) \,|\, x(\cdot) \in \mathcal{S} \text{ and } x(0) = 0 \} & \|x(\cdot)\|_{K_1}^2 = \|u(\cdot)\|_{L^2(0,T)}^2. \end{aligned}$

As $S = S_0 \oplus S_u$, $K = K_0 + K_1$. Since dim $(S_0) = N$, for $\Phi_A(t, s) \in \mathbb{R}^{N,N}$ the state-transition matrix $s \to t$ of $x'(\tau) = A(\tau)x(\tau)$

 $K_0(s,t) = \Phi_A(s,0)\Phi_A(t,0)^\top$

Splitting ${\mathcal S}$ into subspaces and identifying their kernels

$$\begin{aligned} \mathcal{S}_0 &:= \{ x(\cdot) \, | \, x'(t) = A(t) x(t), \text{ a.e. in } [0, T] \} & \| x(\cdot) \|_{\mathcal{K}_0}^2 = \| x(0) \|^2 \\ \mathcal{S}_u &:= \{ x(\cdot) \, | \, x(\cdot) \in \mathcal{S} \text{ and } x(0) = 0 \} & \| x(\cdot) \|_{\mathcal{K}_1}^2 = \| u(\cdot) \|_{L^2(0,T)}^2. \end{aligned}$$

As $S = S_0 \oplus S_u$, $K = K_0 + K_1$. Since dim $(S_0) = N$, for $\Phi_A(t, s) \in \mathbb{R}^{N,N}$ the state-transition matrix $s \to t$ of $x'(\tau) = A(\tau)x(\tau)$

 $K_0(s,t) = \Phi_A(s,0)\Phi_A(t,0)^\top$

Identify \mathcal{K}_1 using only the reproducing property and that for $x(\cdot)\in\mathcal{S}$,

$$x(t) = \Phi_A(t,0)x(0) + \int_0^t \Phi_A(t,\tau)B(\tau)u(\tau)d\tau.$$
 (1)

For fixed *t*, define a control matrix $U_t(s) := \begin{cases} B(s)^\top \Phi_A(t,s)^\top & \forall s \leq t, \\ 0 & \forall s > t. \end{cases}$

$$\partial_1 \mathcal{K}_1(s,t) = \mathcal{A}(s)\mathcal{K}_1(s,t) + \mathcal{B}(s)\mathcal{U}_t(s) \text{ a.e. in } [0,T] \text{ with } \mathcal{K}_1(0,t) = 0.$$
$$\mathcal{K}_1(s,t) = \int_0^{\min(s,t)} \Phi_{\mathcal{A}}(s,\tau)\mathcal{B}(\tau)\mathcal{B}(\tau)^{\top} \Phi_{\mathcal{A}}(t,\tau)^{\top} \mathrm{d}\tau.$$

Examples: controllability Gramian/transversality condition

Steer a point from (0,0) to (T, x_T) , with e.g. $g(x(T)) = ||x_T - x(T)||_N^2$

Exact planning $(x(T) = x_T)$	Relaxed planning $(g\in \mathcal{C}^1 ext{ convex})$
$\min_{\substack{x(\cdot)\in\mathcal{S}\\x(0)=0}} \chi_{x_{T}}(x(T)) + \frac{1}{2} \ u(\cdot)\ _{L^{2}(0,T)}^{2}$	$\min_{\substack{x(\cdot)\in S\\x(0)=0}} g(x(T)) + \frac{1}{2} \ u(\cdot)\ _{L^2(0,T)}^2$

As, x(0) = 0, applying the representer theorem: $\exists p_T, \bar{x}(\cdot) = K_1(\cdot, T)p_T$

Controllability Gramian	Transversality Condition
$\mathcal{K}_1(\mathcal{T},\mathcal{T}) = \int_0^{\mathcal{T}} \Phi_A(\mathcal{T},\tau) \mathcal{B}(\tau) \mathcal{B}(\tau)^{\top} \Phi_A(\mathcal{T},\tau)^{\top} \mathrm{d}\tau$	$0 = \nabla \left(p \mapsto g(K_1(T, T)p) + \frac{1}{2} p^\top K_1(T, T)p \right) (p_T)$ $= K_1(T, T) (\nabla g(K_1(T, T)p_T) + p_T).$
$\bar{x}(T) = x_T \Leftrightarrow x_T \in Im(K_1(T,T))$	Take $p_T = - abla g(ar{x}(T))$

2 How to optimize over a RKHS

3 Vector spaces of linear controlled trajectories as vRKHSs

Dealing with state constraints in kernel regression

5 Numerical examples

Dealing with an infinite number of constraints

No representer theorem for: $c(t)^{\top}x(t) \leq d, \forall t \in [0, T]$

Discretize on $\{t_m\}_{m \in [M]} \subset [0, T]$?

$$c(t_m)^{ op} x(t_m) \leq d, \forall m \in \llbracket 1, M
rbracket$$

No guarantees!

Dealing with an infinite number of constraints

No representer theorem for: $c(t)^{\top}x(t) \leq d, \forall t \in [0, T]$

Discretize on $\{t_m\}_{m \in [M]} \subset [0, T]$?

$$\eta_m \| \mathbf{x}(\cdot) \|_{\mathcal{K}} + c(t_m)^\top \mathbf{x}(t_m) \le d, \forall m \in \llbracket 1, M \rrbracket$$

Second-Order Cone (SOC) constraints: $\{f \mid ||Af + b||_{\mathcal{K}} \leq c^{\top}f + d\}$

SOC comes from adding a buffer, $\eta_m > 0$, to a discretization, $\{t_m\}_{m \in [M]}$

$$\mathsf{LP} \subset \mathsf{QP} \subset \mathsf{SOCP} \subset \mathsf{SDP}$$

Dealing with an infinite number of constraints

No representer theorem for: $c(t)^{\top}x(t) \leq d, \forall t \in [0, T]$

Discretize on $\{t_m\}_{m \in [M]} \subset [0, T]$?

 $\eta_m \| \mathbf{x}(\cdot) \|_{\mathcal{K}} + c(t_m)^\top \mathbf{x}(t_m) \le d, \forall m \in \llbracket 1, M \rrbracket$

Second-Order Cone constraints: $\{f \mid ||Af + b||_{\mathcal{K}} \leq c^{\top}f + d\}$

SOC comes from adding a buffer, $\eta_m > 0$, to a discretization, $\{t_m\}_{m \in [M]}$.

The choice $\eta_m \| x(\cdot) \|_K$ is related to continuity moduli: How to choose η_m ?

Deriving SOC constraints through continuity moduli

Take
$$\delta \ge 0$$
 and t s.t. $|t - t_m| \le \delta$
 $|c(t)^{\top}x(t) - c(t_m)^{\top}x(t_m)| = |\langle x(\cdot), K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m)\rangle_K|$
 $\le ||x(\cdot)||_K \sup_{\substack{\{t \mid |t - t_m| \le \delta\}}} ||K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m)||_K}$
 $\omega_m(x, \delta) := \sup_{\{t \mid |t - t_m| \le \delta\}} |c(t)^{\top}x(t) - c(t_m)^{\top}x(t_m)| \le \eta_m(\delta) ||x(\cdot)||_K}$
For a covering $[0, T] = \bigcup_{m \in [M]} [t_m - \delta_m, t_m + \delta_m]$

 $``c(t)^{\top}x(t) \leq d, \forall t \in [0, T]`` \Leftrightarrow ``c(t_m)^{\top}x(t_m) + \omega_m(x, \delta) \leq d, \forall m \in [M]``$

Deriving SOC constraints through continuity moduli

Take
$$\delta \geq 0$$
 and t s.t. $|t - t_m| \leq \delta$
 $|c(t)^{\top} x(t) - c(t_m)^{\top} x(t_m)| = |\langle x(\cdot), K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m)\rangle_{K}|$
 $\leq ||x(\cdot)||_{K} \sup_{\substack{\{t \mid |t - t_m| \leq \delta\}}} ||K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m)||_{K}}$
 $\omega_m(x, \delta) := \sup_{\substack{\{t \mid |t - t_m| \leq \delta\}}} |c(t)^{\top} x(t) - c(t_m)^{\top} x(t_m)| \leq \eta_m(\delta) ||x(\cdot)||_{K}}$
For a covering $[0, T] = \bigcup_{m \in [M]} [t_m - \delta_m, t_m + \delta_m]$
" $c(t)^{\top} x(t) \leq d$, $\forall t \in [0, T]$ " \Leftarrow " $c(t_m)^{\top} x(t_m) + \eta_m ||x(\cdot)|| \leq d$, $\forall m \in [M]$ "
 $||K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m)||_{K}^2 := c(t)^{\top} K(t, t)c(t) + c(t_m)^{\top} K(t_m, t_m)c(t_m) - 2c(t_m)^{\top} K(t_m, t)c(t)$

Since the kernel is smooth, for $c(\cdot) \in C^0$, $\delta \to 0$ gives $\eta_m(\delta) \to 0$.

Deriving SOC constraints through continuity moduli

Take
$$\delta \ge 0$$
 and t s.t. $|t - t_m| \le \delta$
 $|c(t)^{\top}x(t) - c(t_m)^{\top}x(t_m)| = |\langle x(\cdot), K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m)\rangle_{K}|$
 $\le ||x(\cdot)||_{K} \sup_{\substack{\{t \mid |t - t_m| \le \delta\}}} ||K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m)||_{K}}$
 $\omega_m(x, \delta) := \sup_{\substack{\{t \mid |t - t_m| \le \delta\}}} |c(t)^{\top}x(t) - c(t_m)^{\top}x(t_m)| \le \eta_m(\delta) ||x(\cdot)||_{K}}$
For a covering $[0, T] \subset \bigcup_{m \in [M]} [t_m - \delta_m, t_m + \delta_m]$
 $c(t)^{\top}x(t) \le d(t), \forall t \in [0, T]^{"} \Leftarrow "c(t_m)^{\top}x(t_m) + \eta_m ||x(\cdot)|| \le d_m, \forall m \in [M]^{"}$
with $d_m := \inf_{t \in [t_m - \delta_m, t_m + \delta_m]} d(t)$.

Pierre-Cyril Aubin-Frankowski

"

From affine state constraints to SOC constraints

Take
$$(t_m, \delta_m)$$
 such that $[0, T] \subset \cup_{m \in \llbracket 1, N_P \rrbracket} [t_m - \delta_m, t_m + \delta_m]$, define
 $\eta_i(\delta_m, t_m) := \sup_{\substack{t \in [t_m - \delta_m, t_m + \delta_m] \cap [0, T]}} \|K(\cdot, t_m)c_i(t_m) - K(\cdot, t)c_i(t)\|_K,$
 $d_i(\delta_m, t_m) := \inf_{\substack{t \in [t_m - \delta_m, t_m + \delta_m] \cap [0, T]}} d_i(t).$

We have strengthened SOC constraints that enable a representer theorem

 $egin{aligned} &\eta_i(\delta_m,t_m)\| imes(\cdot)\|_{\mathcal{K}}+c_i(t_m)^ op x(t_m)&\leq d_i(\delta_m,t_m),\,orall\,m\in \llbracket 1,N_P
rbracket,\,orall\,i\in \llbracket 1,P
rbracket\ &arphi\ &arphi\$

Lemma (Uniform continuity of tightened constraints)

As $K(\cdot, \cdot)$ is UC, if $c_i(\cdot)$ and $d_i(\cdot)$ are C^0 -continuous, when $\delta \to 0^+$, $\eta_i(\cdot, t)$ converges to 0 and $d_i(\cdot, t)$ converges to $d_i(t)$, uniformly w.r.t. t.

Pierre-Cyril Aubin-Frankowski

Main theorem [Aubin-Frankowski, 2020]

(H-gen) A(·) ∈ L¹(0, T) and B(·) ∈ L²(0, T), c_i(·) and d_i(·) are C⁰.
(H-sol) c_i(0)x₀ < d_i(0) and there exists a trajectory x^ϵ(·) ∈ S satisfying strictly the affine constraints, as well as the initial condition.²
(H-obj) g(·) is convex and continuous.

Theorem (Existence and Approximation by SOC constraints)

Both the original problem and its strengthening have unique optimal solutions. For any $\rho > 0$, there exists $\overline{\delta} > 0$ such that for all $(\delta_m)_{m \in \llbracket 1, N_0 \rrbracket}$, with $[0, T] \subset \bigcup_{m \in \llbracket 1, N_0 \rrbracket} [t_m - \delta_m, t_m + \delta_m]$ satisfying $\overline{\delta} \ge \max_{m \in \llbracket 1, N_0 \rrbracket} \delta_m$,

$$rac{1}{\gamma_{\mathcal{K}}} \cdot \sup_{t\in[0,T]} \|ar{x}_\eta(t) - ar{x}(t)\| \leq \|ar{x}_\eta(\cdot) - ar{x}(\cdot)\|_{\mathcal{K}} \leq
ho$$

with $\gamma_{\mathcal{K}} := \sup_{t \in [0,T], p \in \mathbb{B}_N} \sqrt{p^\top \mathcal{K}(t,t)p}.$

²(H-sol) is implied for instance by an inward-pointing condition at the boundary. Pierre-Cyril Aubin-Frankowski State-constrained LQR through LQ kernel Dec 2020 23 / 31

2 How to optimize over a RKHS

3 Vector spaces of linear controlled trajectories as vRKHSs

Dealing with state constraints in kernel regression

5 Numerical examples

To solve a state-constrained LQR through kernel regression, we have to

- identify the kernel K(s, t) related to [0, T], A and B (and Q and R)
- strengthen the infinite affine constraints to finite SOC constraints
- apply a representer theorem to the SOC-tightened problem
- solve a finite dimensional SOCP over the covectors p_t

Two examples: a submarine and a pendulum

Original control problem

$$\begin{split} \min_{\substack{z(\cdot)\in W^{2,1}, u(\cdot)\in L^2(\mathfrak{T},\mathbb{R})\\ \text{ s.t.}}} & \int_{\mathfrak{T}} |u(t)|^2 \mathrm{d}t\\ \mathrm{s.t.}\\ z(0) &= 0, \quad \dot{z}(0) = 0,\\ \ddot{z}(t) &= -\dot{z}(t) + u(t), \,\forall t\in\mathfrak{T},\\ z(t) &\in [z_{\mathsf{low}}(t), z_{\mathsf{up}}(t)], \,\forall t\in\mathfrak{T}. \end{split}$$

Original control problem	Rewriting in standard form
$\min_{z(\cdot)\in W^{2,1},u(\cdot)\in L^2(\mathfrak{I},\mathbb{R})} \int_{\mathfrak{I}} u(t) ^2 \mathrm{d}t$	$\min_{x(\cdot)\in\mathcal{C}^0,u(\cdot)\in L^2} \int_{\mathfrak{T}} u(t) ^2 \mathrm{d}t$
s.t.	s.t.
$z(0)=0, \dot{z}(0)=0,$	x(0)=0,
$\ddot{z}(t)=-\dot{z}(t)+u(t),orall t\in {\mathbb T},$	$x'(t) \stackrel{\text{a.e.}}{=} Ax(t) + Bu(t),$
$z(t) \in [z_{low}(t), z_{up}(t)], \forall t \in \mathfrak{T}.$	$x_1(t) \in [z_{low}(t), z_{up}(t)], orall t \in \mathfrak{T}$

$$x = \begin{pmatrix} z \\ \dot{z} \end{pmatrix}, A = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

RKHS regression	Rewriting in standard form
$egin{aligned} & \min_{\substack{x(\cdot) \in \mathcal{S}_u \ ext{ s.t. }}} & \ x(\cdot)\ _{\mathcal{K}_1}^2 \ & ext{ s.t. } \ & x_1(t) \in [z_{ ext{low}}(t), z_{ ext{up}}(t)], orall t \in \mathfrak{T} \end{aligned}$	$ \min_{\substack{x(\cdot) \in \mathcal{C}^{0}, u(\cdot) \in L^{2} \\ \text{s.t.}}} \int_{\mathcal{T}} u(t) ^{2} \mathrm{d}t $
	$egin{aligned} &x'(t) \stackrel{ ext{a.e.}}{=} Ax(t) + Bu(t), \ &x_1(t) \in [z_{ ext{low}}(t), z_{ ext{up}}(t)], orall t \in \mathbb{T} \end{aligned}$

 $\mathcal{S}_u := \{x(\cdot) \,|\, x(\cdot) \in \mathcal{S} \text{ and } x(0) = 0\} \quad \|x(\cdot)\|_{\mathcal{K}_1}^2 = \|u(\cdot)\|_{L^2(0,T)}^2.$

Pierre-Cyril Aubin-Frankowski

State-constrained LQR through LQ kernel

Dec 2020 26 / 31

$$\mathcal{S}_u := \{x(\cdot) \,|\, x(\cdot) \in \mathcal{S} \text{ and } x(0) = 0\} \quad \|x(\cdot)\|_{\mathcal{K}_1}^2 = \|u(\cdot)\|_{L^2(0,T)}^2.$$

$$\mathcal{K}_1(s,t) = \int_0^{\min(s,t)} e^{(s-\tau)A} B B^{\top} e^{(t-\tau)A^{\top}} \mathrm{d}\tau$$

Pierre-Cyril Aubin-Frankowski

$$\mathcal{S}_u := \{x(\cdot) \,|\, x(\cdot) \in \mathcal{S} \text{ and } x(0) = 0\} \quad \|x(\cdot)\|_{\mathcal{K}_1}^2 = \|u(\cdot)\|_{L^2(0,\mathcal{T})}^2.$$

$$\mathcal{K}_1(s,t) = \int_0^{\min(s,t)} e^{(s-\tau)A} B B^{\top} e^{(t-\tau)A^{\top}} \mathrm{d}\tau$$

Pierre-Cyril Aubin-Frankowski

$$\bar{x}(\cdot) = \sum_{m=1}^{M} K_1(\cdot, t_m) p_m = \sum_{m=1}^{M} \alpha_m K_1(\cdot, t_m) e_m$$
$$K_1(s, t) = \int_0^{\min(s, t)} e^{(s-\tau)A} B B^\top e^{(t-\tau)A^\top} d\tau$$

Pierre-Cyril Aubin-Frankowski

$$\bar{x}(\cdot) = \sum_{m=1}^{M} K_1(\cdot, t_m) p_m = \sum_{m=1}^{M} \alpha_m K_1(\cdot, t_m) e_m$$
$$K_1(s, t) = \int_0^{\min(s, t)} e^{(s-\tau)A} B B^\top e^{(t-\tau)A^\top} d\tau$$

Pierre-Cyril Aubin-Frankowski

$$\bar{x}(\cdot) = \sum_{m=1}^{M} K_1(\cdot, t_m) p_m = \sum_{m=1}^{M} \alpha_m K_1(\cdot, t_m) e_m$$
$$K_1(s, t) = \int_0^{\min(s, t)} e^{(s-\tau)A} B B^\top e^{(t-\tau)A^\top} d\tau$$

Pierre-Cyril Aubin-Frankowski

Numerical example 1: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

Numerical example 1: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

$$\begin{split} \min_{\substack{x(\cdot),w(\cdot),u(\cdot)}} &-\dot{x}(T) + \lambda \| u(\cdot) \|_{L^2(0,T)}^2 \qquad \lambda \ll 1 \\ \hline x(0) &= 0.5, \quad \dot{x}(0) = 0, \quad w(0) = 0, \quad x(T/3) = 0.5, \quad x(T) = 0 \\ & \\ \hline \dot{x}(t) &= -10 \, x(t) + w(t), \quad \dot{w}(t) = u(t), \text{ a.e. in } [0,T] \\ & \\ \hline \dot{x}(t) \in [-3, +\infty[, \quad w(t) \in [-10, 10], \forall t \in [0,T]] \end{split}$$

Converting affine state constraints to SOC constraints, applying rep. thm

Most of computational cost is related to the "controllability Gramians" $K_1(s,t) = \int_0^{\min(s,t)} e^{(s-\tau)A} B B^\top e^{(t-\tau)A^\top} d\tau$ which we have to approximate.

Figure: Comparison of SOC constraints (guaranteed η_w) vs discretized constraints ($\eta_w = 0$) for $N_P = 200$.

Pierre-Cyril Aubin-Frankowski

State-constrained LQR through LQ kernel

Dec 2020 28 / 31

Figure: Comparison of SOC constraints (guaranteed η_w) vs discretized constraints ($\eta_w = 0$) for $N_P = 200$ - Chattering phenomenon like for traffic cameras!.

Pierre-Cyril Aubin-Frankowski

State-constrained LQR through LQ kernel

Dec 2020 28 / 31

Figure: Comparison of SOC constraints for varying N_P and guaranteed η_w .

Figure: Comparison of SOC constraints for varying η_w and $N_P = 200$.

Pushing RKHSs beyond/Revisiting classical LQR

For RKHSs

- Control constraints do not correspond to continuous evaluations
 → limits of RKHS pointwise theory (e.g. x' = u ∈ L²([0, T], [-1, 1]) a.e.)
- Successive linearizations of nonlinear system lead to changing kernels \hookrightarrow a single kernel may not be sufficient (e.g. $x' = f_{[x_n(\cdot)]}x + f_{[u_n(\cdot)]}u$ a.e.)
- Non-quadratic costs for linear systems do not lead to Hilbert spaces \hookrightarrow you may need Banach kernels (e.g. $\|u(\cdot)\|_{L^2(0,T)}^2 \to \|u(\cdot)\|_{L^1(0,T)})$

Pushing RKHSs beyond/Revisiting classical LQR

For RKHSs

- Control constraints do not correspond to continuous evaluations
 → limits of RKHS pointwise theory (e.g. x' = u ∈ L²([0, T], [-1, 1]) a.e.)
- Successive linearizations of nonlinear system lead to changing kernels \hookrightarrow a single kernel may not be sufficient (e.g. $x' = f_{[x_n(\cdot)]}x + f_{[u_n(\cdot)]}u$ a.e.)
- Non-quadratic costs for linear systems do not lead to Hilbert spaces \hookrightarrow you may need Banach kernels (e.g. $||u(\cdot)||^2_{L^2(0,T)} \to ||u(\cdot)||_{L^1(0,T)}$)

For control theory

To each evaluation at time t corresponds a covector pt ∈ ℝ^N
 → Representer theorem well adapted for state constraints, but unsuitable for control constraints. Reverts the difficulty w.r.t. PMP approach.

• The Gramian of controllability generates trajectories

 \hookrightarrow This allows for close-form solutions in continuous-time.

Pierre-Cyril Aubin-Frankowski

"Control problems can be seen as a form of machine learning with <u>more constraints</u> and less samples."

"The unconstrained LQR is a subset of kernel regression."

Contributions and Future problems

State-constrained LQR can be interpreted as a kernel regression which

- allows to revisit classical notions from the kernel viewpoint,
- allows to deal with the difficult problem of state constraints.

Open questions:

- From fixed $[t_0, T]$ to varying $t_0 \rightarrow \text{Riccati}$ equation
- $\bullet\,$ Density of controlled trajectories in $\mathcal{C}^0 \to \mbox{Controllability}$ issues
- \bullet Operator-valued kernels \rightarrow controlled PDE with state constraints

Contributions and Future problems

State-constrained LQR can be interpreted as a kernel regression which

- allows to revisit classical notions from the kernel viewpoint,
- allows to deal with the difficult problem of state constraints.

Open questions:

- From fixed $[t_0, T]$ to varying $t_0 \rightarrow \text{Riccati}$ equation
- \bullet Density of controlled trajectories in $\mathcal{C}^0 \to \mathsf{Controllability}$ issues
- \bullet Operator-valued kernels \rightarrow controlled PDE with state constraints

Thank you for your attention!

References I

Aronszajn, N. (1950).

Theory of reproducing kernels.

Transactions of the American Mathematical Society, 68:337–404.

Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel methods.

Technical report.

(https://arxiv.org/abs/2011.02196).

Berlinet, A. and Thomas-Agnan, C. (2004).

Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer.

Heckman, N. (2012).

The theory and application of penalized methods or Reproducing Kernel Hilbert Spaces made easy.

Statistics Surveys, 6(0):113–141.

References II

Micheli, M. and Glaunès, J. A. (2014).

Matrix-valued kernels for shape deformation analysis.

Geometry, Imaging and Computing, 1(1):57–139.

Saitoh, S. and Sawano, Y. (2016). Theory of Reproducing Kernels and Applications. Springer Singapore.

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001).

A generalized representer theorem.

In *Computational Learning Theory (CoLT)*, pages 416–426. Springer Berlin Heidelberg.

Van Loan, C. (1978).

Computing integrals involving the matrix exponential.

IEEE Transactions on Automatic Control, 23(3):395-404.

Annex: Van Loan's trick for time-invariant Gramians

Т

Use matrix exponentials as in [Van Loan, 1978]

$$\exp\left(\begin{pmatrix} A & Q_c \\ 0 & -A^\top \end{pmatrix} \Delta\right) = \begin{pmatrix} F_2(\Delta) & G_2(\Delta) \\ 0 & F_3(\Delta) \end{pmatrix}$$

$$\begin{split} \hat{F}_{2}(t) &= e^{At} \\ \hat{F}_{3}(t) &= e^{-A^{\top}t} \\ \hat{G}_{2}(t) &= \int_{0}^{t} e^{(t-\tau)A} Q_{c} e^{-\tau A^{\top}} \mathrm{d}\tau \end{split} \\ \begin{aligned} &\mathsf{K}_{1}(s,t) = \int_{0}^{\min(s,t)} e^{(s-\tau)A} BB^{\top} e^{(t-\tau)A^{\top}} \mathrm{d}\tau \\ &\mathsf{Set} \ Q_{C} = BR^{-1}B^{\top}. \\ &\mathsf{For} \ s \leq t, \ \mathsf{K}_{1}(s,t) = \hat{G}_{2}(s)\hat{F}_{2}(t)^{\top} \\ &\mathsf{For} \ t \leq s, \ \mathsf{K}_{1}(s,t) = \hat{F}_{2}(s)\hat{G}_{2}(t)^{\top} \end{split}$$

Annex: Green kernels and RKHSs

Let *D* be a differential operator, D^* its formal adjoint. Define the Green function $G_{D^*D,x}(y) : \Omega \to \mathbb{R}$ s.t. $D^*D G_{D^*D,x}(y) = \delta_x(y)$ then, if the integrals over the boundaries in Green's formula are null, for any $f \in \mathcal{F}_k$

$$f(x) = \int_{\Omega} f(y) D^* DG_{D^*D,x}(y) dy = \int_{\Omega} Df(y) DG_{D^*D,x}(y) =: \langle f, G_{D^*D,x} \rangle_{\mathcal{F}_k},$$

so $k(t,s) = G_{D^*D,x}(y)$ [Saitoh and Sawano, 2016, p61]. For vector-valued contexts, e.g. $\mathcal{F}_{\mathcal{K}} = W^{s,2}(\mathbb{R}^d, \mathbb{R}^d)$ and $D^*D = (1 - \sigma^2 \Delta)^s$ component-wise, see [Micheli and Glaunès, 2014, p9].

Alternatively, in 1D, $D G_{D,x}(y) = \delta_x(y)$, the kernel associated to the inner product $\int_{\Omega} Df(y) Dg(y) dy$ for the space of f "null at the border" writes as

$$k(t,s) = \int_{\Omega} G_{D,x}(z) G_{D,y}(z) dz$$

see [Berlinet and Thomas-Agnan, 2004, p286] and [Heckman, 2012].

Annex: IPC gives strictly feasible trajectories

(H-sol) $C(0)x_0 < d(0)$ and there exists a trajectory $x^{\epsilon}(\cdot) \in S$ satisfying strictly the affine constraints, as well as the initial condition. (H1) $A(\cdot)$ and $B(\cdot)$ are C^0 . $C(\cdot)$ and $d(\cdot)$ are C^1 and $C(0)x_0 < d(0)$. (H2) There exists $M_u > 0$ s.t., for all $t \in [0, T]$ and $x \in \mathbb{R}^N$ satisfying $C(t)x \le d(t)$, and $||x|| \le (1 + ||x_0||)e^{T||A(\cdot)||_{L^{\infty}(0,T)} + TM_u||B(\cdot)||_{L^{\infty}(0,T)}}$, there exists $u_{t,x} \in M_u \mathbb{B}_M$ such that

$$\forall i \in \{j \mid c_j(t)^\top x = d_j(t)\}, \ c_i'(t)^\top x - d_i'(t) + c_i(t)^\top (A(t)x + B(t)u_{t,x}) < 0.$$

This is an inward-pointing condition (IPC) at the boundary.

Lemma (Existence of interior trajectories)

If (H1) and (H2) hold, then (H-sol) holds.

Annex: control proof main idea, nested property

$$\begin{split} \eta_i(\delta,t) &:= \sup \| K(\cdot,t)c_i(t) - K(\cdot,s)c_i(s) \|_{\mathcal{K}}, \quad \omega_i(\delta,t) := \sup |d_i(t) - d_i(s)|, \\ d_i(\delta_m,t_m) &:= \inf d_i(s), \quad \text{over } s \in [t_m - \delta_m,t_m + \delta_m] \cap [0,T] \\ \text{For } \overrightarrow{\epsilon} \in \mathbb{R}_+^P, \text{ the constraints we shall consider are defined as follows} \\ \mathcal{V}_0 &:= \{x(\cdot) \in \mathcal{S} \mid \mathcal{C}(t)x(t) \leq d(t), \forall t \in [0,T] \}, \\ \mathcal{V}_{\delta,\text{fin}} &:= \{x(\cdot) \in \mathcal{S} \mid \overrightarrow{\eta}(\delta_m,t_m) \| x(\cdot) \|_{\mathcal{K}} + \mathcal{C}(t_m)x(t_m) \leq d(\delta_m,t_m), \forall m \in \llbracket 1,N_0 \rrbracket \}, \\ \mathcal{V}_{\delta,\text{inf}} &:= \{x(\cdot) \in \mathcal{S} \mid \overrightarrow{\eta}(\delta,t) \| x(\cdot) \|_{\mathcal{K}} + \overrightarrow{\omega}(\delta,t) + \mathcal{C}(t)x(t) \leq d(t), \forall t \in [0,T] \}, \\ \mathcal{V}_{\overrightarrow{\epsilon}} &:= \{x(\cdot) \in \mathcal{S} \mid \overrightarrow{\epsilon} + \mathcal{C}(t)x(t) \leq d(t), \forall t \in [0,T] \}. \end{split}$$

Proposition (Nested sequence)

Let $\delta_{\max} := \max_{m \in \llbracket 1, N_0 \rrbracket} \delta_m$. For any $\delta \ge \delta_{\max}$, if, for a given $y_0 \ge 0$, $\epsilon_i \ge \sup_{t \in [0, T]} [\eta_i(\delta, t) y_0 + \omega_i(\delta, t)]$, then we have a nested sequence

 $(\mathcal{V}_{\overrightarrow{\epsilon}} \cap y_0 \mathbb{B}_K) \subset \mathcal{V}_{\delta,inf} \subset \mathcal{V}_{\delta,fin} \subset \mathcal{V}_0.$

Only the simpler $\mathcal{V}_{\overrightarrow{\epsilon}}$ constraints matter!

Pierre-Cyril Aubin-Frankowski