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What are state constraints?

Estimation

Side information
↪→ compensates small number of

samples or excessive noise

Control
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Physical constraints
↪→ provides feasible trajectories in

path-planning

Ubiquitous and both handled as a constrained optimization problem
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Optimal control as optimization over vector spaces

Optimization over RN

min
x ∈ RN

L(x)

s.t.
gi(x) = 0↔ νi ∈ R,
hj(x) ≤ 0↔ µj ∈ R+

How do you compute on an infinite dimensional space?

How do you compute with BV dual vectors?
What if your Hilbert space was not any Hilbert space but a RKHS?
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Nonlinear Optimal Control

min
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Reproducing kernel Hilbert spaces (RKHS) at a glance (1)

A RKHS (Fk , 〈·, ·〉Fk ) is a Hilbert space of real-valued1 functions over a set
T if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

∃ k : T × T → R s.t. kt(·) = k(·, t) ∈ Fk and f (t) = 〈f (·), kt(·)〉Fk

the topology of (Fk , 〈·, ·〉Fk ) is stronger than pointwise convergence
i.e. δt : f 7→ f (t) is continuous for all x for f ∈ Fk .

|f (t)− fn(t)| = |〈f − fn, kt〉k | ≤ ‖f − fn‖k‖kt‖k = ‖f − fn‖k
√
k(t, t)

k is s.t. ∃Φk : T → Fk s.t. k(t, s) = 〈Φk(t),Φk(s)〉Fk , Φk(t) = kt(·)

k is s.t. G = [k (ti , tj)]ni ,j=1 < 0 and Fk := span({kt(·)}t∈T), i.e. the
completion for the pre-scalar product 〈kt(·), ks(·)〉k,0 = k(t, s)

1There is a natural extension to vector-valued RKHSs (more on this later).
Pierre-Cyril Aubin-Frankowski State-constrained LQR through LQ kernel Dec 2020 5 / 31



Reproducing kernel Hilbert spaces (RKHS) at a glance (1)

A RKHS (Fk , 〈·, ·〉Fk ) is a Hilbert space of real-valued1 functions over a set
T if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

∃ k : T × T → R s.t. kt(·) = k(·, t) ∈ Fk and f (t) = 〈f (·), kt(·)〉Fk

the topology of (Fk , 〈·, ·〉Fk ) is stronger than pointwise convergence
i.e. δt : f 7→ f (t) is continuous for all x for f ∈ Fk .

|f (t)− fn(t)| = |〈f − fn, kt〉k | ≤ ‖f − fn‖k‖kt‖k = ‖f − fn‖k
√
k(t, t)

k is s.t. ∃Φk : T → Fk s.t. k(t, s) = 〈Φk(t),Φk(s)〉Fk , Φk(t) = kt(·)

k is s.t. G = [k (ti , tj)]ni ,j=1 < 0 and Fk := span({kt(·)}t∈T), i.e. the
completion for the pre-scalar product 〈kt(·), ks(·)〉k,0 = k(t, s)

1There is a natural extension to vector-valued RKHSs (more on this later).
Pierre-Cyril Aubin-Frankowski State-constrained LQR through LQ kernel Dec 2020 5 / 31



Reproducing kernel Hilbert spaces (RKHS) at a glance (2)

There is a one-to-one correspondence between kernels k and RKHSs
(Fk , 〈·, ·〉Fk ). Changing T or 〈·, ·〉Fk changes the kernel k.

For T ⊂ Rd , Sobolev spaces Hs(T) satisfying s > d/2 are RKHSs. For
T = Rd their (Matérn) kernels are well known. Classical kernels include

kGauss(t, s) = exp
(
−‖t − s‖2Rd/(2σ2)

)
klin(t, s) = 〈t, s〉Rd

Identifying k and Fk is hard! Example for Sobolev spaces, d = 1, T = R+

H1 with 〈f , g〉H1 = 2
π

∫∞
0 fg + f ′g ′dt

k(t, s) = π

4 (exp(−|t − s|) + exp(−t − s)) .

H1
0 (f (0) = 0) with 〈·, ·〉H1

k(t, s) = π

4 (exp(−|t − s|)− exp(−t − s)) .

H1
0 with 〈f , g〉H1

0
=
∫∞
0 f ′g ′dt has for kernel k(t, s) = min(t, s).
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Two essential tools for computations

Representer Theorem (e.g. [Schölkopf et al., 2001])
Let L : (T × R× R)N → R ∪ {∞}, strictly increasing Ω : R+ → R, and

f̄ ∈ arg min
f ∈Fk

L
(

(tn, yn, f (tn))n∈[N]

)
+ Ω (‖f ‖k)

Then ∃ (an)n∈[N] ∈ RN s.t. f̄ (·) =
∑

n∈[N] ank(tn, ·)

↪→ Optimal solutions lie in a finite dimensional subspace of Fk .

Finite number of evaluations =⇒ finite number of coefficients

Kernel trick

〈
∑
n∈[N]

ank(tn, ·),
∑

m∈[M]
bmk(sm, ·)〉k =

∑
n∈[N]

∑
m∈[N′]

anbmk(tn, sm)

↪→ On this finite dimensional subspace, no need to know (Fk , 〈·, ·〉Fk ).
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Example: 1D kernel ridge regression (KRR)
Estimating a function

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2

-1

0

1

2

3

4

5

min
f ∈Fk

1
N

N∑
n=1
|yn − f (tn)|2 + λ ‖f ‖2Fk

Unconstrained KRR f̄ =
∑N

n=1 αnktn ,

α = (G + Nλ · Id)−1y
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Example: 1D kernel ridge regression (KRR)
Estimating a function
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5 min
f ∈Fk

1
N

N∑
n=1
|yn − f (tn)|2 + λ ‖f ‖2Fk

Applying the representer theorem

Unconstrained KRR f̄ =
∑N

n=1 αnktn ,
α = (G + Nλ · Id)−1y

with Gram matrix G = [k(ti , tj)]i ,j≤N

N∑
n=1

∣∣∣∣∣yn −
N∑
i=1

αik(ti , tn)
∣∣∣∣∣
2

+Nλ
∥∥∥∥∥

N∑
n=1

αnktn(·)
∥∥∥∥∥
2

Fk

= ‖y−Gα‖2RN +Nλα>Gα

Convex and differentiable. Optimality: 0 = G(−y + Gα+ Nλα)
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Example: 1D kernel ridge regression (KRR)
Estimating a function
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here is not nonnegative around 0.5!
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5 min
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1
N

N∑
n=1
|yn − f (tn)|2 + λ ‖f ‖2Fk

s.t. 0 ≤ f (t), ∀t ∈ [−2, 2]

Unconstrained KRR f̄ =
∑N

n=1 αnktn ,
α = (G + Nλ · Id)−1y

here is not nonnegative around 0.5!

Infinite number of evaluations ⇒ no representer theorem!

How to modify the problem to ensure constraint satisfaction?
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Linearly-constrained Linear Quadratic Regulator (LQR)

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints

min
x(·),u(·)

g(x(T )) +
∫ T

0
[x(t)>Q(t)x(t) + u(t)>R(t)u(t)]dt

s.t.
x(0) = x0,
x ′(t) = A(t)x(t) + B(t)u(t), a.e. in [0,T ],

ci(t)>x(t) ≤ di(t), ∀ t ∈ [0,T ],∀ i ∈ [[1,P]],

with state x(t) ∈ RN , control u(t) ∈ RM , A(·) ∈ L1(0,T ), B(·) ∈ L2(0,T ),
Q(t) < 0 and R(t) < r IdM (r > 0)
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Linearly-constrained Linear Quadratic Regulator (LQR)

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints with Q ≡ 0 and R ≡ IdM

min
x(·),u(·)

g(x(T )) +
∫ T

0
‖u(t)‖2RM dt

s.t.
x(0) = x0,
x ′(t) = A(t)x(t) + B(t)u(t), a.e. in [0,T ],

ci(t)>x(t) ≤ di(t), ∀ t ∈ [0,T ],∀ i ∈ {1, . . . ,P},

with state x(t) ∈ RN , control u(t) ∈ RM , A(·) ∈ L1(0,T ), B(·) ∈ L2(0,T ),
x(·) : [0,T ]→ RN absolutely continuous and u(·) ∈ L2(0,T ).
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Why are state constraints difficult to study?

Theoretical obstacle: Pontryagine’s Maximum Principle involves not only
an adjoint vector p(t) but also measures/BV functions ψ(t) supported at
times where the constraints are saturated. You cannot just backpropagate
the Hamiltonian system from the transversality condition.

Numerical obstacle: Time discretization of constraints may fail e.g.

Speed cameras in traffic control

In between two cameras, drivers
always break the speed limit.
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Objective: Turn the state-constrained LQR into “KRR“

We have a vector space S of controlled trajectories x(·) : [0,T ]→ RN

S := {x(·) | ∃ u(·) ∈ L2(0,T ) s.t. x ′(t) = A(t)x(t) + B(t)u(t) a.e. }

The space of controlled trajectories S depends on [0,T ], A(·), B(·).

LQR (Linear Quadratic Regulator)

min
x(·)∈S

u(·)∈L2(0,T )

g(x(T )) + ‖u(·)‖2L2(0,T )

x(0) = x0
ci(t)>x(t) ≤ di(t), t ∈ [0,T ], i ≤ P

“KRR“ (Kernel Ridge Regression)

min
x(·)∈S

g(x(T )) + λ ‖x(·)‖2S

x(0) = x0
ci(t)>x(t) ≤ di(t), t ∈ [0,T ], i ≤ P

Is S a RKHS? For which inner product?
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Vector-valued reproducing kernel Hilbert space (vRKHS)

Definition (vRKHS)

Let T be a non-empty set. A Hilbert space (FK , 〈·, ·〉K ) of RN -vector-
valued functions defined on T is a vRKHS if there exists a matrix-valued
kernel K : T × T → RN×N such that the reproducing property holds:

K (·, t)p ∈ FK , p>f (t) = 〈f ,K (·, t)p〉K , for t ∈ T, p ∈ RN , f ∈ FK

Necessarily, K has a Hermitian symmetry: K (s, t) = K (t, s)>

There is also a one-to-one correspondence between K and (FK , 〈·, ·〉K )
[Micheli and Glaunès, 2014], so changing T or 〈·, ·〉K changes K .
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Representer theorem in vRKHSs

Theorem (Representer theorem with constraints, Aubin 2020)

Let (FK , 〈·, ·〉K ) be a vRKHS defined on a set T. For a “loss“ L : RN0 →
R ∪ {+∞}, strictly increasing “regularizer“ Ω : R+ → R, and constraints
di : RNi → R, consider the optimization problem

f̄ ∈ arg min
f ∈FK

L
(
c>0,1f (t0,1), . . . , c>0,N0f (t0,N0)

)
+ Ω (‖f ‖K )

s.t.
λi‖f ‖K ≤ di(c>i ,1f (ti ,1), . . . , c>i ,Ni f (ti ,Ni )), ∀ i ∈ [[1,P]].

Then there exists {pi ,m}m∈[[1,Ni ]] ⊂ RN and αi ,m ∈ R such that

f̄ =
∑P

i=0
∑Ni

m=1 K (·, ti ,m)pi ,m with pi ,m = αi ,mci ,m.
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Application to linear control systems with quadratic cost

S := {x(·) ∈W 1,1 | ∃ u(·) ∈ L2(0,T ) s.t. x ′(t) = A(t)x(t)+B(t)u(t) a.e. }
Given x(·) ∈ S, for the pseudoinverse B(t)	 of B(t), set

u(t) := B(t)	[x ′(t)− A(t)x(t)] a.e. in [0,T ].

〈x1(·), x2(·)〉K := x1(0)>x2(0) +
∫ T

0
u1(t)>u2(t)dt

Lemma

(S, 〈·, ·〉K ) is a vRKHS with uniformly continuous K (·, ·).

‖ · ‖K is a Sobolev-like norm split into two semi-norms

‖x(·)‖2K = ‖x(0)‖2︸ ︷︷ ︸
‖x(·)‖2K0

+
∫ T

0
‖B(t)	(x ′(t)− A(t)x(t))‖2dt︸ ︷︷ ︸

‖x(·)‖2K1

.
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Splitting S into subspaces and identifying their kernels

S0 := {x(·) | x ′(t) = A(t)x(t), a.e. in [0,T ]} ‖x(·)‖2K0 = ‖x(0)‖2

Su := {x(·) | x(·) ∈ S and x(0) = 0} ‖x(·)‖2K1 = ‖u(·)‖2L2(0,T ).

As S = S0 ⊕ Su, K = K0 + K1.

Since dim(S0) = N, for ΦA(t, s) ∈ RN,N

the state-transition matrix s → t of x ′(τ) = A(τ)x(τ)
K0(s, t) = ΦA(s, 0)ΦA(t, 0)>

Identify K1 using only the reproducing property and that for x(·) ∈ S,

x(t) = ΦA(t, 0)x(0) +
∫ t

0
ΦA(t, τ)B(τ)u(τ)dτ. (1)

For fixed t, define a control matrix Ut(s) :=
{

B(s)>ΦA(t, s)> ∀s ≤ t,
0 ∀s > t.

∂1K1(s, t) = A(s)K1(s, t) + B(s)Ut(s) a.e. in [0,T ] with K1(0, t) = 0.

K1(s, t) =
∫ min(s,t)

0
ΦA(s, τ)B(τ)B(τ)>ΦA(t, τ)>dτ .
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ΦA(s, τ)B(τ)B(τ)>ΦA(t, τ)>dτ .
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Splitting S into subspaces and identifying their kernels

S0 := {x(·) | x ′(t) = A(t)x(t), a.e. in [0,T ]} ‖x(·)‖2K0 = ‖x(0)‖2

Su := {x(·) | x(·) ∈ S and x(0) = 0} ‖x(·)‖2K1 = ‖u(·)‖2L2(0,T ).

As S = S0 ⊕ Su, K = K0 + K1. Since dim(S0) = N, for ΦA(t, s) ∈ RN,N

the state-transition matrix s → t of x ′(τ) = A(τ)x(τ)
K0(s, t) = ΦA(s, 0)ΦA(t, 0)>

Identify K1 using only the reproducing property and that for x(·) ∈ S,
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∫ t
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B(s)>ΦA(t, s)> ∀s ≤ t,
0 ∀s > t.

∂1K1(s, t) = A(s)K1(s, t) + B(s)Ut(s) a.e. in [0,T ] with K1(0, t) = 0.

K1(s, t) =
∫ min(s,t)

0
ΦA(s, τ)B(τ)B(τ)>ΦA(t, τ)>dτ .
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Examples: controllability Gramian/transversality condition

Steer a point from (0, 0) to (T , xT ), with e.g. g(x(T )) = ‖xT − x(T )‖2N

Exact planning (x(T ) = xT )

min
x(·)∈S
x(0)=0

χxT (x(T )) + 1
2‖u(·)‖2L2(0,T )

Relaxed planning (g ∈ C1 convex)

min
x(·)∈S
x(0)=0

g(x(T )) + 1
2‖u(·)‖2L2(0,T )

As, x(0) = 0, applying the representer theorem: ∃ pT , x̄(·) = K1(·,T )pT

Controllability Gramian

K1(T ,T ) =

∫ T

0

ΦA(T , τ)B(τ)B(τ)>ΦA(T , τ)>dτ

x̄(T ) = xT ⇔ xT ∈ Im(K1(T ,T ))

Transversality Condition

0 = ∇
(
p 7→ g(K1(T ,T )p) +

1
2
p>K1(T ,T )p

)
(pT )

= K1(T ,T )(∇g(K1(T ,T )pT ) + pT ).

Take pT = −∇g(x̄(T ))
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Dealing with an infinite number of constraints

No representer theorem for: c(t)>x(t) ≤ d , ∀t ∈ [0,T ]

Discretize on {tm}m∈[M] ⊂ [0,T ]?

ηm‖x(·)‖K +

c(tm)>x(tm) ≤ d ,∀m ∈ [[1,M]]

No guarantees!
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Dealing with an infinite number of constraints

No representer theorem for: c(t)>x(t) ≤ d , ∀t ∈ [0,T ]

Discretize on {tm}m∈[M] ⊂ [0,T ]?

ηm‖x(·)‖K + c(tm)>x(tm) ≤ d ,∀m ∈ [[1,M]]

No guarantees!

Second-Order Cone (SOC) constraints: {f | ‖Af + b‖K ≤ c>f + d}

SOC comes from adding a buffer, ηm > 0, to a discretization, {tm}m∈[M]

LP⊂ QP ⊂ SOCP ⊂ SDP
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Dealing with an infinite number of constraints

No representer theorem for: c(t)>x(t) ≤ d , ∀t ∈ [0,T ]

Discretize on {tm}m∈[M] ⊂ [0,T ]?

ηm‖x(·)‖K + c(tm)>x(tm) ≤ d ,∀m ∈ [[1,M]]

No guarantees!

Second-Order Cone constraints: {f | ‖Af + b‖K ≤ c>f + d}

SOC comes from adding a buffer, ηm > 0, to a discretization, {tm}m∈[M].

The choice ηm‖x(·)‖K is related to continuity moduli: How to choose ηm?
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Deriving SOC constraints through continuity moduli

Take δ ≥ 0 and t s.t. |t − tm| ≤ δ

|c(t)>x(t)− c(tm)>x(tm)| = |〈x(·),K (·, t)c(t)− K (·, tm)c(tm)〉K |
≤ ‖x(·)‖K sup

{t | |t−tm|≤δ}
‖K (·, t)c(t)− K (·, tm)c(tm)‖K︸ ︷︷ ︸

ηm(δ)

ωm(x , δ) := sup
{t | |t−tm|≤δ}

|c(t)>x(t)− c(tm)>x(tm)| ≤ ηm(δ)‖x(·)‖K

For a covering [0,T ] =
⋃
m∈[M][tm − δm, tm + δm]

“c(t)>x(t) ≤ d , ∀t ∈ [0,T ]“⇔ “c(tm)>x(tm) + ωm(x , δ) ≤ d ,∀m ∈ [M]“
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Deriving SOC constraints through continuity moduli

Take δ ≥ 0 and t s.t. |t − tm| ≤ δ

|c(t)>x(t)− c(tm)>x(tm)| = |〈x(·),K (·, t)c(t)− K (·, tm)c(tm)〉K |
≤ ‖x(·)‖K sup

{t | |t−tm|≤δ}
‖K (·, t)c(t)− K (·, tm)c(tm)‖K︸ ︷︷ ︸

ηm(δ)

ωm(x , δ) := sup
{t | |t−tm|≤δ}

|c(t)>x(t)− c(tm)>x(tm)| ≤ ηm(δ)‖x(·)‖K

For a covering [0,T ] =
⋃
m∈[M][tm − δm, tm + δm]

“c(t)>x(t) ≤ d , ∀t ∈ [0,T ]“⇐ “c(tm)>x(tm)+ηm‖x(·)‖ ≤ d ,∀m ∈ [M]“
‖K(·, t)c(t)− K(·, tm)c(tm)‖2K :=c(t)>K(t, t)c(t) + c(tm)>K(tm, tm)c(tm)

− 2c(tm)>K(tm, t)c(t)

Since the kernel is smooth, for c(·) ∈ C0, δ → 0 gives ηm(δ)→ 0.
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Deriving SOC constraints through continuity moduli

Take δ ≥ 0 and t s.t. |t − tm| ≤ δ

|c(t)>x(t)− c(tm)>x(tm)| = |〈x(·),K (·, t)c(t)− K (·, tm)c(tm)〉K |
≤ ‖x(·)‖K sup

{t | |t−tm|≤δ}
‖K (·, t)c(t)− K (·, tm)c(tm)‖K︸ ︷︷ ︸

ηm(δ)

ωm(x , δ) := sup
{t | |t−tm|≤δ}

|c(t)>x(t)− c(tm)>x(tm)| ≤ ηm(δ)‖x(·)‖K

For a covering [0,T ]⊂
⋃
m∈[M][tm − δm, tm + δm]

“c(t)>x(t) ≤ d(t),∀t ∈ [0,T ]“⇐ “c(tm)>x(tm)+ηm‖x(·)‖ ≤ dm,∀m ∈ [M]“

with dm := inft ∈ [tm−δm,tm+δm] d(t).
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From affine state constraints to SOC constraints
Take (tm, δm) such that [0,T ] ⊂ ∪m∈[[1,NP ]][tm − δm, tm + δm], define

ηi(δm, tm) := sup
t ∈ [tm−δm,tm+δm]∩[0,T ]

‖K (·, tm)ci(tm)− K (·, t)ci(t)‖K ,

di(δm, tm) := inf
t ∈ [tm−δm,tm+δm]∩[0,T ]

di(t).

We have strengthened SOC constraints that enable a representer theorem

ηi(δm, tm)‖x(·)‖K+ ci(tm)>x(tm) ≤ di(δm, tm), ∀m ∈ [[1,NP ]],∀ i ∈ [[1,P]]

⇓

ci(t)>x(t) ≤ di(t), ∀ t ∈ [0,T ], ∀ i ∈ [[1,P]]

Lemma (Uniform continuity of tightened constraints)

As K (·, ·) is UC, if ci(·) and di(·) are C0-continuous, when δ → 0+, ηi(·, t)
converges to 0 and di(·, t) converges to di(t), uniformly w.r.t. t.
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Main theorem [Aubin-Frankowski, 2020]

(H-gen) A(·) ∈ L1(0,T ) and B(·) ∈ L2(0,T ), ci(·) and di(·) are C0.
(H-sol) ci(0)x0 < di(0) and there exists a trajectory x ε(·) ∈ S satisfying

strictly the affine constraints, as well as the initial condition.2

(H-obj) g(·) is convex and continuous.

Theorem (Existence and Approximation by SOC constraints)

Both the original problem and its strengthening have unique optimal
solutions. For any ρ > 0, there exists δ̄ > 0 such that for all (δm)m∈[[1,N0]],
with [0,T ] ⊂ ∪m∈[[1,N0]][tm − δm, tm + δm] satisfying δ̄ ≥ maxm∈[[1,N0]] δm,

1
γK
· sup
t∈[0,T ]

‖x̄η(t)− x̄(t)‖ ≤ ‖x̄η(·)− x̄(·)‖K ≤ ρ.

with γK := supt∈[0,T ], p∈BN

√
p>K (t, t)p.

2(H-sol) is implied for instance by an inward-pointing condition at the boundary.
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To solve a state-constrained LQR through kernel regression, we have to

identify the kernel K (s, t) related to [0,T ], A and B (and Q and R)

strengthen the infinite affine constraints to finite SOC constraints

apply a representer theorem to the SOC-tightened problem

solve a finite dimensional SOCP over the covectors pt

Two examples: a submarine and a pendulum
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Numerical example: submarine in a cavern

Original control problem

min
z(·)∈W 2,1,u(·)∈L2(T,R)

∫
T
|u(t)|2dt

s.t.
z(0) = 0, ż(0) = 0,
z̈(t) = −ż(t) + u(t), ∀t ∈ T,

z(t) ∈ [zlow(t), zup(t)], ∀ t ∈ T.
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Numerical example: submarine in a cavern

Original control problem

min
z(·)∈W 2,1,u(·)∈L2(T,R)

∫
T
|u(t)|2dt

s.t.
z(0) = 0, ż(0) = 0,
z̈(t) = −ż(t) + u(t), ∀t ∈ T,

z(t) ∈ [zlow(t), zup(t)], ∀ t ∈ T.

Rewriting in standard form

min
x(·)∈C0,u(·)∈L2

∫
T
|u(t)|2dt

s.t.
x(0) = 0,
x ′(t) a.e.= Ax(t) + Bu(t),
x1(t) ∈ [zlow(t), zup(t)], ∀ t ∈ T

x =
(
z
ż

)
, A =

(
0 1
0 -1

)
, B =

(
0
1

)
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Numerical example: submarine in a cavern

RKHS regression

min
x(·) ∈ Su

‖x(·)‖2K1

s.t.
x1(t) ∈ [zlow(t), zup(t)], ∀ t ∈ T

Rewriting in standard form

min
x(·)∈C0,u(·)∈L2

∫
T
|u(t)|2dt

s.t.
x(0) = 0,
x ′(t) a.e.= Ax(t) + Bu(t),
x1(t) ∈ [zlow(t), zup(t)], ∀ t ∈ T

Su := {x(·) | x(·) ∈ S and x(0) = 0} ‖x(·)‖2K1 = ‖u(·)‖2L2(0,T ).
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Numerical example: submarine in a cavern

RKHS regression

min
x(·) ∈ Su

‖x(·)‖2K1

s.t.
x1(t) ∈ [zlow(t), zup(t)], ∀ t ∈ T
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Su := {x(·) | x(·) ∈ S and x(0) = 0} ‖x(·)‖2K1 = ‖u(·)‖2L2(0,T ).

K1(s, t) =
∫ min(s,t)

0
e(s−τ)ABB>e(t−τ)A>dτ

Pierre-Cyril Aubin-Frankowski State-constrained LQR through LQ kernel Dec 2020 26 / 31



Numerical example: submarine in a cavern

RKHS regression

min
x(·) ∈ Su

‖x(·)‖2K1

s.t.
x1(t) ∈ [zlow,m, zup,m],
∀ t ∈ [tm − δm, tm + δm], ∀m ∈ [M]
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Numerical example: submarine in a cavern

RKHS regression

min
x(·) ∈ Su

‖x(·)‖2K1

s.t.
x1(tm) ∈ [zlow,m, zup,m],
∀ t ∈ [tm − δm, tm + δm], ∀m ∈ [M]
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x̄(·) =
M∑

m=1
K1(·, tm)pm =

M∑
m=1

αmK1(·, tm)em

K1(s, t) =
∫ min(s,t)

0
e(s−τ)ABB>e(t−τ)A>dτ
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Numerical example: submarine in a cavern

RKHS regression

min
x(·) ∈ Su

‖x(·)‖2K1

s.t.
x1(tm) ∈ [zlow,m, zup,m]± ηm‖x(·)‖K1 ,

∀ t ∈ [tm − δm, tm + δm], ∀m ∈ [M]
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Numerical example 1: constrained pendulum - definition
Constrained pendulum when controlling the third derivative of the angle

min
x(·),w(·),u(·)

−ẋ(T ) + λ‖u(·)‖2L2(0,T ) λ� 1

x(0) = 0.5, ẋ(0) = 0, w(0) = 0, x(T/3) = 0.5, x(T ) = 0
ẍ(t) = −10 x(t) + w(t), ẇ(t) = u(t), a.e. in [0,T ]
ẋ(t) ∈ [−3,+∞[, w(t) ∈ [−10, 10], ∀ t ∈ [0,T ]

x(t) w(t) 

ẋ(t) 

ẇ(t)=u(t) 
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Numerical example 1: constrained pendulum - definition
Constrained pendulum when controlling the third derivative of the angle

min
x(·),w(·),u(·)

−ẋ(T ) + λ‖u(·)‖2L2(0,T ) λ� 1

x(0) = 0.5, ẋ(0) = 0, w(0) = 0, x(T/3) = 0.5, x(T ) = 0
ẍ(t) = −10 x(t) + w(t), ẇ(t) = u(t), a.e. in [0,T ]
ẋ(t) ∈ [−3,+∞[, w(t) ∈ [−10, 10], ∀ t ∈ [0,T ]

Converting affine state constraints to SOC constraints, applying rep. thm

ηẋ‖x(·)‖K − ẋ(tm) ≤ 3,
ηw‖x(·)‖K + w(tm) ≤ 10,
ηw‖x(·)‖K − w(tm) ≤ 10

x̄(·) = K (·, 0)p0 + K (·,T/3)pT/3

+ K (·,T )pT +
M∑

m=1
K (·, tm)pm

Most of computational cost is related to the “controllability Gramians“
K1(s, t) =

∫min(s,t)
0 e(s−τ)ABB>e(t−τ)A>dτ which we have to approximate.
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Numerical example 2: constrained pendulum - illustration
Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints . Grayed areas: constraints over [0,T ].
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Figure: Comparison of SOC constraints (guaranteed ηw ) vs discretized constraints
(ηw = 0) for NP = 200.
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Numerical example 2: constrained pendulum - illustration
Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints . Grayed areas: constraints over [0,T ].

Angle x(·) Velocity ẋ(·) Couple w(·)
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Figure: Comparison of SOC constraints (guaranteed ηw ) vs discretized constraints
(ηw = 0) for NP = 200 - Chattering phenomenon like for traffic cameras!.
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Numerical example 2: constrained pendulum - illustration
Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints . Grayed areas: constraints over [0,T ].
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Figure: Comparison of SOC constraints for varying NP and guaranteed ηw .
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Numerical example 2: constrained pendulum - illustration
Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints . Grayed areas: constraints over [0,T ].
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Figure: Comparison of SOC constraints for varying ηw and NP = 200.
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Pushing RKHSs beyond/Revisiting classical LQR

For RKHSs

Control constraints do not correspond to continuous evaluations
↪→ limits of RKHS pointwise theory (e.g. x ′ = u ∈ L2([0,T ], [−1, 1]) a.e.)

Successive linearizations of nonlinear system lead to changing kernels
↪→ a single kernel may not be sufficient (e.g. x ′ = f[xn(·)]x + f[un(·)]u a.e.)

Non-quadratic costs for linear systems do not lead to Hilbert spaces
↪→ you may need Banach kernels (e.g. ‖u(·)‖2L2(0,T ) → ‖u(·)‖L1(0,T ))

For control theory

To each evaluation at time t corresponds a covector pt ∈ RN

↪→ Representer theorem well adapted for state constraints, but unsuitable
for control constraints. Reverts the difficulty w.r.t. PMP approach.

The Gramian of controllability generates trajectories
↪→ This allows for close-form solutions in continuous-time.
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↪→ a single kernel may not be sufficient (e.g. x ′ = f[xn(·)]x + f[un(·)]u a.e.)

Non-quadratic costs for linear systems do not lead to Hilbert spaces
↪→ you may need Banach kernels (e.g. ‖u(·)‖2L2(0,T ) → ‖u(·)‖L1(0,T ))

For control theory

To each evaluation at time t corresponds a covector pt ∈ RN

↪→ Representer theorem well adapted for state constraints, but unsuitable
for control constraints. Reverts the difficulty w.r.t. PMP approach.

The Gramian of controllability generates trajectories
↪→ This allows for close-form solutions in continuous-time.
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Take-home messages

“Control problems can be seen as a form of machine
learning with more constraints and less samples.“

“The unconstrained LQR is a subset of kernel regression.“
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Contributions and Future problems

State-constrained LQR can be interpreted as a kernel regression which
allows to revisit classical notions from the kernel viewpoint,

allows to deal with the difficult problem of state constraints.

Open questions:
From fixed [t0,T ] to varying t0 → Riccati equation

Density of controlled trajectories in C0 → Controllability issues

Operator-valued kernels → controlled PDE with state constraints

Thank you for your attention!
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Annex: Van Loan’s trick for time-invariant Gramians

Use matrix exponentials as in [Van Loan, 1978]

exp
((

A Qc
0 −A>

)
∆
)

=
(
F2(∆) G2(∆)

0 F3(∆)

)

F̂2(t) = eAt

F̂3(t) = e−A>t

Ĝ2(t) =
∫ t

0
e(t−τ)AQce−τA

>dτ

K1(s, t) =
∫ min(s,t)

0
e(s−τ)ABB>e(t−τ)A>dτ

Set QC = BR−1B>.

For s ≤ t, K1(s, t) = Ĝ2(s)F̂2(t)>

For t ≤ s, K1(s, t) = F̂2(s)Ĝ2(t)>
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Annex: Green kernels and RKHSs

Let D be a differential operator, D∗ its formal adjoint. Define the Green
function GD∗D,x (y) : Ω→ R s.t. D∗D GD∗D,x (y) = δx (y) then, if the
integrals over the boundaries in Green’s formula are null, for any f ∈ Fk

f (x) =
∫

Ω
f (y)D∗DGD∗D,x (y)dy =

∫
Ω
Df (y)DGD∗D,x (y) =: 〈f ,GD∗D,x 〉Fk ,

so k(t, s) = GD∗D,x (y) [Saitoh and Sawano, 2016, p61]. For vector-valued
contexts, e.g. FK = W s,2(Rd ,Rd) and D∗D = (1− σ2∆)s
component-wise, see [Micheli and Glaunès, 2014, p9].

Alternatively, in 1D, D GD,x (y) = δx (y), the kernel associated to the inner
product

∫
Ω Df (y)Dg(y)dy for the space of f “null at the border“ writes as

k(t, s) =
∫

Ω
GD,x (z)GD,y (z)dz

see [Berlinet and Thomas-Agnan, 2004, p286] and [Heckman, 2012].
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Annex: IPC gives strictly feasible trajectories

(H-sol) C(0)x0 < d(0) and there exists a trajectory x ε(·) ∈ S satisfying
strictly the affine constraints, as well as the initial condition.
(H1) A(·) and B(·) are C0. C(·) and d(·) are C1 and C(0)x0 < d(0).
(H2) There exists Mu > 0 s.t. , for all t ∈ [0,T ] and x ∈ RN satisfying

C(t)x ≤ d(t), and ‖x‖ ≤ (1 + ‖x0‖)eT‖A(·)‖L∞(0,T )+TMu‖B(·)‖L∞(0,T ) ,
there exists ut,x ∈ MuBM such that

∀ i ∈ {j | cj(t)>x = dj(t)}, c ′i (t)>x−d ′i (t)+ci(t)>(A(t)x+B(t)ut,x ) < 0.

This is an inward-pointing condition (IPC) at the boundary.

Lemma (Existence of interior trajectories)

If (H1) and (H2) hold, then (H-sol) holds.
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Annex: control proof main idea, nested property

ηi(δ, t) := sup ‖K (·, t)ci(t)− K (·, s)ci(s)‖K , ωi(δ, t) := sup |di(t)− di(s)|,
di(δm, tm) := inf di(s), over s ∈ [tm − δm, tm + δm] ∩ [0,T ]

For −→ε ∈ RP
+, the constraints we shall consider are defined as follows

V0 := {x(·) ∈ S |C(t)x(t) ≤ d(t), ∀ t ∈ [0,T ]},
Vδ,fin := {x(·) ∈ S |−→η (δm, tm)‖x(·)‖K + C(tm)x(tm) ≤ d(δm, tm), ∀m ∈ [[1,N0]]},
Vδ,inf := {x(·) ∈ S |−→η (δ, t)‖x(·)‖K +−→ω (δ, t) + C(t)x(t) ≤ d(t), ∀ t ∈ [0,T ]},
V−→ε := {x(·) ∈ S |−→ε + C(t)x(t) ≤ d(t), ∀ t ∈ [0,T ]}.

Proposition (Nested sequence)

Let δmax := maxm∈[[1,N0]] δm. For any δ ≥ δmax, if, for a given y0 ≥ 0,
εi ≥ supt∈[0,T ][ηi(δ, t)y0 + ωi(δ, t)], then we have a nested sequence

(V−→ε ∩ y0BK ) ⊂ Vδ,inf ⊂ Vδ,fin ⊂ V0.

Only the simpler V−→ε constraints matter!
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