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What are shape constraints?

Nonparametric estimation Shape constraints
e @ nonnegativity
R f(x)>0
gg‘/ @ directional monotonicity
£ " o directional convexity
I 8,-27 f(x)>0
£
AERT AR SPA AT AR E Tl Side information/Requirements

Time [h]

— compensates small number of
samples or excessive noise

Applied in many fields: Biology, Chemistry, Statistics, Economics,...
With many techniques: Isotonic regression, density estimation with splines,...



What are state constraints?

Optimal control State constraints

@ “avoid the wall*
X(t) € [XIOWaXhigh]

@ “abide by the speed limit"
Xl(t) S [V/OW, Vhigh]

@ “do not stress the pilot"
x"(t) € [alow, ahigh]

Physical constraints

— provides feasible trajectories in
path-planning

Shape/state constraints are ubiquitous and handled through optimization:
in this thesis constraints are
affine pointwise inequality constraints over Hilbert spaces



Content of the thesis

Optimization in infinite dimensions with infinitely many constraints

@ LQ optimal control is usually solved approximately through time
discretization, whereas state constraints are theoretically difficult

@ kernel methods only provide exact numerical solutions through
representer theorems for finitely many constraints

Challenges to tackle

@ handle infinitely many constraints in kernel methods with guarantees

@ apply kernel methods to state-constrained LQ optimal control

Contributions of this thesis

@ use finite coverings of compact sets in infinite dimensions to tighten
infinitely many constraints by finitely many constraints of another type

o identify the LQ reproducing kernel corresponding to LQ optimal
control
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@ Finding the RKHS of LQ optimal control
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Time-varying state-constrained LQ optimal control

i Xao(2(t0)) + £(2(T))

“altnr) Srelten) + [ [2(0)7 QR +u() R(u(o)] e

st Z/(t) = A(t)z(t) + B(t)u(t), a.e. in[tg, T],
ci(t)Tz(t) < di(t), VYt € T,¥Vie[T] = [1,7],

state z(t) € R?, control u(t) € R”,
reference time ter € [ty, T], set of constraint times T, C [to, T],
A() € LY(to, T), B(-) € L%(to, T), Q(-) € LY(ty, T), R(-) € L?(to,

T),

Q(t) = 0 and R(t) 3= rldy (r > 0), ci(+), di(+) € C(to, T), Jyer = O,

lower-semicontinuous terminal cost g : R? — R U {oo}, indicator
function x4,

z(-) : [to, T] — R absolutely continuous, R(-)/2u(-) € L?([to, T])



Time-varying state-constrained LQ optimal control

i xao(#(t)) + (2(T)) S L(2(8)je1)

.
t2(te) Derzlter) + [ [20) Q(e)a(e) + u(0) R(u(o)] dr 203

st Z(t) = A(t)z(to) + B(t)u(t), a.e. in[to, T],
ci(t) z(t) < di(t), Vt € T, Vi€ [7] = [1,7],

state z(t) € R?, control u(t) € R”,

reference time ter € [ty, T], set of constraint times T, C [to, T],

A(-) € LY(ty, T), B(:) € L%(ty, T), Q(-) € LY(to, T), R(") € L?(to, T),
Q(t) = 0 and R(t) 3= rldy (r > 0), ci(+), di(+) € C(to, T), Jyer = O,
lower-semicontinuous terminal cost g : R? — R U {oo}, indicator
function xg,, “loss function" L : (R?)? — RU {oc},

z(-) : [to, T] — R absolutely continuous, R(-)/2u(-) € L?([to, T])



LQ optimal control as optimization over vector spaces

Optimization over Hilbert space & | Linear Quadratic Optimal Control

min  L(f(-))
f()
S.t.
fed,

1(F()) <0, Vt € T,

L(f(-)) == L(F(x5)jern) + RAIFll5)
i : F =R, eg. F=H(RI,R?)

min L(z(-),u())

z(-) e Whtu(-) e L?

s.t.
Z/(t) = A(t)z + B(t)u,a.e.t € [ty, T]
ci(t) " z(t) <d(t), Vt € T, Vi € [Z]
L(z(),u(-)) := L(z(t)jemn)
+(1Q"22()[2 + [IRV2u()[7 |




LQ optimal control as optimization over vector spaces

Optimization over Hilbert space ¥ | Linear Quadratic Optimal Control

min  L(f(-))
f()
s.t.
fed,

It(f()) <0 s Vt € “Tc

L(£(-)) = L(FCg)jern) + RUIFl|)
l:F - R, eg. F=H{(RI RQ)

2() € W,
S.t.
Z/(t) = A(t)z + B(t)u,a.e.t € [ty, T]
ci(t)Tz(t) <di(t), Vt € T, Vi € [1]
L(z(-),u(-)) = L(z(tj)jepy)
+1QY%2()|[22 + IRY2u() 172

ep SERUC)
.

Approximately solvable through finite
elements

Approximately solvable through time

| discretization




LQ optimal control as optimization over vector spaces

Optimization over Hilbert space ¥ | Linear Quadratic Optimal Control

min  L(f(")) min , L(z()u()
f(-) z(-)e W u(-) el
s.t. s.t.
fed, Z/(t) = A(t)z + B(t)u,a.e.t € [to, T]
I(f(-)) <0, Vt e T, ci(t)"z(t) <di(t), Vt € T.,Vi € [1]
L(6()) = L(FGg)yep) + RAIFL) | L1200 = L))

T =R, eg F=H\(RY RQ) +1QY22()[12 + IRY?u(-) |2,

Exactly solvable if ¥ RKHS, R 7, Approximately solvable through time
le € span({dx, 9, ... }xerd), Tc finite | discretization




LQ optimal control as optimization over vector spaces

Optimization over Hilbert space ¥ | Linear Quadratic Optimal Control

min  L(f(+)) min , L(z()u()
f(-) z(-)e W u() e L
s.t. s.t.
fed, Z/(t) = A(t)z + B(t)u,a.e.t € [to, T]
I(f(-)) <0, Vt e T, ci(t)"z(t) <di(t), Vt € T.,Vi € [1]
L(F()) i= LECg)iern) + R(Ifl) | A0 0= Laltlie)

T =R, eg F=H\(RY RQ) +1QY22()[12 + IRY?u(-) |2,

Exactly solvable if ¥ RKHS, R 7, Exactly solvable? J
le € span({dx, 9, ... }xerd), T finite




Reproducing kernel Hilbert spaces (RKHS)

A RKHS (J, (-, -)5,) is a Hilbert space of real-valued functions over a set
T if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

Jk:TxT = Rs.t. ke(-) = k(-, t) € F and f(t) = (f(-), ke()) 5, for all
t € T and f € Fy (reproducing property) J

the topology of (F, (-, -)7,) is stronger than pointwise convergence
i.e. 0y : f € Fy — f(t) is continuous for all t € T. J

£(2) = fa(t)] = [{F = fo, ke)g | < (I = Fallg I kellz, = [If = fallo k(2 £)



Reproducing kernel Hilbert spaces (RKHS)

A RKHS (J, (-, -)5,) is a Hilbert space of real-valued functions over a set
T if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

Jk:TxT = Rs.t. ke(-) = k(-, t) € F and f(t) = (f(-), ke()) 5, for all
t € T and f € Fy (reproducing property) J

the topology of (F, (-, -)7,) is stronger than pointwise convergence
i.e. 0y : f € Fy — f(t) is continuous for all t € T. J

£(2) = fa(t)] = [{F = fo, ke)g | < (I = Fallg I kellz, = [If = fallo k(2 £)

kisst. 3oy : T — Fy s.t. k(t,S) = <¢k(t):¢k(5)>3”kv (Dk(t) = kt() J

ij=1

kiss.t. G = [k(t;,t)]7._; =0 and Fy := span({k¢(:) }te7), i.e. the
completion for the pre-scalar product (k¢ (), ks(-))x.0 = k(t,s)




Two essential tools for computations

Representer Theorem (e.g. [Schélkopf et al., 2001a])
Let L : RV — R U {oo}, strictly increasing Q : R, — R, and

f e argminL ((f(t, n + Q(||f
gmin L ((F(t2)nem) +2(1l)

Then 3(an)nen) € RY sit. £(2) = 3 eqng ank (-, tn)

— Optimal solutions lie in a finite dimensional subspace of F.

Finite number of evaluations = finite number of coefficients

<Z ank('ytn)y Z bmk(‘asm»&"k: Z Z anbmk(tnasm)

ne[N] mée[M] ne[N] me[M]

< On this finite dimensional subspace, no need to know (Fy, (-, -)s,).



Vector-valued reproducing kernel Hilbert space (VRKHS)

Definition (VRKHS)

Let T be a non-empty set. A Hilbert space (T, (-,-)x) of R®-vector-
valued functions defined on T is a VRKHS if there exists a matrix-valued
kernel K : T x T — RP*Q such that the reproducing property holds:

K(t)p €Tk, p f(t)=(F K(,t)p)x, forteT, pecRfeFy

V.

Necessarily, K has a Hermitian symmetry: K(s,t) = K(t,s)'

There is a one-to-one correspondence between K and (T, (-, ) k)
[Micheli and Glaunés, 2014], so changing T or (-,-), changes K.

For T C RY, Sobolev spaces (T, R®) satisfying s > d/2 are RKHSs.
One can take K(s,t) = k(s, t)ldg, with real-valued k such as

kGauss(tv 5) = exp <_Ht - 5”]%@/(202)) kpoly(t7 5) = (1 + <t7 S)Rd)Z'



Representer theorem in vVRKHSs

Theorem (Representer theorem with constraints, P.-C. Aubin, 2021)

Let (Fk,(-,-)x) be a vVRKHS defined on a set T. For a “loss” L : RNo —
R U {400}, strictly increasing “regularizer” Q : Ry — R, and constraints
d; : RNi — R, consider the optimization problem

Feargmin L (c]1f(to1), -, cqn,f(tono)) + 2 ((Ifllx)
feFx

s.t.
Nillfllk < di(ef F(ti1), - - e/ nf(tin,)), Vi € [1, P
Then there exists {Pi,m}me[[l,N,-]] C R? and aim € R such that

7 P N ,
f= i=0 Zm:l K(; ti,m)phm with Pi,m = Qi mCim-




Objective: Turn the state-constrained LQR into “KRR"

We have a vector space S of controlled trajectories z(-) : [to, T] — R®
Sito, 11 = {2(+) | Fu() € [%(ty, T) s.t. Z(t) = A(t)z(t) + B(t)u(t) a.e. }
Given z(-) € Sy, 7], for the pseudoinverse B(t)“ of B(t), set
u(t) == B(t)°[Z(t) — A(t)z(t)] a.e. in[to, T].
(21(-), 22(-)) s = 21 (trer) " Jrerza(trer)

+ /tOT 21(5)TQ(8)za(2) + ur(£) " R(E)ua(t) | dt

LQRfor Q =0, R=1Id “KRR" (Kernel Ridge Regression)
g L(z(tj)jersy) + a1 2,7 min L(z(t)jern) + 120113
u(-)eL?

ci(t)"z(t) < di(t),Vt € Te,i € [I] ci(t)"z(t) < di(t),Vt € Te,i € [I]

Is (S, (-,-)s) a RKHS?



Objective: Turn the state-constrained LQR into “KRR"
We have a vector space S of controlled trajectories z(-) : [to, T] — R®
Sito, 11 = {2(-)| u(") € L*(to, T) s.t. Z'(t) = A(t)z(t) + B(t)u(t) ae. }
Given z(-) € S, 1), for the pseudoinverse B(t)® of B(t), set

u(t) := B(t)®[Z/(t) — A(t)z(t)] a.e. in[to, T].

(z1(-),22()) s := Z1(trer) T rerzo(trer)
o [21(8)TQ(t)2a(t) + w1 (1) TR(t)ua(t)] dit

to

Lemma (P.-C. Aubin, 2021)

(Sito,77> (5 )s) is @ VRKHS over [to, T] with uniformly continuous
K('? i [t07 T])




Splitting S|y, 7] into subspaces and identifying their kernels
It is hard to identify K, but take Q =0, R =1d, ter = tg, Jyer = Id

(z1(),22()) 5 := z1(t0) "22(t0) + /tOT u1(t) Tua(t)dt.

So:={z())|Z(t) = A(t)z(t), a.e. in [to, TI}  [12(-)ll5, = llz(t0)]?
Sy = {z(")|z(-) € S and z(to) = 0} l2() Ik, = 0O (e, 7y-

As S =S Sy, K= Ko+ Ki.



Splitting S|y, 7] into subspaces and identifying their kernels

It is hard to identify K, but take Q =0, R=1d, t,r = to, Jyer = Id

(z1(),22()) 5 := z1(t0) "22(t0) + /tOT u1(t) Tua(t)dt.

So:={z())|Z(t) = A(t)z(t), a.e. in [to, TI}  [12(-)ll5, = llz(t0)]?
Sy = {z(")|z(-) € S and z(to) = 0} l2() Ik, = 0O (e, 7y-

As § = Sp @ Sy, K = Ko + Ki. Since dim(Sp) = Q, for ®a(t,s) € RQO*Q
the state-transition matrix s — t of Z/(7) = A(7)z(7)

Ko(s, t) = (DA(S7 to)(bA(t, to)T.



Splitting S|y, 7] into subspaces and identifying their kernels

It is hard to identify K, but take Q =0, R=1d, t,r = to, Jyer = Id

(z1(),22()) 5 := z1(t0) "22(t0) + /tOT u1(t) Tua(t)dt.

So:={z())|Z(t) = A(t)z(t), a.e. in [to, TI}  [12(-)ll5, = llz(t0)]?
Sy = {z(-)|2(-) € S and 2z(to) = 0} l2() Ik, = 0O (e, 7y-

As § = Sp @ Sy, K = Ko + Ki. Since dim(Sp) = Q, for ®a(t,s) € RQO*Q
the state-transition matrix s — t of Z/(7) = A(7)z(7)

Ko(s, t) = (DA(S7 to)(bA(t, to)T.

Ki obtained using only the reproducing property and variation of constants

Ku(s, t) = /min(s't) ®a(s, 7)B(r)B(r) da(t, ) dr.

to



Examples: controllability Gramian /transversality condition

Steer a point from (0,0) to (T,z7), with e.g. g(z(T)) = |lzr — z(T)||%

Relaxed planning (g € C* convex)

Exact planning (z(T)

. I . 1o
R Xzr (2(T)) + S uC)lliz(e, ) s 8(z(T)) + S uC)liz(e, )
2(0)=0 2(0)=0

2(0) = 0 < z(-) € S,. By representer theorem: Ipr, z(-) = K1(-, T)pt

Transversality Condition

Controllability Gramian

0=V (p ~ g(Ki(T, T)p) + %pTKl(T, T)p) (p7)

.
Ki(T, T):/ ®A(T, 7)B(7)B(7) | ®p(T, 7) " dr
2 = Ki(T, T)(Ve(Ki(T, T)pT) + PT)-

Z(T)=z7r < z7 € Im(Ki(T, T)) | Sufficient to take pr = —Vg(z(T))




Relation with the differential Riccati equation

Take tref = T, Jyer = J7 = 0. Let J(t, T) be the solution of

018, T) =A(t)TI(t, T)+ I(t, TA(t)
—J(t, T)B(t)R(t)~!B(t)TJ(t, T) + Q(t),
J(T7 T) = JTa
Theorem (P.-C. Aubin, 2021)

Let Kgiag : to €] — 00, T| — K(to, to; [to, T]). Then
Kaiag(to) = J(to, T). More generally, K(-, t; [to, T]) is given by a matrix
Hamiltonian system for all t € [to, T]

1K (s,t) = A(s)K(s, ) + B(s)R(s) "B(s)T 4 t:&i‘;(jgﬁ(m :ﬁi’j t_’s =t
oiN(s,t) = —A(s) N(s,t) + Q(s)K(s, t),

n(to, t) = —ldy,

K(t, T) =371 (N(T,t)T + &a(t, T) — ®a(to, T)).




Relation with the differential Riccati equation

z(-):= argmin  2z(T)"Jr2(T)+ T[z(t)TQ(t)z(t) +u(t) "R(t)u(t)]dt

2()ES[y, 7 to

I12()II5
s.t.
z(to) = 2o,

Pontryagine's maximum principle (PMP)

p(t) = —J(t, T)z(t) and

u(t) = R(t)"'B(t) 'p(t) = —R(t)'B(t) " J(t, T)z(t) =: G(t)z(t)
— online and differential approach

Representer theorem from kernel methods

i(t) = K(t, to; [to, T])po, with pg = K(to, to; [to, T])ilzo e R?
— offline and integral approach (~ Green kernel in PDEs)

.




Numerical example: submarine in a cavern

Original control problem

1
i / lu(t)2dt
0

z(-)eEW?2 u(-)eL?
S.t.
z(0) =0, 2(0)=0,
#(t) = —z(t) + u(t), Vt € [0, 1],
2(t) € [Zow(t), zup(t)], V't € [0, 1].




Numerical example: submarin

Original control problem
/ lu(t) 2dt

z(-) ewnélgb( €L?
s.t.
z(0) =0, z(0)=0,
2(t) = —2(t) + u(t), vt € [0, 1],

2(t) € [z0u(t), 2ip()], VE € 0,1

O

0
0

e in a cavern

Rewriting in standard form

1
|u(t)|*de
0

Z/(t) = Az(t) + Bu(t),
z1(t) € [ziow(t), zup(t)], V't € [0, 1] )

)o-

1
1

0
1



Numerical example: submarin

RKHS regression

Ol

S.t.
z1(t) € [Ziow(t), zup(t)], V't € [0, 1] )

Su

S,

e in a cavern

Rewriting in standard form
/ u(t)2dt

min
z(-)eWb2 u(-)eL?

S.t.
z(0) =0,
Z/(t) = Az(t) + Bu(t),
z1(t) € [Ziow(t), zup(t)], V't € [0, 1] )

{z(-)|2()) € S and 2(0) = 0}  [[z(-)ll%, = u()lIZ2(0,1)-



3k

RKHS regression of

2(-)I1%,

Numerical example: submarine in a cavern

(Ves,

s.t.
z1(t) € [ziow(t), zup(t)], V't € [0, 1] ]

{z(-)]2(-) € S and 2(0) = 0} [l2()lIk, = () F2(0,1)-

S, =
min(s,t) T
Ki(s, t) = / es=ABB Te(!"A dr
0



Numerical example: submarine in a cavern

RKHS regression
. 2
min z(-
im0l N
s.t.
Zl(t) S [zlow,ma Zup,m]a

YVt € [tm— Om,tm+ Om], Ym € [M]

= Upper/Lower constraints 2., and z,
5r L

0 01 02 03 04 05 06 07 08 09

t

Su={z(-)|2(") € S and 2(0) = 0}  [[z(")ll&;, = lu()lIZ2(0,1)-

min(s,t)
}(1(57 t) — / e(S*T)ABBTe(th)ATdT
0



Numerical example: submarine in a cavern

RKHS regression

min  ||z(-)|%
2(-) € S, fa
s.t.
Zl(tm) S [Zlow,mazup,m]v

Yt e |F & £2 & T — = Optimal trajectory with discretized constraints (7 = 0)
m msy =m mJ» vm € [M ] Upper/Lower constraints 2o, and 2,
v Il

St I i I ol

L L
0 0.2 0.4 0.6 0.8

t
M M

2() = Z Kl('a tm)pm = Z amKl(', tm)el
m=1 m=1

min(s,t)
K]_(S, t) — / e(S—T)ABBTe(f—T)ATdT
0



Numerical example: submarine in a cavern

- 1400

-1200

Quadratic programming
M

<1000
minM Z anameIKl(t,,, tmer | <. 800
aeR n,m=1 A - 600
s.t.
M

-1400

K — — Optimal trajectory with discretized constraints (1 = 0)
E (075 l(tma tn)el S [Zlow,mazup,m]a
n=1

200
——— Upper/Lower constraints Zioum and Zu,m = 1 [2(-)| [
5 PR .

0 0.2 0.4 0.6 0.8 1
t

Yt ftm—bmtmtom}, Vm € [M]

2(-)

Mz

M
Kl('7 tm)pm = Z Odel(', tm)el

m=1

min(s,t)
Ki(s,t) = / els=ABBTe(t-"AT 47

3
Il
—

o



Numerical example: submarine in a cavern

RKHS regression

. )12
Z(Smensu 12(-) I,

s.t.
z1(tm) € [ZIOW,maZUP,m] % 0mllz(-) |l Ky

Optimal trajectory with SOC constraints (ball covering)

4l
— — Optimal trajectory with discretized constraints (7 = 0)
Yt-cttm—bmrtmtom}, Vm € [M] T Upen/Lower conmtraints 2 and o
- 5S¢ L arr L L
0 0.2 0.4 0.6 0.8 1
t
M M
z() = E : Kl('atm)pm = E amKl('7tm)el
m=1 m=1

min(s,t)
Ki(s, t) = / (- TABBTe(t-AT g1
0
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9 Tightening infinitely many constraints through finite coverings



Problem statement in machine learning terms

For simplicity, we consider a real-valued kernel k : X x X — R, for X C RY.

Given points (xa)nen) € XV, a foss L : RN — R U {oc}, a regularizer
R:R; — R. Consider

F e arg min £(F) = L((F())pemy) + R (IF]15)
feJFy

s.t.
bi < Dif(x), Vx€X;, Vie[I]=[1,1],
where F is a RKHS of smooth functions from X to R, D; is a differential
operator (D; = > 7j0"), bi € R is a lower bound, X; is compact.

For non-finite X;, we have an infinite number of constraints!
< No representer theorem to work in finite dimensions!

How can we make this optimization problem computationally tractable?



Dealing with an infinite number of constraints: an overview

f € argmin L(f) s.t. "b; < Dif(x), Vx € X;, Vi € [Z]", K; non-finite
feFy

Relaxing

o Discretize constraint at “virtual” samples {%; m}m<m C Kj,
< no guarantees out-of-samples [Agrell, 2019, Takeuchi et al., 2006]

© Add constraint-inducing penalty, Reons(f) = =X [5. min(0, D;f (x) — b;)dx
< no guarantees, changes the problem objective [Brault et al., 2019]

Tightening

@ Replace F by algebraic subclass of functions satisfying the constraints
< hard to stack constraints, ®(x)" A®(x) [Marteau-Ferey et al., 2020]

@ Our solution: discretize X; but replace b; using kernel theory




Deriving SOC constraints through continuity moduli

Take 6 > 0 and x s.t. ||[x — Xp| <6
| Df (x) = Df (%m)| = [(f(-), Dxk(x,-) = Dick(%m, *))«]
<HFCMe  sup — [[Duk(x, ) = Dxk(%m, )|k

{x [Ix=%m|[<d}

”/m(6)

wm(Df,0) = sup  |DF(x) = Df(%m)| < nm(9)[I£(-) ]I«
{x! llx—%ml<8)

For a covering X = U v Bx(%m, 6m)
“b < Df(x), Vx € X" & "b+ wm(Df,d) < Df(Xm), Vm € [M]"



Deriving SOC constraints through continuity moduli

Take 6 > 0 and x s.t. ||[x — Xp| <6
|Df (x) = Df (%m)| = [(£(-), Dxk(x,-) = Duck(%m, -))«l

<HFCMe  sup — [[Duk(x, ) = Dxk(%m, )|k
{x 1 llx—%m||<d}

”/m(6)

wm(Df,0) = sup  |DF(x) = Df(%m)| < nm(9)[I£(-) ]I«
{x! llx—%ml<8)

For a covering K C U e B (%m, dm)
“b < Df(x), Vx € K"<="b + wmn(Df, ) < Df(Xy), Ym € [M]"
< "b+nmO)f ()| < Df (%), Ym € [M]

Second-Order Cone (SOC) constraints: {f | ||Af + b||x < c'f + d}

Since the kernel is smooth, 6 — 0 gives 7,(d) — 0.

There is also a geometrical interpretation for this choice of 7p,.



Support Vector Machine (SVM) is about separating red and green points
by blue hyperplane. 22/35



Using the nonlinear embedding ®p : x — Dyk(x,-), the idea is the same.
With only the green points, it is a one-class SVM [Schélkopf et al., 2001b]



The green points are now samples of a compact set X.

22/35



The image ®p(XK) is not convex...

2/35



The image ®p(K) is not convex, can we cover it by balls of radius 1?

22/35



First cover X C [J{Xm + dB}, and then look at the images ®p({Xm, + dB})

22/35



Cover the ®p({Xm + dB}) with tiny balls! This is how SOC was defined.

22/35



Main contribution in Aubin and Szabd, NeurlPS, 2020

(fby) € argmin  Lo(F) = L((FOm)) peqny) + R(IFlle) +12]b]?
feF,beB

s.t. b; "‘ﬁi,m”f(')Hk < Dif(§;7m), Vme [M,'], Vi e [I]

where B is a closed convex constraint set. If R(-) is strictly increasing, then

Theorem (Theoretical guarantees, P.-C. Aubin and Z. Szabé, 2020)
i) The finite number of SOC constraints is tighter than the infinite
number of affine constraints.
i) Representer theorem (optimal solutions have a finite expression)
fy = Zie[I],me[M,-] 3i,mDixk (%Xi,m, ) + ZnE[N] ank(xn, -)
iii) If Ly is p-strongly convex, we have bounds: computable/theoretical

15 = Fll < min f(ﬁb,,(fn)—ﬁbno(ﬂ?:o)) w;fllnl!w
n k = L ’ 7

( Assuming B = R” for the a priori bound, f the argmin of Ly with original constraints. )
W

T




Joint Quantile Regression (JQR)

0.9

f-(x) conditional quantile over (X, Y):
oef P(Y < £(x)|X =x) =7 €]0,1].

0.6 [

Estimation through convex optimization
over “pinball loss" /-(-) (i.e. tilted
absolute value [Koenker, 2005]).

05
04
03

0.2

Known fact: quantile functions can
cross when estimated independently.

0.1

0-1 (; 8 (; 6 -(;.4 -(;.2 0 0.‘2 0.‘4 O‘G OjS 1‘
Joint quantile regression with non-crossing constraints

min L(f,.. Z D by (yn—fa(xn)) + Ar Y 174117
(et N qeral nem 7€)

s.t. fgr1(x) > fo(x), Vg € [Q — 1], Vx €
[minnerngicld){Xn.i}s MaXne(n),icia) {Xn,i -



Pairing non-crossing quantiles with other shape constraints

Engel's law (1857): “As income rises, the proportion of income spent on
food falls, but absolute expenditure on food rises.”

L L L
-1 -0.5 0 0.5 1 15

without constraints



Pairing non-crossing quantiles with other shape constraints

Engel's law (1857): “As income rises, the proportion of income spent on
food falls, but absolute expenditure on food rises.”
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Pairing non-crossing quantiles with other shape constraints

Engel's law (1857): “As income rises, the proportion of income spent on
food falls, but absolute expenditure on food rises.”
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Pairing non-crossing quantiles with other shape constraints

Engel's law (1857): “As income rises, the proportion of income spent on
food falls, but absolute expenditure on food rises.”

L L L L L -15¢& L L L L L
-1 -0.5 0 0.5 1 15 -1 -0.5 0 0.5 1 15

without constraints non-crossing4-increasing-+concave

Qualitative priors have a great effect on the shape of solutions!



Joint quantile regression (JQR): airplane data

Airplane trajectories at takeoff have increasing altitude

JQR with monotonic con-
1 straint over [Xmin, Xmax):

[P.-C. Aubin and Z.
Szabé, 2020]

=
3
T

Increasing quantiles
should be
non-crossing

Altitude (*100 ft)

Data provided by ENAC
o 20 0 60 80 _160 120 140 10 180 200 (ﬂights Paris—)Toquuse)
Time e [Nicol, 2013]




Kernel ridge regression (KRR): trajectory reconstruction

Very noisy GPS data: six non-overtaking cars in a traffic jam

KRR with monotonic con-
350 straint over [tmin, tmax):
300 -

250 [

[P.-C. Aubin, N. Petit
and Z. Szabé, 2020]

200

Forward trajectories also
maintain
security distance

Noiseless trajectory
+  Noisy measurement
Constrained Reconstruction

= — — — Unconstrained Reconstruction Data from I FSTTA R
0 10 20 % 10 50 (MOCO Po PFOjGCt)
‘© [Buisson et al., 2016]




Partial conclusion

We have seen how to tighten an infinite number of affine constraints

over a compact set into finitely many SOC constraints in RKHSs
— we thus have a representer theorem!

@ tightening intractable constraints is the only way to have guarantees

@ but tightening is “harder" to perform (here computationally)

Covering schemes suffer from the curse of dimensionality! X c RY, d > 1



Partial conclusion

We have seen how to tighten an infinite number of affine constraints

over a compact set into finitely many SOC constraints in RKHSs
— we thus have a representer theorem!

@ tightening intractable constraints is the only way to have guarantees

@ but tightening is “harder" to perform (here computationally)

Covering schemes suffer from the curse of dimensionality! X c RY, d > 1

However the control problem is only defined over X = [ty, T] (d = 1)!



Table of Contents

e Apply the kernel-based constraint tightening to LQ optimal control



SOC tightening of state-constrained LQ optimal control

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints

min 20(Z z z()|1?
()8 Xzo(2(t0)) + &(2(T)) + [lz(-)IIk
S.t.
ci(t)"z(t) < di(t), Vt € [to, T], Vi € [Z],



SOC tightening of state-constrained LQ optimal control

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints with SOC tightening

min 20(Z z z()|1?
()28 Xzo(2(t0)) + &(2(T)) + [lz(-)IIk
s.t.

01 (Om: tm) 20| + €i(ti.m) ' 2(ti,m) < dim, ¥V m € [Mi], Vi € [Z],

with [to, T] C Umegmyltm — dm, tm +m], and two values defined at each t,

Ni(Om, tm) = sup IK(-s tm)ei(tm) — K(-, t)ei(t)l k.
t € [tm—0m,tm+Im]N[0, T]
dim = inf di(t).

1
t € [tm—8m,tm+0m]N[to, T]



Main theoretical result in P.-C. Aubin, SICON, 2021

(H-gen) A(-),Q(-) € L' and B(-),R(-) € L2, c;(-) and d;(-) € C°.

(H-sol) c;(to)"zo < di(tp) and there exists a trajectory z¢(-) € S
satisfying strictly the affine constraints, as well as the initial
condition.?

(H-obj) g(+) is convex and continuous.

Theorem (3/Approximation by SOC constraints, P.-C. Aubin, 2021)

Both the original problem and its strengthening have unique optimal
solutions. For any p > 0, there exists § > 0 such that for all (0m)mef1,no],

with [to, T] C Umer,np[tm — Oms tm + dm] satisfying & > MaX mef1,No] Om
1

— sup_[|z,(t) = 2(t)|| < [1zy(") — 2()llk < p
/K te[to, T]

with v := supscio, 1), pey /P K(t; )P

!(H-sol) is implied for instance by an inward-pointing condition at the boundary.




Main practical result in P.-C. Aubin, SICON, 2021

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints with SOC tightening

min 20(Z z z()|1
()28 Xzo(2(t0)) + &(2(T)) + [lz(-)IIk
s.t.

0i(Oms tm)l|2() |k + €i(ti,m) " 2(ti,m) < dim, ¥ m € [Mi], Vi € [Z].
By the representer theorem, the optimal solution has the form

N;

P
i() = Z K tj m p_] m
j=0 m=1

where ty1 =ty and tg> = T, and the coefficients
(Pj,m)j,m solve a finite dimensional second-order cone problem.




Main practical result in P.-C. Aubin, SICON, 2021

More precisely, setting tg1 = tg and too = T, the coefficients of the
optimal solution z(-) = Zf:o E,’X’;l K(-, tjm)Pj,m solve

P N P N
2 XZO(ztho,tJmpjm)w(ZZKthmpjm)w
+5 :

<

pj,mERY, =0 m=t mom
ajﬁmER
P N P N
3 2 — T
st P =>3 33 ! K(tin, t.m)Pj.m,
i=0 n=1j=0 m=1

Pjm = Qj mCj tm)a Vme IILNJ]]vvj S [[17P]]v

N.
ni((si,ma ti,m)'}/ + Zf:() ijzl Ci(t,',m)TK(t,"m, tj,m)pj,m v m S [[]_, N;]],.
< di(6i,m, tim), vie[1,P],

which can be written equivalently as a finite dimensional second-order
cone problem (SOCP).



Future work: Pushing RKHSs beyond/Revisiting LQR

For RKHSs
@ Control constraints do not correspond to continuous evaluations

< limits of RKHS pointwise theory (e.g. x' = u € L2([0, T],[~1,1]) a.e.)

@ Successive linearizations of nonlinear system lead to changing kernels
— a single kernel may not be sufficient (e.g. x" = fi, (X + fu, (U a-e.)

@ Non-quadratic costs for linear systems do not lead to Hilbert spaces
< one may need Banach kernels (e.g. ||u(-)|\%2(0 m lu()ll 20, 7))



Future work: Pushing RKHSs beyond/Revisiting LQR

For RKHSs

@ Control constraints do not correspond to continuous evaluations
< limits of RKHS pointwise theory (e.g. x' = u € L2([0, T],[~1,1]) a.e.)

@ Successive linearizations of nonlinear system lead to changing kernels
— a single kernel may not be sufficient (e.g. x" = fi, (X + fu, (U a-e.)

@ Non-quadratic costs for linear systems do not lead to Hilbert spaces
< one may need Banach kernels (e.g. ||u(-)|\%2(0 n lu()ll 20, 7))

For control theory

@ To each evaluation at time t corresponds a covector p; € R
< Representer theorem well adapted for state constraints, but unsuitable
for control constraints. Reverts the difficulty w.r.t. PMP approach.

@ The Gramian of controllability generates trajectories
< This allows for close-form solutions in continuous-time for state
constraints.



Final remarks

“Finite coverings in RKHSs can be used to turn an
infinite number of pointwise affine constraints over a
compact set into finitely many SOC constraints."

“State-constrained LQ Optimal Control is a
shape-constrained kernel regression.”

“In general, positive definite kernels are much too linear
to tackle nonlinear control problems — Linearize! “

Not covered in this talk:
Chapter 6 (regularity of minimal time) and Chapter 7 (set approximation).
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Annex: Extra list of shape constraints

e Monotonicity w.r.t. partial ordering: u v = f(u) < f(v) foruxv
iff 22 jerq i < 2jeqp v for all i € [d] (unordered weak majorization)

O%f(x)>...>0%f(x) >0 (V¥x);
u=xv=f(u) <f(v)foru=xviff uy <v; (Vi € [d]) (product ordering),

9f(x) >0, (Vjed], Vx).

o Supermodularity: f(uVv)+ f(uAv) > f(u) + f(v), u,v € RY, where

u Vv = (max(uj, vj))je(q) and u A v := (min(uj, v;))jeqq)- For f € C

0%f(x)
Ox;0x;

>0 (Vi#]j € [d],vx).



Annex: JQR performance over UCI datasets

e PDCD = Primal-Dual Coordinate Descent [Sangnier et al., 2016],
JQR with parallel /heteroscedatic quantile penalization (see also ITL
[Brault et al., 2019] for noncrossing inducer)

e mean =+ std of 100xvalue of the pinball loss (smaller is better)

Dataset d N PDCD SOC

engel 1 235 + 8 53+ 9
GAGurine 1 314 + 7 65+ 6
geyser 1 299 + 7 108+ 3
mcycle 1 133 66+ 9 + 5
ftcollinssnow 1 93 154+ 16 + 13
CobarOre 2 38 159424 + 17
topo 2 52 69418 + 14
caution 2 100 +17 98+ 22
ufc 3 372 + 4 87+ 6




Annex: Estimation of production functions

Classical assumptions y — —log(y)

min & %;V][yn f(xn)]” + Allfllk
s.t.
0< f(x) VxeX,
0<0%f(x) VxeX,Vield],
0 = £(0),

Ogxd < —

(2%t f) (x)],;, Vx € K,

min
g€Tk

Z [vn — (Xn

n€[N]
s.t.
lellk <A,
< -0%g(x) VxeX,
0 < —-90%g(x) ¥xeX,

O2x2 < [(0°79g) (%)]; jepey VX € K




Annex: Estimation of production functions

Only 25 points selected out of 543, checking generalization properties for
various constraints (used as side information)

5
OIS 555555502
032 SRR,
SSILEE S 5555552
AR 5
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555557
S,

7%

2

2,
P55
S5

-log(Output)
-log(Output)

<L
K77

0%,

1

0 0
Capital 4 Labour Capital 4 Labour

(a) NoCons (b) SOC Monot.

Belgian labour data, 1996, https://vincentarelbundock.github.io/
Rdatasets/doc/Ecdat/Labour.html
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Annex: Estimation of production functions

Only 25 points selected out of 543, checking generalization properties for
various constraints (used as side information)

-log(Output)
-log(Output)

) 0 o3 0
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(c) SOC Conv. (d) SOC Conv.+Monot.

Belgian labour data, 1996, https://vincentarelbundock.github.io/
Rdatasets/doc/Ecdat/Labour.html
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Annex: Estimation of production functions

Only 25 points selected out of 543, checking generalization properties for
various constraints (used as side information)

0.6+ - — —Train (27 points - 5% of total)
g ‘ | —Test (272 points - 50% of total)
205+ I | ‘ -
o + T
g 0.4 n 7
: | T
Zo0.2r T i - .
: ] - =
0.1 E : _ T 1
= T 4

L L L L

NoCons SOC Conv. SOC Monot. SOC Conv.+Monot.

Figure: MSE as a function of incorporating shape constraints with the proposed
SOC technique. NoCons: no constraint. SOC Monot.: two monotonicity
constraints. SOC Conv.: one convexity constraint. SOC Conv.+Monot.: one
convexity and two monotonicity constraints.



Annex: Green kernels and RKHSs

Let D be a differential operator, D* its formal adjoint. Define the Green
function Gp-px(y) : @ = R s.t. D*D Gp«p x(y) = 6,(y) then, if the
integrals over the boundaries in Green's formula are null, for any f € Fy

f(x) Z/Qf()/)D*DGD*D,x(Y)dy = /QDf()/)DGD*D,x(Y) =: (f, Gp+Dx) 7,
so k(x,y) = Gp+p.x(y) [Saitoh and Sawano, 2016, p61]. For vector-valued
contexts, e.g. Fx = W2(RY,RY) and D*D = (1 — 02A)*

component-wise, see [Micheli and Glaunes, 2014, p9].

Alternatively, in 1D, D Gp x(y) = 6,(y), the kernel associated to the inner
product [ Df(y)Dg(y)dy for the space of f “null at the border" writes as

k(x,y) = /Q Gox(2)Gp,, (2)dz

see [Berlinet and Thomas-Agnan, 2004, p286] and [Heckman, 2012].



Annex: Alternative finite coverings

Pp(X)

Hi(f —fo,b0 — BTb)

(a) (b)

Figure: Two examples of coverings in Ty of ®p(K) by a set Q = Ume[M]Qm
contained in the halfspace Hy(f — fo, by — B'b). (a): covering through balls
Qm = Bk (DK (-, %m), m)- (b): covering through a ball intersected with
halfspaces.



Annex: Why are state constraints difficult to study?

o Theoretical obstacle: Pontryagine’s maximum principle involves not only
an adjoint vector p(t) but also measures/BV functions 1(t) supported at
times where the constraints are saturated. You cannot just backpropagate
the Hamiltonian system from the transversality condition.

@ Numerical obstacle: Time discretization of constraints may fail e.g.

Speed cameras in traffic control

In between two cameras, drivers
always break the speed limit.

" Camera



Annex: IPC gives strictly feasible trajectories

(H-sol) C(0)zp < d(0) and there exists a trajectory z¢(-) € S satisfying

strictly the affine constraints, as well as the initial condition.

(H1) A(-),B(-) €C° c;(-),di(-) € Ct and C(0)zo < d(0).

(H2) There exists M, > 0 s.t. , for all t € [to, T] and z € R satisfying
C(t)z <d(t), and ||z|| < (1 + HZOH)eTIA(~)||Loo(t0,r)+TMUIIB(-)IILoouO,n’
there exists u; , € M By such that

Vie{jle(t) z=di(t)}, ci(t) z—d/(t)+ci(t) T (A(t)z+B(t)ur ) < 0.

This is an inward-pointing condition (IPC) at the boundary.

Lemma (Existence of interior trajectories)

If (H1) and (H2) hold, then (H-sol) holds.




Annex: control proof main idea, nested property

ni(6, t) == sup [|[K(-, t)ei(t) — K(- s)ei(s)llw,  wi(d, t) == sup|[d;(t) — di(s)];
di(0m, tm) == inf di(s), overs € [tm — Om, tm + Om] N [to, T]

For € € Ri, the constraints we shall consider are defined as follows
Vo :={z(") € S[C(t)z(t )<d( ), Vt € [to, T]},
Vssin == {2() € S| 7 (6m, tm)|12(-) |k + C(tm)2(tm) < d(Gpm, tm), ¥ m € [1, Mo]},
Vsint = {2(-) € S| 7 (6, ) H )||K + W(6,t) + C(t)z(t) < d(t), Vt € [to, T},
Vo :={z(:) € S| € + C(t)z(t) < d(t), V't € [to, T]}.

Proposition (Nested sequence)

Let dmax := Maxme[1,mp] Om- For any & > dmax, if, for a given yo > 0,
€ > SUPse(s,, 711 (9, t)yo + wi(6, t)], then we have a nested sequence

(V2 NyoBk) C Vs,inf C Vs,fin C Vo.

Only the simpler V2 constraints matter!



Annex: Van Loan’s trick for time-invariant Gramians

Use matrix exponentials as in [Van Loan, 1978]

A Q. F2(A) Go(A)
(6 )e) (76 2R

R A min(s,t)
Fg(t) —e t Kl(S, t) — / e(S—T)ABBTe(t—T)ATdT
Fs(t) = At 0
) ; Set Qc =BR™!B'.
Golt) = [ eeTAQe AT ar | O AE
0 For s <t, Ki(s,t) = é2(5)|§2(t)T
For t <s, Ki(s, t) = Fa(s)Go(t)"




Annex: Example of constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

min  —x(T) + Au()[? A< 1
e R L0l

(x(0) =05, %(0)=0, w(0)=0, x(T/3)=05 x(T)=0
(%(t) = —10x(t) + w(t), Ww(t) =u(t),ae in[0, T]
(x(t) € [-3,+00[, w(t) €[-10,10],Vt € [0, T]]

[ o\

x(t) w(t)

w(t)=u(t)

X(t)



Annex: Example of constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

—X(T) + MuQO) oo,y A<

O
(x(0) =05, %(0)=0, w(0)=0, x(T/3)=05 x(T)=0
(%(t) = —10x(t) + w(t), Ww(t) =u(t),ae in[0, T]|

(%(t) € [-3,400[, w(t)€[-10,10],Vt € [0, T])

Converting affine state constraints to SOC constraints, applying rep. thm

nxllz()llk = x(tm) < 3, 2(-) = K(-,0)po + K(-, T/3)p1/3
mwllz()llk + w(tm) < 10, M
77WHZ(')HK - W(tm) S 10 + K(.’ T)pT + mgl K('v tm)pm

Most of computational cost is related to the “controllability Gramians”
Ki(s,t) = jbmm(s’t) e(s=ABBTe(t*="A" 47 which we have to approximate.



Annex: Example of constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]}
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Figure: Comparison of SOC constraints (guaranteed 7,,) vs discretized constraints
(nw = 0) for Np = 200.



Annex: Example of constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]}
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Figure: Comparison of SOC constraints (guaranteed 7,,) vs discretized constraints
(nw = 0) for Np = 200 - Chattering phenomenon like for traffic cameras!.



Annex: Example of constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]}
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Figure: Comparison of SOC constraints for varying Np and guaranteed 7,,.



Annex: Example of constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning” problem.
Red circles: ‘equality constraints ‘ Grayed areas: [constraints over [0, T]}
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Figure: Comparison of SOC constraints for varying n,, and Np = 200.
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