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What are shape constraints?

Nonparametric estimation Shape constraints

nonnegativity
f (x) ≥ 0
directional monotonicity
∂i f (x) ≥ 0
directional convexity
∂2i ,i f (x) ≥ 0

Side information/Requirements
↪→ compensates small number of

samples or excessive noise

Applied in many fields: Biology, Chemistry, Statistics, Economics,...
With many techniques: Isotonic regression, density estimation with splines,...
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What are state constraints?

Optimal control State constraints

“avoid the wall“
x(t) ∈ [xlow , xhigh]
“abide by the speed limit“
x ′(t) ∈ [vlow , vhigh]
“do not stress the pilot“
x”(t) ∈ [alow , ahigh]

Physical constraints
↪→ provides feasible trajectories in

path-planning

Shape/state constraints are ubiquitous and handled through optimization:
in this thesis constraints are

affine pointwise inequality constraints over Hilbert spaces
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Content of the thesis

Optimization in infinite dimensions with infinitely many constraints
LQ optimal control is usually solved approximately through time
discretization, whereas state constraints are theoretically difficult
kernel methods only provide exact numerical solutions through
representer theorems for finitely many constraints

Challenges to tackle
handle infinitely many constraints in kernel methods with guarantees
apply kernel methods to state-constrained LQ optimal control

Contributions of this thesis
use finite coverings of compact sets in infinite dimensions to tighten
infinitely many constraints by finitely many constraints of another type
identify the LQ reproducing kernel corresponding to LQ optimal
control
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Time-varying state-constrained LQ optimal control

min
z(·),u(·)

χz0(z(t0)) + g(z(T ))

+z(tref )>Jref z(tref ) +
∫ T

t0

[
z(t)>Q(t)z(t) + u(t)>R(t)u(t)

]
dt

s.t. z′(t) = A(t)z(t) + B(t)u(t), a.e. in [t0,T ],
ci(t)>z(t) ≤ di(t), ∀ t ∈ Tc , ∀ i ∈ [I] = [[1, I]],

state z(t) ∈ RQ, control u(t) ∈ RP ,
reference time tref ∈ [t0,T ], set of constraint times Tc ⊂ [t0,T ],
A(·) ∈ L1(t0,T ), B(·) ∈ L2(t0,T ), Q(·) ∈ L1(t0,T ), R(·) ∈ L2(t0,T ),
Q(t) < 0 and R(t) < r IdM (r > 0), ci(·), di(·) ∈ C0(t0,T ), Jref � 0,
lower-semicontinuous terminal cost g : RQ → R ∪ {∞}, indicator
function χz0 ,
z(·) : [t0,T ]→ RQ absolutely continuous, R(·)1/2u(·) ∈ L2([t0,T ])
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Time-varying state-constrained LQ optimal control

min
z(·),u(·)

χz0(z(t0)) + g(z(T )) → L(z(tj)j∈[J])

+z(tref )>Jref z(tref ) +
∫ T

t0

[
z(t)>Q(t)z(t) + u(t)>R(t)u(t)

]
dt→ ‖z(·)‖2S

s.t. z′(t) = A(t)z(t) + B(t)u(t), a.e. in [t0,T ],
ci(t)>z(t) ≤ di(t), ∀ t ∈ Tc ,∀ i ∈ [I] = [[1, I]],

state z(t) ∈ RQ, control u(t) ∈ RP ,
reference time tref ∈ [t0,T ], set of constraint times Tc ⊂ [t0,T ],
A(·) ∈ L1(t0,T ), B(·) ∈ L2(t0,T ), Q(·) ∈ L1(t0,T ), R(·) ∈ L2(t0,T ),
Q(t) < 0 and R(t) < r IdM (r > 0), ci(·), di(·) ∈ C0(t0,T ), Jref � 0,
lower-semicontinuous terminal cost g : RQ → R ∪ {∞}, indicator
function χz0 , “loss function“ L : (RQ)J → R ∪ {∞},
z(·) : [t0,T ]→ RQ absolutely continuous, R(·)1/2u(·) ∈ L2([t0,T ])
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LQ optimal control as optimization over vector spaces

Optimization over Hilbert space F

min
f(·)

L(f(·))

s.t.
f ∈ F,

lt(f(·)) ≤ 0 , ∀t ∈ Tc

L(f(·)) := L(f(xj)j∈[J]) + R(‖f‖F)
lt : F → R, e.g. F = H1(Rd ,RQ)

Linear Quadratic Optimal Control

min
z(·) ∈W 1,1,u(·) ∈ L2

L(z(·),u(·))

s.t.
z′(t) = A(t)z + B(t)u, a.e.t ∈ [t0,T ],
ci(t)>z(t) ≤di(t), ∀t ∈ Tc , ∀ i ∈ [I]
L(z(·),u(·)) := L(z(tj)j∈[J])

+ ‖Q1/2z(·)‖2L2 + ‖R1/2u(·)‖2L2
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Reproducing kernel Hilbert spaces (RKHS)

A RKHS (Fk , 〈·, ·〉Fk ) is a Hilbert space of real-valued functions over a set
T if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

∃ k : T × T → R s.t. kt(·) = k(·, t) ∈ Fk and f (t) = 〈f (·), kt(·)〉Fk for all
t ∈ T and f ∈ Fk (reproducing property)

the topology of (Fk , 〈·, ·〉Fk ) is stronger than pointwise convergence
i.e. δt : f ∈ Fk 7→ f (t) is continuous for all t ∈ T.

|f (t)− fn(t)| = |〈f − fn, kt〉Fk | ≤ ‖f − fn‖Fk‖kt‖Fk = ‖f − fn‖Fk

√
k(t, t)

k is s.t. ∃Φk : T → Fk s.t. k(t, s) = 〈Φk(t),Φk(s)〉Fk , Φk(t) = kt(·)

k is s.t. G = [k (ti , tj)]ni ,j=1 < 0 and Fk := span({kt(·)}t∈T), i.e. the
completion for the pre-scalar product 〈kt(·), ks(·)〉k,0 = k(t, s)
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Two essential tools for computations

Representer Theorem (e.g. [Schölkopf et al., 2001a])
Let L : RN → R ∪ {∞}, strictly increasing Ω : R+ → R, and

f̄ ∈ arg min
f ∈Fk

L
(

(f (tn))n∈[N]

)
+ Ω (‖f ‖k)

Then ∃ (an)n∈[N] ∈ RN s.t. f̄ (·) =
∑

n∈[N] ank(·, tn)

↪→ Optimal solutions lie in a finite dimensional subspace of Fk .

Finite number of evaluations =⇒ finite number of coefficients

Kernel trick

〈
∑
n∈[N]

ank(·, tn),
∑

m∈[M]
bmk(·, sm)〉Fk =

∑
n∈[N]

∑
m∈[M]

anbmk(tn, sm)

↪→ On this finite dimensional subspace, no need to know (Fk , 〈·, ·〉Fk ).
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Vector-valued reproducing kernel Hilbert space (vRKHS)

Definition (vRKHS)

Let T be a non-empty set. A Hilbert space (FK , 〈·, ·〉K ) of RQ-vector-
valued functions defined on T is a vRKHS if there exists a matrix-valued
kernel K : T × T → RQ×Q such that the reproducing property holds:

K (·, t)p ∈ FK , p>f(t) = 〈f,K (·, t)p〉K , for t ∈ T, p ∈ RQ, f ∈ FK

Necessarily, K has a Hermitian symmetry: K (s, t) = K (t, s)>

There is a one-to-one correspondence between K and (FK , 〈·, ·〉K )
[Micheli and Glaunès, 2014], so changing T or 〈·, ·〉K changes K .

For T ⊂ Rd , Sobolev spaces Hs(T,RQ) satisfying s > d/2 are RKHSs.
One can take K (s, t) = k(s, t)IdQ, with real-valued k such as

kGauss(t, s) = exp
(
−‖t − s‖2Rd/(2σ2)

)
kpoly(t, s) = (1 + 〈t, s〉Rd )2.
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Representer theorem in vRKHSs

Theorem (Representer theorem with constraints, P.-C. Aubin, 2021)

Let (FK , 〈·, ·〉K ) be a vRKHS defined on a set T. For a “loss“ L : RN0 →
R ∪ {+∞}, strictly increasing “regularizer“ Ω : R+ → R, and constraints
di : RNi → R, consider the optimization problem

f̄ ∈ arg min
f∈FK

L
(
c>0,1f(t0,1), . . . , c>0,N0f(t0,N0)

)
+ Ω (‖f‖K )

s.t.
λi‖f‖K ≤ di(c>i ,1f(ti ,1), . . . , c>i ,Ni f(ti ,Ni )), ∀ i ∈ [[1,P]].

Then there exists {pi ,m}m∈[[1,Ni ]] ⊂ RQ and αi ,m ∈ R such that

f̄ =
∑P

i=0
∑Ni

m=1 K (·, ti ,m)pi ,m with pi ,m = αi ,mci ,m.
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Objective: Turn the state-constrained LQR into “KRR“
We have a vector space S of controlled trajectories z(·) : [t0,T ]→ RQ

S[t0,T ] := {z(·) | ∃u(·) ∈ L2(t0,T ) s.t. z′(t) = A(t)z(t) + B(t)u(t) a.e. }
Given z(·) ∈ S[t0,T ], for the pseudoinverse B(t)	 of B(t), set

u(t) := B(t)	[z′(t)− A(t)z(t)] a.e. in [t0,T ].
〈z1(·), z2(·)〉S := z1(tref )>Jref z2(tref )

+
∫ T

t0

[
z1(t)>Q(t)z2(t) + u1(t)>R(t)u2(t)

]
dt

LQR for Q ≡ 0, R ≡ Id

min
z(·)∈S
u(·)∈L2

L(z(tj)j∈[J]) + ‖u(·)‖2L2(t0,T )

ci(t)>z(t) ≤ di(t), ∀t ∈ Tc , i ∈ [I]

“KRR“ (Kernel Ridge Regression)

min
z(·)∈S

L(z(tj)j∈[J]) + ‖z(·)‖2S

ci(t)>z(t) ≤ di(t), ∀t ∈ Tc , i ∈ [I]

Is (S, 〈·, ·〉S) a RKHS?
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∫ T

t0

[
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K (·, ·; [t0,T ]).
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Splitting S[t0,T ] into subspaces and identifying their kernels

It is hard to identify K , but take Q ≡ 0, R ≡ Id, tref = t0, Jref = Id

〈z1(·), z2(·)〉S := z1(t0)>z2(t0) +
∫ T

t0
u1(t)>u2(t)dt.

S0 := {z(·) | z′(t) = A(t)z(t), a.e. in [t0,T ]} ‖z(·)‖2K0 = ‖z(t0)‖2

Su := {z(·) | z(·) ∈ S and z(t0) = 0} ‖z(·)‖2K1 = ‖u(·)‖2L2(t0,T ).

As S = S0 ⊕ Su, K = K0 + K1.

Since dim(S0) = Q, for ΦA(t, s) ∈ RQ×Q

the state-transition matrix s → t of z′(τ) = A(τ)z(τ)

K0(s, t) = ΦA(s, t0)ΦA(t, t0)>.

K1 obtained using only the reproducing property and variation of constants

K1(s, t) =
∫ min(s,t)

t0
ΦA(s, τ)B(τ)B(τ)>ΦA(t, τ)>dτ .
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Examples: controllability Gramian/transversality condition

Steer a point from (0, 0) to (T , zT ), with e.g. g(z(T )) = ‖zT − z(T )‖2N

Exact planning (z(T ) = zT )

min
z(·)∈S
z(0)=0

χzT (z(T )) + 1
2‖u(·)‖2L2(t0,T )

Relaxed planning (g ∈ C1 convex)

min
z(·)∈S
z(0)=0

g(z(T )) + 1
2‖u(·)‖2L2(t0,T )

z(0) = 0⇔ z(·) ∈ Su. By representer theorem: ∃pT , z̄(·) = K1(·,T )pT

Controllability Gramian

K1(T ,T ) =

∫ T

0

ΦA(T , τ)B(τ)B(τ)>ΦA(T , τ)>dτ

z̄(T ) = zT ⇔ zT ∈ Im(K1(T ,T ))

Transversality Condition

0 = ∇
(
p 7→ g(K1(T ,T )p) +

1
2
p>K1(T ,T )p

)
(pT )

= K1(T ,T )(∇g(K1(T ,T )pT ) + pT ).

Sufficient to take pT = −∇g(z̄(T ))
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Relation with the differential Riccati equation

Take tref = T , Jref = JT � 0. Let J(t,T ) be the solution of

-∂1J(t,T ) = A(t)>J(t,T ) + J(t,T )A(t)
−J(t,T )B(t)R(t)−1B(t)>J(t,T ) + Q(t),

J(T ,T ) = JT ,

Theorem (P.-C. Aubin, 2021)
Let Kdiag : t0 ∈]−∞,T ] 7→ K (t0, t0; [t0,T ]). Then
Kdiag(t0) = J(t0,T )−1. More generally, K (·, t; [t0,T ]) is given by a matrix
Hamiltonian system for all t ∈ [t0,T ]

∂1K (s, t) = A(s)K(s, t) + B(s)R(s)−1B(s)>
{
Π(s, t) + ΦA(t0, s)> −ΦA(t, s)>, s ≥ t,

Π(s, t) + ΦA(t0, s)>, s < t.
∂1Π(s, t) = −A(s)>Π(s, t) + Q(s)K (s, t),
Π(t0, t) = −IdN ,
K (t,T ) = −J−1T (Π(T , t)> + ΦA(t,T )−ΦA(t0,T )).
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Relation with the differential Riccati equation

z̄(·) := arg min
z(·)∈S[t0,T ]

z(T )>JT z(T ) +
∫ T

t0
[z(t)>Q(t)z(t) + u(t)>R(t)u(t)]dt︸ ︷︷ ︸

‖z(·)‖2S

s.t.
z(t0) = z0,

Pontryagine’s maximum principle (PMP)
p(t) = −J(t,T )z̄(t) and
ū(t) = R(t)−1B(t)>p(t) = −R(t)−1B(t)>J(t,T )z̄(t) =: G(t)z̄(t)
↪→ online and differential approach

Representer theorem from kernel methods
z̄(t) = K (t, t0; [t0,T ])p0, with p0 = K (t0, t0; [t0,T ])−1z0 ∈ RQ

↪→ offline and integral approach (∼ Green kernel in PDEs)
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Numerical example: submarine in a cavern

Original control problem

min
z(·)∈W 2,2,u(·)∈L2

∫ 1

0
|u(t)|2dt

s.t.
z(0) = 0, ż(0) = 0,
z̈(t) = −ż(t) + u(t), ∀t ∈ [0, 1],
z(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1].
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Original control problem

min
z(·)∈W 2,2,u(·)∈L2

∫ 1

0
|u(t)|2dt

s.t.
z(0) = 0, ż(0) = 0,
z̈(t) = −ż(t) + u(t), ∀t ∈ [0, 1],
z(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1].

Rewriting in standard form

min
z(·)∈W 1,2,u(·)∈L2

∫ 1

0
|u(t)|2dt

s.t.
z(0) = 0,
z′(t) a.e.= Az(t) + Bu(t),
z1(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1]

z =
(
z
ż

)
, A =

(
0 1
0 -1

)
, B =

(
0
1

)
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Numerical example: submarine in a cavern

RKHS regression

min
z(·) ∈ Su

‖z(·)‖2K1

s.t.
z1(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1]

Rewriting in standard form

min
z(·)∈W 1,2,u(·)∈L2

∫ 1

0
|u(t)|2dt

s.t.
z(0) = 0,
z′(t) a.e.= Az(t) + Bu(t),
z1(t) ∈ [zlow(t), zup(t)], ∀ t ∈ [0, 1]

Su := {z(·) | z(·) ∈ S and z(0) = 0} ‖z(·)‖2K1 = ‖u(·)‖2L2(0,1).
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min
z(·) ∈ Su

‖z(·)‖2K1
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Numerical example: submarine in a cavern

Quadratic programming

min
α ∈ RM

M∑
n,m=1

αnαme>1 K1(tn, tm)e1

s.t.
M∑
n=1

αnK1(tm, tn)e1 ∈ [zlow,m, zup,m],

∀ t ∈ [tm − δm, tm + δm], ∀m ∈ [M]
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Table of Contents

1 Finding the RKHS of LQ optimal control

2 Tightening infinitely many constraints through finite coverings

3 Apply the kernel-based constraint tightening to LQ optimal control
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Problem statement in machine learning terms

For simplicity, we consider a real-valued kernel k : X×X→ R, for X ⊂ Rd .

Given points (xn)n∈[N] ∈ XN , a loss L : RN → R ∪ {∞}, a regularizer
R : R+ → R. Consider

f̄ ∈ arg min
f ∈ Fk

L(f ) = L
(

(f (xn))n∈[N]

)
+ R (‖f ‖Fk )

s.t.
bi ≤ Di f (x), ∀ x ∈ Ki , ∀i ∈ [I] = [[1, I]],

where Fk is a RKHS of smooth functions from X to R, Di is a differential
operator (Di =

∑
j γj∂

rj ), bi ∈ R is a lower bound, Ki is compact.

For non-finite Ki , we have an infinite number of constraints!
↪→ No representer theorem to work in finite dimensions!

How can we make this optimization problem computationally tractable?
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Dealing with an infinite number of constraints: an overview

f̄ ∈ arg min
f ∈Fk

L(f ) s.t. ”bi ≤ Di f (x), ∀ x ∈ Ki , ∀i ∈ [I]”, Ki non-finite

Relaxing
Discretize constraint at “virtual“ samples {x̃i ,m}m≤M ⊂ Ki ,
↪→ no guarantees out-of-samples [Agrell, 2019, Takeuchi et al., 2006]

Add constraint-inducing penalty, Rcons(f ) = −λ
∫
Ki

min(0,Di f (x)− bi)dx
↪→ no guarantees, changes the problem objective [Brault et al., 2019]

Tightening
Replace F by algebraic subclass of functions satisfying the constraints
↪→ hard to stack constraints, Φ(x)>AΦ(x) [Marteau-Ferey et al., 2020]

Our solution: discretize Ki but replace bi using kernel theory
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Deriving SOC constraints through continuity moduli
Take δ ≥ 0 and x s.t. ‖x − x̃m‖ ≤ δ
|Df (x)− Df (x̃m)| = |〈f (·),Dxk(x , ·)− Dxk(x̃m, ·)〉k |

≤ ‖f (·)‖k sup
{x | ‖x−x̃m‖≤δ}

‖Dxk(x , ·)− Dxk(x̃m, ·)‖k︸ ︷︷ ︸
ηm(δ)

ωm(Df , δ) := sup
{x | ‖x−x̃m‖≤δ}

|Df (x)− Df (x̃m)| ≤ ηm(δ)‖f (·)‖k

For a covering K =
⋃
m∈[M] BX(x̃m, δm)

“b ≤ Df (x), ∀x ∈ K“⇔ “b + ωm(Df , δ) ≤ Df (x̃m), ∀m ∈ [M]“

Second-Order Cone (SOC) constraints: {f | ‖Af + b‖K ≤ c>f + d}

Since the kernel is smooth, δ → 0 gives ηm(δ)→ 0.
There is also a geometrical interpretation for this choice of ηm.
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𝑥 

𝑘𝑥 

Φ 

Φ−1 

Support Vector Machine (SVM) is about separating red and green points
by blue hyperplane.
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𝑥 𝑚 

𝐷𝑥𝑘𝑥 𝑚 

Φ𝐷 

Φ𝐷
−1 

Using the nonlinear embedding ΦD : x 7→ Dxk(x , ·), the idea is the same.
With only the green points, it is a one-class SVM [Schölkopf et al., 2001b]
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𝑥 𝑚 

𝐷𝑥𝑘𝑥 𝑚 

Φ𝐷 

Φ𝐷
−1 

The green points are now samples of a compact set K.
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𝑥 𝑚 

𝐷𝑥𝑘𝑥 𝑚 

Φ𝐷 

Φ𝐷
−1 

The image ΦD(K) is not convex...
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𝑥 𝑚 

𝐷𝑥𝑘𝑥 𝑚 

Φ𝐷 

Φ𝐷
−1 

𝜂 

The image ΦD(K) is not convex, can we cover it by balls of radius η?
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𝑥 𝑚 
δ 

𝐷𝑥𝑘𝑥 𝑚 

Φ𝐷 

Φ𝐷
−1 

First cover K ⊂
⋃
{x̃m + δB}, and then look at the images ΦD({x̃m + δB})
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𝑥 𝑚 
δ 

𝜂 
𝐷𝑥𝑘𝑥 𝑚 

Φ𝐷 

Φ𝐷
−1 

Cover the ΦD({x̃m + δB}) with tiny balls! This is how SOC was defined.
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Main contribution in Aubin and Szabó, NeurIPS, 2020
(fη, bη) ∈ arg min

f ∈ Fk ,b ∈ B
Lb(f ) = L

(
(f (xn))n∈[N]

)
+ R (‖f ‖k) +µ‖b‖2

s.t. bi + ηi ,m‖f (·)‖k ≤ Di f (x̃i ,m), ∀m ∈ [Mi ], ∀i ∈ [I].

where B is a closed convex constraint set. If R(·) is strictly increasing, then

Theorem (Theoretical guarantees, P.-C. Aubin and Z. Szabó, 2020)
i) The finite number of SOC constraints is tighter than the infinite

number of affine constraints.
ii) Representer theorem (optimal solutions have a finite expression)

fη =
∑

i∈[I],m∈[Mi ] ãi ,mDi ,xk (x̃i ,m, ·) +
∑

n∈[N] ank(xn, ·)
iii) If Lb is µ-strongly convex, we have bounds: computable/theoretical

‖fη − f̄ ‖k ≤ min

√2(Lbη(fη)− Lbη=0(fη=0))
µ

,

√
Lf̄ ‖η‖∞

µ


(Assuming B = RI for the a priori bound, f̄ the argmin of Lb with original constraints.)
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Joint Quantile Regression (JQR)
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q=0.1
q=0.5
q=0.9

fτ (x) conditional quantile over (X ,Y ):
P(Y ≤ fτ (x)|X = x) = τ ∈]0, 1[.

Estimation through convex optimization
over “pinball loss“ lτ (·) (i.e. tilted
absolute value [Koenker, 2005]).

Known fact: quantile functions can
cross when estimated independently.

Joint quantile regression with non-crossing constraints

min
(fq)q∈[Q]∈FQ

k

L (f1, . . . , fQ) = 1
N
∑
q∈[Q]

∑
n∈[N]

lτq (yn − fq(xn)) + λf
∑
q∈[Q]

‖fq‖2k

s.t. fq+1(x) ≥ fq(x), ∀q ∈ [Q − 1], ∀ x ∈
[minn∈[N],i∈[d]{xn,i},maxn∈[N],i∈[d]{xn,i}]d .
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Pairing non-crossing quantiles with other shape constraints

Engel’s law (1857): “As income rises, the proportion of income spent on
food falls, but absolute expenditure on food rises.“
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without constraints

Qualitative priors have a great effect on the shape of solutions!
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Engel’s law (1857): “As income rises, the proportion of income spent on
food falls, but absolute expenditure on food rises.“
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Qualitative priors have a great effect on the shape of solutions!
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Joint quantile regression (JQR): airplane data

Airplane trajectories at takeoff have increasing altitude
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JQR with monotonic con-
straint over [xmin, xmax]:

[P.-C. Aubin and Z.
Szabó, 2020]

Increasing quantiles
should be

non-crossing

Data provided by ENAC
(flights Paris→Toulouse)
[Nicol, 2013]
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Kernel ridge regression (KRR): trajectory reconstruction

Very noisy GPS data: six non-overtaking cars in a traffic jam
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Noiseless trajectory
Noisy measurement
Constrained Reconstruction
Unconstrained Reconstruction

KRR with monotonic con-
straint over [tmin, tmax]:

[P.-C. Aubin, N. Petit
and Z. Szabó, 2020]

Forward trajectories also
maintain

security distance

Data from IFSTTAR
(MOCoPo Project)
[Buisson et al., 2016]
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Partial conclusion

We have seen how to tighten an infinite number of affine constraints
over a compact set into finitely many SOC constraints in RKHSs
↪→ we thus have a representer theorem!

tightening intractable constraints is the only way to have guarantees

but tightening is “harder“ to perform (here computationally)

Covering schemes suffer from the curse of dimensionality! X ⊂ Rd , d � 1

However the control problem is only defined over X = [t0,T ] (d = 1)!
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SOC tightening of state-constrained LQ optimal control

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints

with SOC tightening

min
z(·) ∈ S[t0,T ]

χz0(z(t0)) + g(z(T )) + ‖z(·)‖2K

s.t.
ci(t)>z(t) ≤ di(t), ∀ t ∈ [t0,T ],∀ i ∈ [I],

with [t0,T ] ⊂
⋃
m∈[M][tm− δm, tm + δm], and two values defined at each tm

ηi(δm, tm) := sup
t ∈ [tm−δm,tm+δm]∩[0,T ]

‖K (·, tm)ci(tm)− K (·, t)ci(t)‖K ,

di ,m := inf
t ∈ [tm−δm,tm+δm]∩[t0,T ]

di(t).
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Main theoretical result in P.-C. Aubin, SICON, 2021

(H-gen) A(·),Q(·) ∈ L1 and B(·),R(·) ∈ L2, ci(·) and di(·) ∈ C0.
(H-sol) ci(t0)>z0 < di(t0) and there exists a trajectory zε(·) ∈ S

satisfying strictly the affine constraints, as well as the initial
condition.1

(H-obj) g(·) is convex and continuous.

Theorem (∃/Approximation by SOC constraints, P.-C. Aubin, 2021)

Both the original problem and its strengthening have unique optimal
solutions. For any ρ > 0, there exists δ̄ > 0 such that for all (δm)m∈[[1,N0]],
with [t0,T ] ⊂ ∪m∈[[1,N0]][tm − δm, tm + δm] satisfying δ̄ ≥ maxm∈[[1,N0]] δm,

1
γK

sup
t∈[t0,T ]

‖z̄η(t)− z̄(t)‖ ≤ ‖z̄η(·)− z̄(·)‖K ≤ ρ

with γK := supt∈[0,T ], p∈BN

√
p>K (t, t)p.

1(H-sol) is implied for instance by an inward-pointing condition at the boundary.
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Main practical result in P.-C. Aubin, SICON, 2021

Problem of time-varying linear quadratic optimal control with finite
horizon and affine inequality state constraints with SOC tightening

min
z(·) ∈ S[t0,T ]

χz0(z(t0)) + g(z(T )) + ‖z(·)‖2K

s.t.
ηi(δm, tm)‖z(·)‖K + ci(ti ,m)>z(ti ,m) ≤ di ,m, ∀m ∈ [Mi ], ∀ i ∈ [I].

By the representer theorem, the optimal solution has the form

z̄(·) =
P∑
j=0

Nj∑
m=1

K (·, tj,m)p̄j,m,

where t0,1 = t0 and t0,2 = T , and the coefficients
(p̄j,m)j,m solve a finite dimensional second-order cone problem.
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Main practical result in P.-C. Aubin, SICON, 2021

More precisely, setting t0,1 = t0 and t0,2 = T , the coefficients of the
optimal solution z̄(·) =

∑P
j=0

∑Nj
m=1 K (·, tj,m)p̄j,m solve

min
z∈R+,

pj,m∈RN ,
αj,m∈R

χz0

 P∑
j=0

Nj∑
m=1

K (t0, tj,m)p̄j,m

+ g

 P∑
j=0

Nj∑
m=1

K (T , tj,m)p̄j,m

+ γ2

s.t. γ2 =
P∑
i=0

Ni∑
n=1

P∑
j=0

Nj∑
m=1

p>i ,nK (ti ,n, tj,m)pj,m,

pj,m = αj,mcj(tm), ∀m ∈ [[1,Nj ]],∀ j ∈ [[1,P]],

ηi(δi ,m, ti ,m)γ +
∑P

j=0
∑Nj

m=1 ci(ti ,m)>K (ti ,m, tj,m)pj,m
≤ di(δi ,m, ti ,m),

∀m ∈ [[1,Ni ]],
∀ i ∈ [[1,P]], .

which can be written equivalently as a finite dimensional second-order
cone problem (SOCP).
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Future work: Pushing RKHSs beyond/Revisiting LQR
For RKHSs

Control constraints do not correspond to continuous evaluations
↪→ limits of RKHS pointwise theory (e.g. x ′ = u ∈ L2([0,T ], [−1, 1]) a.e.)

Successive linearizations of nonlinear system lead to changing kernels
↪→ a single kernel may not be sufficient (e.g. x ′ = f[xn(·)]x + f[un(·)]u a.e.)

Non-quadratic costs for linear systems do not lead to Hilbert spaces
↪→ one may need Banach kernels (e.g. ‖u(·)‖2L2(0,T ) → ‖u(·)‖L1(0,T ))

For control theory

To each evaluation at time t corresponds a covector pt ∈ RQ

↪→ Representer theorem well adapted for state constraints, but unsuitable
for control constraints. Reverts the difficulty w.r.t. PMP approach.

The Gramian of controllability generates trajectories
↪→ This allows for close-form solutions in continuous-time for state
constraints.
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Final remarks

“Finite coverings in RKHSs can be used to turn an
infinite number of pointwise affine constraints over a

compact set into finitely many SOC constraints.“

“State-constrained LQ Optimal Control is a
shape-constrained kernel regression.“

“In general, positive definite kernels are much too linear
to tackle nonlinear control problems → Linearize! “

Not covered in this talk:
Chapter 6 (regularity of minimal time) and Chapter 7 (set approximation).
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𝑥 𝑚 
δ 

𝜂 
𝐷𝑥𝑘𝑥 𝑚 

Φ𝐷 

Φ𝐷
−1 

Thank you for your attention!
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Annex: Extra list of shape constraints

Monotonicity w.r.t. partial ordering: u 4 v⇒ f (u) ≤ f (v) for u 4 v
iff
∑

j∈[i] uj ≤
∑

j∈[i] vj for all i ∈ [d ] (unordered weak majorization)

∂e1f (x) ≥ . . . ≥ ∂ed f (x) ≥ 0 (∀x);

u 4 v⇒ f (u) ≤ f (v) for u 4 v iff ui ≤ vi (∀i ∈ [d ]) (product ordering),

∂ej f (x) ≥ 0, (∀j ∈ [d ], ∀x).

Supermodularity: f (u ∨ v) + f (u ∧ v) ≥ f (u) + f (v), u, v ∈ Rd , where
u ∨ v := (max(uj , vj))j∈[d] and u ∧ v := (min(uj , vj))j∈[d]. For f ∈ C2

∂2f (x)
∂xi∂xj

≥ 0 (∀i 6= j ∈ [d ],∀x).
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Annex: JQR performance over UCI datasets

PDCD = Primal-Dual Coordinate Descent [Sangnier et al., 2016],
JQR with parallel/heteroscedatic quantile penalization (see also ITL
[Brault et al., 2019] for noncrossing inducer)
mean ± std of 100×value of the pinball loss (smaller is better)

Dataset d N PDCD SOC

engel 1 235 48 ± 8 53 ± 9
GAGurine 1 314 61 ± 7 65 ± 6
geyser 1 299 105 ± 7 108 ± 3
mcycle 1 133 66 ± 9 62 ± 5
ftcollinssnow 1 93 154 ± 16 148 ± 13
CobarOre 2 38 159 ± 24 151 ± 17
topo 2 52 69 ± 18 62 ± 14
caution 2 100 88 ± 17 98 ± 22
ufc 3 372 81 ± 4 87 ± 6
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Annex: Estimation of production functions

Classical assumptions

min
f ∈FK

1
N
∑
n∈[N]

[yn − f (xn)]2 + λ ‖f ‖2K

s.t.
0 ≤ f (x) ∀x ∈ K,

0 ≤ ∂ei f (x) ∀x ∈ K,∀i ∈ [d ],
0 = f (0),

0d×d 4 −
[(
∂ei+ej f

)
(x)
]
i ,j , ∀x ∈ K,

y → − log(y)

min
g∈FK

1
N
∑
n∈[N]

[yn − g(xn)]2

s.t.
‖g‖K ≤ λ̃,

0 ≤ −∂e1g(x) ∀x ∈ K,

0 ≤ −∂e2g(x) ∀x ∈ K,

02×2 4
[(
∂ei+ejg

)
(x)
]
i ,j∈[2] , ∀x ∈ K.
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Annex: Estimation of production functions
Only 25 points selected out of 543, checking generalization properties for
various constraints (used as side information)
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(b) SOC Monot.

Belgian labour data, 1996, https://vincentarelbundock.github.io/
Rdatasets/doc/Ecdat/Labour.html

https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Labour.html
https://vincentarelbundock.github.io/Rdatasets/doc/Ecdat/Labour.html
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Annex: Estimation of production functions
Only 25 points selected out of 543, checking generalization properties for
various constraints (used as side information)
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(c) SOC Conv.
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(d) SOC Conv.+Monot.

Belgian labour data, 1996, https://vincentarelbundock.github.io/
Rdatasets/doc/Ecdat/Labour.html
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Annex: Estimation of production functions
Only 25 points selected out of 543, checking generalization properties for
various constraints (used as side information)
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Figure: MSE as a function of incorporating shape constraints with the proposed
SOC technique. NoCons: no constraint. SOC Monot.: two monotonicity
constraints. SOC Conv.: one convexity constraint. SOC Conv.+Monot.: one
convexity and two monotonicity constraints.
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Annex: Green kernels and RKHSs

Let D be a differential operator, D∗ its formal adjoint. Define the Green
function GD∗D,x (y) : Ω→ R s.t. D∗D GD∗D,x (y) = δz(y) then, if the
integrals over the boundaries in Green’s formula are null, for any f ∈ Fk

f (x) =
∫

Ω
f (y)D∗DGD∗D,x (y)dy =

∫
Ω
Df (y)DGD∗D,x (y) =: 〈f ,GD∗D,x 〉Fk ,

so k(x , y) = GD∗D,x (y) [Saitoh and Sawano, 2016, p61]. For vector-valued
contexts, e.g. FK = W s,2(Rd ,Rd) and D∗D = (1− σ2∆)s
component-wise, see [Micheli and Glaunès, 2014, p9].

Alternatively, in 1D, D GD,x (y) = δz(y), the kernel associated to the inner
product

∫
Ω Df (y)Dg(y)dy for the space of f “null at the border“ writes as

k(x , y) =
∫

Ω
GD,x (z)GD,y (z)dz

see [Berlinet and Thomas-Agnan, 2004, p286] and [Heckman, 2012].
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Annex: Alternative finite coverings

𝜂𝑚 

(a) (b)

Figure: Two examples of coverings in FK of ΦD(K) by a set Ω̄ = ∪m∈[M]Ω̄m

contained in the halfspace H+
K (f − f0, b0 − β>b). (a): covering through balls

Ωm = B̊K (DK (·, x̃m), ηm). (b): covering through a ball intersected with
halfspaces.
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Annex: Why are state constraints difficult to study?

Theoretical obstacle: Pontryagine’s maximum principle involves not only
an adjoint vector p(t) but also measures/BV functions ψ(t) supported at
times where the constraints are saturated. You cannot just backpropagate
the Hamiltonian system from the transversality condition.

Numerical obstacle: Time discretization of constraints may fail e.g.

Speed cameras in traffic control

In between two cameras, drivers
always break the speed limit.
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Annex: IPC gives strictly feasible trajectories

(H-sol) C(0)z0 < d(0) and there exists a trajectory zε(·) ∈ S satisfying
strictly the affine constraints, as well as the initial condition.
(H1) A(·),B(·) ∈ C0, ci(·), di(·) ∈ C1 and C(0)z0 < d(0).
(H2) There exists Mu > 0 s.t. , for all t ∈ [t0,T ] and z ∈ RQ satisfying

C(t)z ≤ d(t), and ‖z‖ ≤ (1 + ‖z0‖)eT‖A(·)‖L∞(t0,T )+TMu‖B(·)‖L∞(t0,T ) ,
there exists ut,x ∈ MuBM such that

∀ i ∈ {j | cj(t)>z = dj(t)}, c′i(t)>z−d ′i (t)+ci(t)>(A(t)z+B(t)ut,x ) < 0.

This is an inward-pointing condition (IPC) at the boundary.

Lemma (Existence of interior trajectories)

If (H1) and (H2) hold, then (H-sol) holds.
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Annex: control proof main idea, nested property

ηi(δ, t) := sup ‖K (·, t)ci(t)− K (·, s)ci(s)‖K , ωi(δ, t) := sup |di(t)− di(s)|,
di(δm, tm) := inf di(s), over s ∈ [tm − δm, tm + δm] ∩ [t0,T ]

For −→ε ∈ RP
+, the constraints we shall consider are defined as follows

V0 := {z(·) ∈ S |C(t)z(t) ≤ d(t), ∀ t ∈ [t0,T ]},
Vδ,fin := {z(·) ∈ S |−→η (δm, tm)‖z(·)‖K + C(tm)z(tm) ≤ d(δm, tm), ∀m ∈ [[1,M0]]},
Vδ,inf := {z(·) ∈ S |−→η (δ, t)‖z(·)‖K +−→ω (δ, t) + C(t)z(t) ≤ d(t), ∀ t ∈ [t0,T ]},
V−→ε := {z(·) ∈ S |−→ε + C(t)z(t) ≤ d(t), ∀ t ∈ [t0,T ]}.

Proposition (Nested sequence)

Let δmax := maxm∈[[1,M0]] δm. For any δ ≥ δmax, if, for a given y0 ≥ 0,
εi ≥ supt∈[t0,T ][ηi(δ, t)y0 + ωi(δ, t)], then we have a nested sequence

(V−→ε ∩ y0BK ) ⊂ Vδ,inf ⊂ Vδ,fin ⊂ V0.

Only the simpler V−→ε constraints matter!
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Annex: Van Loan’s trick for time-invariant Gramians

Use matrix exponentials as in [Van Loan, 1978]

exp
((

A Qc
0 −A>

)
∆
)

=
(
F2(∆) G2(∆)

0 F3(∆)

)

F̂2(t) = eAt

F̂3(t) = e−A>t

Ĝ2(t) =
∫ t

0
e(t−τ)AQce−τA

>dτ

K1(s, t) =
∫ min(s,t)

0
e(s−τ)ABB>e(t−τ)A>dτ

Set QC = BR−1B>.

For s ≤ t, K1(s, t) = Ĝ2(s)F̂2(t)>

For t ≤ s, K1(s, t) = F̂2(s)Ĝ2(t)>
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Annex: Example of constrained pendulum - definition
Constrained pendulum when controlling the third derivative of the angle

min
x(·),w(·),u(·)

−ẋ(T ) + λ‖u(·)‖2L2(0,T ) λ� 1

x(0) = 0.5, ẋ(0) = 0, w(0) = 0, x(T/3) = 0.5, x(T ) = 0
ẍ(t) = −10 x(t) + w(t), ẇ(t) = u(t), a.e. in [0,T ]
ẋ(t) ∈ [−3,+∞[, w(t) ∈ [−10, 10], ∀ t ∈ [0,T ]

x(t) w(t) 

ẋ(t) 

ẇ(t)=u(t) 
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Annex: Example of constrained pendulum - definition
Constrained pendulum when controlling the third derivative of the angle

min
x(·),w(·),u(·)

−ẋ(T ) + λ‖u(·)‖2L2(0,T ) λ� 1

x(0) = 0.5, ẋ(0) = 0, w(0) = 0, x(T/3) = 0.5, x(T ) = 0

ẍ(t) = −10 x(t) + w(t), ẇ(t) = u(t), a.e. in [0,T ]

ẋ(t) ∈ [−3,+∞[, w(t) ∈ [−10, 10], ∀ t ∈ [0,T ]

Converting affine state constraints to SOC constraints, applying rep. thm

ηẋ‖z(·)‖K − ẋ(tm) ≤ 3,
ηw‖z(·)‖K + w(tm) ≤ 10,
ηw‖z(·)‖K − w(tm) ≤ 10

z̄(·) = K (·, 0)p0 + K (·,T/3)pT/3

+ K (·,T )pT +
M∑

m=1
K (·, tm)pm

Most of computational cost is related to the “controllability Gramians“
K1(s, t) =

∫min(s,t)
0 e(s−τ)ABB>e(t−τ)A>dτ which we have to approximate.
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Annex: Example of constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints . Grayed areas: constraints over [0,T ].

Angle x(·) Velocity ẋ(·) Couple w(·)
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Figure: Comparison of SOC constraints (guaranteed ηw ) vs discretized constraints
(ηw = 0) for NP = 200.
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Annex: Example of constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints . Grayed areas: constraints over [0,T ].
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Figure: Comparison of SOC constraints (guaranteed ηw ) vs discretized constraints
(ηw = 0) for NP = 200 - Chattering phenomenon like for traffic cameras!.
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Annex: Example of constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints . Grayed areas: constraints over [0,T ].
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Figure: Comparison of SOC constraints for varying NP and guaranteed ηw .
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Annex: Example of constrained pendulum - illustration

Optimal solutions of the constrained pendulum “path-planning“ problem.
Red circles: equality constraints . Grayed areas: constraints over [0,T ].
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Figure: Comparison of SOC constraints for varying ηw and NP = 200.
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