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A B S T R A C T

Pointwise state and shape constraints in control theory and nonparametric estimation
are difficult to handle as they often involve convex optimization problem with an
infinite number of inequality constraints. Satisfaction of these constraints is critical in
many applications, such as path-planning or joint quantile regression. Reproducing
kernels are propitious for pointwise evaluations. However representer theorems, which
ensure the numerical applicability of kernels, cannot be applied for an infinite number
of evaluations. Through constructive algebraic and geometric arguments, we prove
that an infinite number of affine real-valued constraints over derivatives of the model
can be tightened into a finite number of second-order cone constraints when looking
for functions in vector-valued reproducing kernel Hilbert spaces. We show that state-
constrained Linear-Quadratic (LQ) optimal control is a shape-constrained regression
over the Hilbert space of linearly-controlled trajectories defined by an explicit LQ kernel
related to the Riccati matrix. The efficiency of the developed approach is illustrated
on various examples from both linear control theory and nonparametric estimation.
Finally, we provide some results for general differential inclusions in minimal time
problems and identification of the graph of the set-valued map. Most of all we bring
to light a novel connection between reproducing kernels and optimal control theory,
identifying the Hilbertian kernel of linearly controlled trajectories.
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R É S U M É

Les contraintes ponctuelles d’état et de forme en théorie du contrôle et en estimation
non-paramétrique sont difficiles à traiter car elles impliquent souvent un problème
d’optimisation convexe en dimension infinie avec un nombre infini de contraintes
d’inégalité. La satisfaction de ces contraintes est essentielle dans de nombreuses
applications, telles que la planification de trajectoires ou la régression quantile jointe. Or,
les noyaux reproduisants sont un choix propice aux évaluations ponctuelles. Cependant
les théorèmes de représentation qui en sous-tendent les applications numériques ne
peuvent pas être appliqués à un nombre infini d’évaluations. Par des arguments
algébriques et géométriques constructifs, nous prouvons qu’un nombre infini de
contraintes affines à valeur réelle sur les dérivées des fonctions peut être surcontraint
par un nombre fini de contraintes coniques du second ordre si l’on considère des
espaces de Hilbert à noyau reproduisant de fonctions à valeurs vectorielles. Nous
montrons que le contrôle optimal linéaire-quadratique (LQ) sous contraintes d’état
est une régression sous contraintes de forme sur l’espace de Hilbert de trajectoires
contrôlées linéairement. Cet espace est défini par un noyau LQ explicite lié à la matrice
de Riccati. L’efficacité de notre approche est illustrée par divers exemples issus de la
théorie du contrôle linéaire et de l’estimation non-paramétrique. Enfin, nous énonçons
des résultats pour des inclusions différentielles générales dans des problèmes de temps
minimal et d’identification du graphe de la correspondance. Surtout nous faisons
ressortir un lien nouveau entre méthodes à noyaux et contrôle optimal en identifiant le
noyau hilbertien des espaces de trajectoires contrôlées linéairement.
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1
I N T R O D U C T I O N

The sciences do not try to explain, they hardly even try to interpret, they mainly make
models. By a model is meant a mathematical construct which, with the addition of
certain verbal interpretations, describes observed phenomena. The justification of
such a mathematical construct is solely and precisely that it is expected to work —
that is, correctly to describe phenomena from a reasonably wide area. Furthermore, it
must satisfy certain aesthetic criteria — that is, in relation to how much it describes,
it must be rather simple.

— John von Neumann, Method in the Physical Sciences in The Unity of Knowledge, 1955

Abstract This chapter outlines the content of the manuscript. We first present the
general idea and necessary background on the topics of state and shape constraints and
on reproducing kernels. We particularly stress how Linear-Quadratic optimal control
falls within a machine learning formalism. We then discuss the contributions of the
thesis. In all that follows, we focus on non-discrete domains and convex optimization
problems over vector-valued reproducing kernel Hilbert spaces of functions with an
infinite number of affine real-valued constraints on their derivatives.

Résumé Ce chapitre décrit le contenu du manuscrit. Nous présentons d’abord
l’idée générale et divers pré-requis et éléments de contexte sur les contraintes de
forme et d’état, ainsi que sur les noyaux reproduisants. Nous soulignons en particulier
comment le contrôle optimal linéaire-quadratique peut s’écrire dans un formalisme
d’apprentissage automatique. Nous discutons ensuite des contributions de la thèse.
Dans tout ce qui suit, nous nous concentrons sur des problèmes d’optimisation conti-
nue, convexes, portant sur des espaces de Hilbert à noyau reproduisant de fonctions
à valeurs vectorielles avec un nombre infini de contraintes affines à valeur réelle sur
leurs dérivées.
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2 introduction

1.1 background on estimation and control with constraints

1.1.1 Considered framework for optimizing models with constraints

What do estimation and control have in common? For linear-quadratic systems,
a control theorist may say there is some intrinsic duality between observability and
controllability. For an agnostic optimizer, estimation and control share the burden of
dealing with choices. For instance, one wants to choose a nonparametric model based
on given samples, or choose a path between some given points. In both estimation
and control, optimization theory allows to cut the Gordian node, selecting a model
that minimizes a functional (the objective) over a collection of models (the hypothesis
class). Like in social selection, it is dubious whether there exists an optimal choice of
objective and hypothesis class, there are just many of them, each with its pros and
cons. However the class of considered problems should have some minimal properties.
Unlike the Pithy of Delphi, the answer from the solicited optimization framework
should not be sibylline. It should be unique and, if possible, sensible, that is to say,
feasible. The larger the class, the more choices available, but all should abide by the
reality principle, and the fabric of reality is its constraints.

Among constraints, there are those that should hold pointwise. For non-discrete
domains of definition, they would in principle necessitate Dirac masses to define the
evaluation of the model at some points. However one does not not need to involve
Laurent Schwartz’s distributions for a very special class of Hilbert spaces of functions,
namely reproducing kernel Hilbert spaces (RKHSs). In short, these spaces HK can be
defined as the spaces for which the Hilbertian topology is stronger than pointwise con-
vergence. Born in Green functions and rejuvenated under the name of kernel methods
in machine learning, these rich spaces nevertheless provide tractable solutions. Most
of all they satisfy John von Neumann’s “aesthetic criteria“. This is the main reason of
the interest of the author of this thesis for the elegant mathematical field of kernels. If
this introduction achieves to convey this touch of refinement to the reader, then it will
have achieved its purpose.

In this thesis, we focus on convex optimization problems with affine real-valued
constraints on derivatives of the model, which is sought for in a RKHS of RQ-valued
functions defined over a set X, for Q ∈N∗. To properly define derivatives, the set X is
assumed to be a subset of Rd and to be contained in the closure of its interior. The
function family HK is used to capture the relation between the input variable x and
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the output y, with the optional use of a bias term b ∈ RB, with B ∈ N∗. Hence our
goal is to solve constrained optimization problems of the form(

f̄, b̄
)
∈ arg min
(f,b) ∈ HK ×RB

L(f,b) (PML)

s.t.
b ∈ B, (1.1a)

(f,b) ∈ C, (1.1b)

where the objective is an extended-valued function L : HK ×RB → R ∪ {∞}, the bias
variable b has to belong to a nonempty closed convex set B ⊆ RB, and C is a nonempty
closed convex set of affine constraints over the pairs (f,b). In a machine learning
perspective, the geometric intuition of the pairs (f,b) follows that of the classical
support vector machines where f controls the direction, whereas b determines the
bias of the hyperplane. This constant bias b to be estimated can be interpreted as an
auxiliary degree of freedom, which can be removed by setting for instance B = {0}. It
is not considered in the chapters of this thesis pertaining to control theory.

Notations: Since this thesis lies at the confluence between two different fields -
machine learning and control theory - it had to draw its notations from two traditions
difficult to harmonize. While we removed notation conflicts in this introduction, they
may persist between chapters, since the state is usually written as x(·) in control
theory, whereas the sample points in X are denoted by x in machine learning. Below
we write [[n1, n2]] for the set of integers between n1, n2 ∈ N and use the shorthand
[N] := [[1,N]] = {1, . . . ,N} with N ∈N and the convention that [0] is the empty set. We
denote by R+ the set of nonnegative reals. For a matrix A ∈ RQ×Q, we denote by ‖A‖
its operator norm, while IdQ is the identity matrix of RQ×Q. The set B generically
designates the closed unit ball, a subscript indicating which set and topology are
considered. We chose to keep the output space for the function spaces implicit, in
order to avoid cumbersome notations, as it can be always deduced from the context.
The space of functions with continuous derivatives up to order s ∈N is denoted by Cs.

In all that follows, given a set X, a kernel is a function from X×X to R (denoted k
if real-valued) or RQ×Q (denoted K if matrix-valued). The term trajectory designates
the function t 7→ x(t) defining the state. The term solution of an optimization problem
always refers to an element of the search space achieving the optimal value. We say
that we discretize a constraint involving a non-finite set K if we enforce the constraint
only on a finite subset of K.
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In particular, we formulate our problem in the empirical risk minimization frame-
work. Assume that we have access to some fixed family of samples S := {(xn,yn)}n∈[N] ⊂
X×RQ. The quality of the estimated pair (f,b) ∈ HK×RB w.r.t. S is assessed through
a loss function L : RB × (RQ)N → R ∪ {∞}. We also consider a regularizer function
R : R+ → R ∪ {∞} penalizing the model. This prevents, in machine learning terms,
“overfitting“ and, in control terms, an excessive “cost-to-go“. With these notations, our
considered objective function to be minimized is

L(f,b) = L
(
b, (f(xn))n∈[N]

)
+ R (‖f‖K) , (1.2)

and, for a given I ∈N, the affine real-valued state/shape constraints on some given
compacts sets Ki ⊆ X take the form

C =
{
(f,b) | 0 6 Di(f− f0,i)(x) +β

>
i b− b0,i, ∀ x ∈ Ki, ∀ i ∈ [I]

}
, (C)

where the differential operators (Di)i∈[I] are defined over HK and are such that

Di =
∑
j γi,j∂

ri,j where ∂rf(x) = ∂

∑d
j=1 rjf(x)

∂
r1
x1
···∂rdxd

for the multi-index r, e.g. Di = e>1 (∂e2 −

∂e1) or Di = e>1 IdHK for r = 0. Possible shifts in (C) are expressed by the terms
b0,i ∈ R and f0,i ∈ HK. The vectors βi ∈ RB describe linear interactions between the
bias coordinates. The bias b ∈ RB can be both variable (e.g. fq + bq) or constraint-
related (for instance, b1 6 f(x), b2 6 ∂e1f(x)); hence the dimension B of the bias can
differ in general from the dimension Q of the output.

In nonparametric estimation, the constraints (C) are known in the literature as a form
of shape constraints since they can force the shape of f to be nonnegative or monotonous
component-wise. These constraints typically occur in statistics for density estimation
or isotonic regression. 1 In control theory, within the formalism considered in this
thesis, (C) correspond to the so-called pure state constraints. 2 While the empirical risk
minimization framework (PML) with (1.2) is ubiquitous in machine learning, it may
seem atypical in control theory. We thus underline right away the connection between

1. The word shape does not refer to the field of shape optimization where the optimized variable
would be a set. Note that the requirement of convex components fq for d > 1 would result in a positive
semidefinite (SDP) constraint over the Hessian of fq (see Aubin-Frankowski & Szabó, 2020a, for the
extension of our approach to the SDP setting).

2. Control constraints are not considered because we require the continuity of the function Di(f−
f0,i) to perform our analysis. In other words, constraints involving the control are not regular enough
for the kernel formalism that we will investigate, since they bear on a variable u(·) ∈ L2(0, T) which is
not continuous. This is also seen from the fact that, unlike “pure state constraints“, constraints involving
the control do not hold at all times, but only almost everywhere.
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(PML) and state-constrained Linear-Quadratic (LQ) optimal control problems. In its
simplest form, the problem of time-varying LQ optimal control with finite horizon and
affine inequality state constraints writes as

min
z(·),u(·)

g(z(T)) + z(tref)
>Jrefz(tref) +

∫T
t0

[
z(t)>Q̃(t)z(t) +u(t)>R̃(t)u(t)

]
dt

s.t.
z(t0) = z0,

z ′(t) = A(t)z(t) +B(t)u(t), a.e. in [t0, T ],

γi(t)
>z(t) 6 bi,0(t), ∀ t ∈ [t0, T ], ∀ i ∈ [I],

(PLQ)

where the state z(t) ∈ RQ, the control u(t) ∈ RP, A(t) ∈ RQ×Q, B(t) ∈ RQ×P,
γi(t) ∈ RQ, bi,0(t) ∈ R, while Jref ∈ RQ×Q, Q̃(t) ∈ RQ×Q and R̃(t) ∈ RP,P are posi-
tive semidefinite matrices. We shall henceforth assume that, for some r > 0, for all
t ∈ [t0, T ], R̃(t) < rIdM, in the sense of positive semidefinite matrices. We assume as
well that A(·) ∈ L1([t0, T ]), B(·) ∈ L2([t0, T ]), Q(·) ∈ L1([t0, T ]), and R(·) ∈ L2([t0, T ]).
To have a finite objective, we restrict our attention to measurable controls satisfying
R(·)1/2u(·) ∈ L2([t0, T ]). The terminal cost g : RQ → R ∪ {∞} is an extended-valued
lower-semicontinuous function. We introduced a reference time tref and a positive
semidefinite matrix Jref ∈ RQ×Q in order to define the LQ kernel later on.

We consider the following dictionary to highlight that the formalism of (PML) is rich
enough to encompass (PLQ):

— a time point t ∈ [t0, T ] corresponds to a point x ∈ X;

— a linearly-controlled trajectory z(·) corresponds to a model f : x 7→ f(x) ∈ RQ;

— the linearly-controlled trajectories define a Hilbert space of functions HK, equipped
with an inner product derived from the quadratic “running cost“, i.e. the integral
term of (PLQ);

— the initial (z(t0) = z0), terminal (g(z(T))), and any intermediate pointwise costs,
even when expressed as indicator functions, can be included in the loss function L;

— the sum of the quadratic “running cost“ and of the added term in Jref correspond
to the regularizer R that is equal to the squared Hilbert norm ‖z(·)‖2HK ;

— the affine state constraints correspond to the set C of affine constraints, when
setting Ki = [t0, T ]. Since the “full state“ z(t) is a vector already containing all
the derivatives of interest, the differential operators are simply Di = γ>i IdHK .
The extra constant biases f0,i and b0,i allow to define the boundaries bi,0(t) of the
constraints;
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— the extra variable b ∈ B in (PML) would allow to describe some uncertainty over
the definition of the state constraints; we here dismiss it, taking B = {0}, this
removes any notation conflict between B(t) ∈ RQ×P and B ∈N.

As straightforward as it may seem, to the author’s best knowledge, this connection
between (PML) and (PLQ) had not been noticed before Aubin-Frankowski (2021b). This
link between kernel methods and LQ optimal control allows to deal with pure state
constraints as a form of shape constraints over vector-valued RKHSs, leveraging generic
kernel methods principles rather than control-based results for state-constrained sys-
tems.

The fundamental challenge one faces when trying to solve (PML) is that in most
relevant cases, such as (PLQ), the sets Ki have non-finite cardinality, and hence there
is an infinite number of constraints to satisfy. For instance, in (PLQ), the sets Ki
correspond to time intervals and, in applications to traffic control, the goal could
be to avoid collisions or to respect a speed limit at all times. Since optimization
with an infinite number of constraints requests to reduce the problem to a finite
number of constraints to make it computationally tractable, one has to either relax
or tighten the problem. Relaxing corresponds to approaches for which the constraint
(C) is not guaranteed to be satisfied at all points of Ki. Tightening approaches on the
contrary guarantee satisfaction of the constraint over Ki or a superset. This defines a
dichotomy, rooted in optimization principles, to summarize the prior literature, either
in nonparametric estimation, for (PML) in Section 1.1.2 below, or in LQ control theory,
for (PLQ) in Section 1.1.3 below. We will draw upon this dichotomy of relaxation as
opposed to tightening in the next sections. Since we are interested in guaranteeing
that the constraints are satisfied, all the contributions of this thesis revolve around a
proposed tightening of the constraints, based on a finite compact covering in HK.

1.1.2 Shape constraints in nonparametric regression

We first review some aspects of shape constraints in nonparametric regression. They
arise because in many applications one has to deal with a limited number of samples
due to the difficulty or the cost of data acquisition. A well-established way to tackle
this serious bottleneck and to improve sample-efficiency corresponds to incorporating
qualitative priors on the shape of the model, such as non-negativity, monotonicity,
convexity or supermodularity, collectively known as shape constraints (Guntuboyina
& Sen, 2018). This side information can originate from both physical and theoretical
constraints on the model such as “children usually grow“ in growth charts or “be
nonnegative and integrate to one“ in density estimation. In the statistics community,
the main emphasis has been on designing consistent estimators and on studying their
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rates (Chen & Samworth, 2016; Deng & Zhang, 2020; Freyberger & Reeves, 2018; Han
& Wellner, 2016; Kur et al., 2020; Lim, 2020). While these asymptotic results are of
significant theoretical interest, imposing shape priors is generally beneficial in the
small-sample regime. 3

Various scientific fields, including econometrics, statistics, biology, game theory or
finance, impose shape constraints on their hypothesis classes. For instance, economic
theory dictates increasing and concave utility functions, decreasing demand functions,
or monotone link functions (Chetverikov et al., 2018; Johnson & Jiang, 2018). In
statistics, applying a monotonicity assumption on the regression function (for instance
in isotonic regression; Han et al. 2019) dates back at least to Brunk (1955). Density
estimation entails non-negativity which can be paired with other constraints (Royset
& Wets, 2015), whereas, in quantile regression, conditional quantile functions grow
w.r.t. the quantile level (Koenker, 2005). In biology, monotone regression is particularly
well-suited to dose-response studies (Hu et al., 2005) and to identification of genome
interactions (Luss et al., 2012). Inventory problems, game theory and pricing models
commonly rely on the assumption of supermodularity (Simchi-Levi et al., 2014; Topkis,
1998). In financial applications, call option prices should be increasing in volatility,
monotone and convex in the underlying stock price (Aït-Sahalia & Duarte, 2003).

We use the “relax vs tighten“ dichotomy to stress the diversity of the shape con-
straints literature. In nonparametric estimation, relaxing can correspond to enforcing
the constraint only at a finite number of points (Agrell, 2019; Blundell et al., 2012;
Takeuchi et al., 2006) by replacing K with a discretization {xm}m=1...M ( K in (C). An
alternative approach for relaxing is to add soft penalties to the objective L(f) (Brault
et al., 2019; Koppel et al., 2019; Sangnier et al., 2016). Tightening on the contrary
restricts the search space of functions F (F = HK in this thesis) to a smaller and more
amenable subset F0 ( F. This principle can be implemented by encoding the require-
ment (C) into F0 through algebraic techniques. This approach is feasible for restrictive
finite-dimensional F0 such as subsets of polynomials (Hall, 2018) or polynomial splines
(Meyer, 2018; Papp & Alizadeh, 2014; Pya & Wood, 2015; Turlach, 2005; Wu & Sickles,

3. Note that, in statistics, shape constraints are not always stated as in (PML). Rather than considering
a large class of functions such as HK, sometimes the optimization is taken over the values f(xi) under a
constraint (such as monotonicity or convexity). The model is then obtained by interpolating between
the values in some very specific classes of functions, often taken to be piecewise affine or splines.
These classes are chosen so that the constraints are straightforwardly satisfied outside of the samples
used for the interpolation. This approach often entails a highly constraint-specific analysis limited
to dimension 1 in both input and output. We should also state another caveat: in this statistical
literature, the word kernel can also designate a choice of weights when performing weighted averaging,
based on a non-negative kernel (k(x, y) > 0), as for the Nadaraya-Watson estimator. We refer to
https://francisbach.com/cursed-kernels/ for a disambiguation between non-negative and positive
definite kernels.

https://francisbach.com/cursed-kernels/
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2018). For infinite-dimensional sets F0, the idea has recently been extended elegantly
by Marteau-Ferey et al. (2020) for F0 = Hk and a single non-negativity constraint
over the whole space (K = Rd), forcing f to be a kernel analogue of a sum-of-squares.
These limitations motivate the design of novel shape-constrained optimization tech-
niques which avoid (i) restricted function classes, (ii) limited out-of-sample guarantees
and (iii) lack of modularity in terms of the shape constraints imposed. Designing
such a technique is the main objective of this thesis concerning its contributions to
shape-constrained nonparametric regression.

1.1.3 State constraints in LQ optimal control

A comprehensive review of state constraints in general nonlinear optimal control can
be found in Hartl et al., 1995. Since we focus on Hilbert spaces, we restrict our attention
to the linear-quadratic context which is the subfield that was arguably most explored
in optimal control. Indeed, without state constraints, and under mild assumptions, the
unconstrained Linear Quadratic Regulator (LQR) enjoys an explicit solution defined
through the Hamiltonian system and the related Riccati equation (see e.g. Speyer &
Jacobson, 2010, for a thorough introduction and the bibliography therein). However,
with state constraints, little can be said as Pontryagin’s Maximum Principle involves
not only an adjoint vector but also measures supported on the constraint boundary
(Hartl et al., 1995). One has thus to guess beforehand when the state-constraint is active
(at the so-called junction times) in order to write the first-order necessary condition
(Hermant, 2009). Secondly, to derive mathematical statements such as the PMP, one
needs some very restrictive assumptions. This has proven to be arduous and made
state-constrained continuous-time optimization a difficult problem. Let us recall the
well-known intuition for the appearance of discontinuities. If one follows an optimal
trajectory of the LQR starting in the interior of state constraints, one may reach the
boundary while the unconstrained Hamiltonian system of the Maximum Principle
may incite to use a control leading to violation of the constraint. One has then to apply
a different control to remain in the constraint set, possibly generating a discontinuity
in the adjoint vector.

Despite its first appearance in the mid-50s, research is still active in the field of LQ
optimal control, not only because of its numerous applications (see e.g. the examples
of Burachik et al. (2014) and references within), but also for its theoretical aspects, even
without constraints for approximation schemes (Bourdin & Trélat, 2017), or just control
constraints (Burachik et al., 2014). Many of these improvements are motivated by
model predictive control (e.g. Mayne et al., 2000, for a review), considered for instance
in a time-invariant discrete-time state-constrained setting in Grüne and Guglielmi
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(2018) or continuous-time (van Keulen, 2020). In particular, Kojima and Morari (2004)
proved that the solutions of a time-invariant LQR with discretized constraints converge
to the solution of (PLQ), putting emphasis on function spaces of controls. As a matter of
fact, the aforementioned approaches focus on the control, used to obtain the trajectories,
while, in our approach, trajectories are instead at the core of the analysis.

As discussed above, when seeking a continuous-time numerical solution, one has to
face an infinite number of pointwise constraints, and has to either relax the computa-
tionally intractable optimization problem or tighten it. In control theory, relaxing means
either enforcing the constraint only at a finite number of points, without guarantees
elsewhere (as with any time discretization method, e.g. Kojima & Morari, 2004), or
through soft penalties (Gerdts & Hüpping, 2012), such as approximations of barrier
functions (Dower et al., 2019). Tightening usually implies either choosing u(·) in a
convenient subspace of L2([t0, T ]), for instance the one of piecewise constant functions 4

or of splines with prescribed knots (Mercy et al., 2016), or through hard penalties,
such as the so-called interior penalty methods “where constraints are penalized in
a way that guarantees the strict interiority of the approaching solutions“ (Chaplais
et al., 2011; Malisani et al., 2014). Let us illustrate the difference between relaxing
and tightening state constraints. Consider the problem of a traffic regulator whose
aim is to enforce a speed limit over a highway. The drivers for their part want to go
as far as possible in a given time. Deploying speed cameras ensures at best that the
speed constraint is satisfied locally (relaxing). However if a smaller maximum speed,
defined by changing the threshold, is imposed at the camera level (tightening), then
the cars cannot accelerate enough to break the speed limit before reaching the next
camera. In a nutshell, the kernel methods framework we advocate allows to compute
both a threshold and the resulting trajectories. Providing feasible interior solutions
and proving their convergence to the solution of the original problem is the main
objective of this thesis concerning control theory. This is achieved based on the theory
of reproducing kernels.

1.2 reproducing kernels in a nutshell

Kernel methods are a wide and mature mathematical field, deeply rooted in func-
tional analysis, with ramifications across many other domains. They can thus be
introduced from several perspectives. We shall in this thesis favor the two historical
viewpoints, either putting forward the kernel or the function space, as presented by

4. This is known as sampled-data or digital control (Ackermann, 1985), the sampled-data terminology
does not refer to machine learning techniques.
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Aronszajn (1950). We thus do not cover a third now classical approach describing
kernels as covariance functions of Gaussian processes.

For the reader curious to delve deeper into the kernel jungle, we recommend several
monographs in connection with the following topics: integral operators theory and
partial differential equations (Saitoh, 1997; Saitoh & Sawano, 2016), Gaussian processes
in probabilities (Berlinet & Thomas-Agnan, 2004; Kanagawa et al., 2018), feature maps
and applications in machine learning (Schölkopf & Smola, 2002), general support vector
machines (Steinwart & Christmann, 2008), generating functions for complex variables
(Alpay, 2001), and harmonic analysis on semigroups (Berg et al., 1984). Although
kernels have known several extensions beyond the Hilbertian case, we shall not use
them in this thesis. For some more exotic kernels, we refer to Mary (2003) and Ong et
al. (2004) for Krein and Pontryagine’s kernels and to Lin et al. (2019) for Banach kernels.

Section 1.2.1 summarizes the history of reproducing kernels as divided between
kernel-driven (Section 1.2.2) and operator-driven (Section 1.2.3) approaches. The
extension of the reproducing property to derivatives and to vector-valued outputs is
covered in Section 1.2.4. The propitious representer theorems that we shall apply in
most of our analysis are stated in Section 1.2.5.

1.2.1 History of reproducing kernels: A realm (still) divided

From a mathematical standpoint, we can summarize the century-long history of
kernels as a succession of theoretical breakthroughs and recessions due to the lack
of novel insights. The theory itself was reborn multiple times around 1907 and 1921.
As Aronszajn (1950) recounts it, two tendencies prevailed, either putting the function
space forward and considering the kernel as a tool to be computed (Zaremba, Szegö,
Bergman), or studying the kernel for its properties and then deriving the function space
as a by-product (Mercer, Moore). The unifying effort of mathematicians (Aronszajn,
1943, 1950; Schwartz, 1964) more acquainted with modern Bourbaki structures led
to the elegant theory as it is still presented today. Meanwhile, Emanuel Parzen in
a Promethean gesture 5 brought the torch of kernels to statisticians and passed it at
Stanford, notably to Grace Wahba and Thomas Kailath, in fine extending the theoretical
results to engineering studies.

So far, we have not mentioned machine learning. Are least-squares problems the
first example of it? It is obviously hard to draw a line between communities, but
machine learning has the peculiarity with respect the aforementioned fields to have at

5. This is charmingly recounted by Persi Diaconis in the preface of Berlinet and Thomas-Agnan
(2004).
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its core the credo of performance. Since we are sketching the history, let us mention
some of the multiple reasons which could be invoked to explain the emergence of
machine learning in the early 90’s: the economic boom of the private sector after the
Cold War, the access to personal computers, the emigration of scientists from Eastern
Europe,. . . To say the least, Vladimir Vapnik, one of the popes of statistical learning,
joined the Bell Labs in the early 90s and Support Vector Machines (SVMs) peaked in the
early 2000s. But the applicative power reached a glass ceiling as the cubic complexity
of SVMs could deal with millions of points but not the billions that the industry now
required. Dwelling in the shadow of neural networks, some kernel specialists look
either to bypass the complexity issue through kernel approximations or to reassert the
importance of kernels as a theoretical limit of neural networks.

Conceptually, the dichotomy individuated by Aronszajn is still valid. Kernel-driven
approaches where the kernel is taken off-the-shelf have inherited Mercer’s viewpoint,
whereas operator-driven approaches still require the kernel to be computed for a specific
task. This illustrates the widening gap in the literature between, on the one hand,
Schölkopf and Smola (2002), and, on the other hand, Berlinet and Thomas-Agnan
(2004) and Saitoh and Sawano (2016). The two latter books still put much emphasis
on the role of Sobolev spaces and of derivatives for their applications (covariance of
processes, ODEs, PDEs), with X often taken as a subset of the real line. Schölkopf and
Smola (2002) on the other hand take the kernels for given and use them on various
input sets (graphs, probability measures), essentially extending linear algorithms to
nonlinear settings. The flexibility of the kernel-driven approach and its simplicity
of exposition made it prevalent in courses on the topic, while the operator-driven
viewpoint was kept up in the statistics community and in a smaller mathematical one.
In this thesis, we shall leverage both the kernel-driven approach, when facing agnostic
machine learning problems where all that is required is a function satisfying shape
constraints, and the operator-driven viewpoint, for control problems where we have to
identify the relevant kernel.

1.2.2 Positive definite kernels: A nonlinear embedding with inner products

The kernel-driven approach that is prevalent in machine learning starts with positive
definite kernels.

Definition 1.1 (Positive definite kernel). Let X be a nonempty set. A real-valued kernel
k : X×X→ R is positive definite if it is
— symmetrical: ∀x, x ′ ∈ X, k(x, x ′) = k(x ′, x), and
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— positive: ∀a ∈ RN, (xi)i∈[N] ∈ XN,
∑N
i=1

∑N
j=1 aiajk(xi, xj) > 0.

For the Gram matrix G related to the points (xi)i∈[N] for the kernel k, positivity writes
as

∀ (xi)i∈[N] ∈ XN, G := [k(xi, xj)]i,j∈[N], ∀a ∈ RN, a>Ga > 0.

There is thus a slight abuse w.r.t. the Anglo-Saxon terminology since the positive
definite kernels that we will consider are associated with positive semidefinite matrices
(i.e. “positive“ for non-English speakers). This choice is a predominant trend in the
kernel community.

Any inner product on a Hilbert space X is positive definite. Some less trivial classical
examples of positive definite kernels on RQ include the Gaussian and Laplacian kernels
for bandwidths σ > 0 and λ > 0,

kσ(x, y) = exp
(
−‖x− y‖2

RQ
/(2σ2)

)
, kλ(x, y) = exp(−λ‖x− y‖RQ).

To prove their positive definiteness, recall that the sum of positive definite kernels, their
product and their scaling by a nonnegative scalar are all positive definite kernels as well.
As highlighted by Cuturi (2005, p. 5), this kernel-driven matrix viewpoint on kernels
“often challenges the functional viewpoint itself, notably in the semi-supervised setting
where defining a kernel matrix on a dataset is sufficient to use kernel methods“. At its
origins, “kernel machines [were] black boxes“, a qualification now only used for neural
networks. This stemmed from the apparently elaborate relation with feature maps:

Theorem 1.1 (Theorem 4, Berlinet and Thomas-Agnan, 2004). A kernel k is positive
definite if and only if there exists a set T and an embedding Φ : X → l2(T), the set of real
sequences {ut, t ∈ T} such that

∑
t∈T |ut|

2 <∞, where

∀x, x ′ ∈ X×X, k(x, x ′) =
∑
t∈T

Φ(x)tΦ(x ′)t = 〈Φ(x), Φ(x ′)〉l2(T).

In other words, setting H := l2(T), we have ∀ x, x ′ ∈ X, k(x, x ′) = 〈Φ(x), Φ(x ′)〉H.

This nonlinear embedding Φ was for long considered as the main vessel for SVMs
(Schölkopf & Smola, 2002) and SVMs are still interpreted as reformulating a nonlinear
classification problem in the input space X into a linear separation problem in H. 6

6. “The feature map formulation, particularly advocated in the early days of SVMs, also misled
some observers into thinking that the kernel mapping was but a piece of the SVM machinery. Instead,
SVM should be rather seen as an efficient computational approach – among many others – deployed to
select a “good” function f in the RKHS.“ (Cuturi, 2005, p. 7)
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However, in Theorem 1.1, H or Φ have no reason to be unique due to isometry
properties of Hilbert spaces w.r.t. l2. Moreover, the proof of Theorem 1.1 actually relies
on the key embedding x 7→ k(x, ·) which favors a specific choice of H as a Hilbert
space of functions over X.

Remark 1.1 (Separability and reproducing kernels). Positive definite kernels as defined
in Definition 1.1 do not assume separability of X. A technical necessary and sufficient
condition for the existence of a separable l2(T) in Theorem 1.1, for which T is countable,
and can thus be taken equal to N, can be found in (Fortet, 1995, p. 142) in connection
with the Karhunen-Loève representation of stochastic processes. An easier sufficient
criterion is that X is a separable topological space and that k is continuous over X×X

(Steinwart & Christmann, 2008, Lemma 4.33), this criterion is always satisfied in this
thesis since the considered kernels are continuous and X ⊆ Rd.

1.2.3 RKHSs: A Hilbertian topology stronger than pointwise convergence

The operator-driven approach focuses on a special class of Hilbert space of functions,
those that have a topology stronger than pointwise convergence. This makes them well-
suited as a hypothesis class in optimization problems involving pointwise evaluations of
the model.

Definition 1.2 (Real-valued RKHS-1). A real-valued reproducing kernel Hilbert space
(RKHS) (H, 〈·, ·〉H) defined on a nonempty set X is a Hilbert space of real-valued func-
tions over X such that the Hilbertian topology is stronger than pointwise convergence,
i.e. for all x ∈ X, the evalutation at x, δx,H : f ∈ H 7→ f(x), is continuous over H

equipped with its Hilbertian topology.

By Riesz’s theorem, one immediately derives that, since δx,H is a continuous linear
form over H, then one can fix a unique kx ∈ H such that f(x) = δx,H(f) = 〈f(·), kx(·)〉H.
This leads to the classical, and equivalent, definition of RKHSs:

Definition 1.3 (Real-valued RKHS-2). A real-valued RKHS
(
Hk, 〈·, ·〉Hk

)
over a nonempty

set X is a Hilbert space of real-valued functions over X such that there exists a repro-
ducing kernel k : X×X→ R, i.e. a function satisfying:

— ∀ x ∈ X, kx(·) ∈ Hk where kx :

{
X→ R

y 7→ k(x, y)
,

— ∀ x ∈ X, ∀ f ∈ Hk, f(x) = 〈f(·), kx(·)〉Hk .
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Let us consider an immediate example of RKHS. For s ∈ N and X an open set of

Rd (or closure of an open set), setting ∂rf(x) = ∂|r|f(x)

∂x
r1
1 ...∂x

rd
d

for |r| :=
∑
i∈[d] ri, recall the

following definition of a Sobolev space:

Hs(X,R) =Ws,2(X,R) :=
{
f ∈ L2(X) |∂rf ∈ L2(X), ∀ r ∈Nd, s.t. |r| 6 s

}
equipped with the inner product 〈f, g〉Hs =

∑
|r|6s〈∂rf, ∂rg〉L2(X). Any Sobolev space

Hs(X,R) satisfying the Sobolev inequality s > d/2 and equipped with its inner product
is a RKHS. On the contrary, for s 6 d/2, the Hilbertian topology of Hs(X,R) is too
weak to consider pointwise evaluations. Aronszajn’s great achievement was to notice
that Definitions 1.1, 1.2 and 1.3 coincided and that the embedding Φk(x) = kx played a
specific role:

Theorem 1.2 (Aronszajn, 1950). If a Hilbert space of functions over a nonempty set X

is a RKHS Hk with reproducing kernel k, then k is a positive definite kernel. Conversely
a positive definite kernel k over X is reproducing for a unique Hk. Moreover Hk is the
completion of the pre-Hilbert space Hk,0(X) := span({kx(·)}x∈X) for the pre-inner product
〈kx, ky〉k,0 := k(x, y).

There is thus a one-to-one correspondence between positive definite kernels k and
RKHSs

(
Hk, 〈·, ·〉Hk

)
. Notice however that it implies that changing X or 〈·, ·〉Hk changes

the kernel k. It is in general very hard to identify, given a RKHS Hk (resp. a kernel k),
its kernel k (resp. its RKHS Hk). We illustrate this problem with some examples from
Saitoh and Sawano, 2016, p. 11-15, for X = R+, where slight differences noticeably
change the kernel:

— the Sobolev space H1 with inner product 〈f, g〉H1 = 2
π

∫∞
0 f(t)g(t) + f

′(t)g ′(t)dt,
has for kernel k(x, y) = π

4 (exp(−|x− y|) + exp(−x− y));
— the Sobolev space H10 of functions of H1 such that f(0) = 0 with inner product
〈·, ·〉H1 , has for kernel k(x, y) = π

4 (exp(−|x− y|) − exp(−x− y));
— the Sobolev space H10 with inner product 〈f, g〉H10 =

∫∞
0 f
′(t)g ′(t)dt, has for kernel

k(x, y) = min(x, y).

Remark 1.2 (Green functions and reproducing kernels). Since we shall often deal with
Sobolev-like spaces, we recall some elements on the conceptual relation with Green
functions, following the presentation of Saitoh and Sawano, 2016, p. 60-61. Let D be
a differential operator over an open set X ⊂ Rd, and set D∗ to be its adjoint operator.
Define the Green function GD∗D,x : X → R s.t. D∗D (GD∗D,x)(y) = δx(y) then, if the
integrals over the boundaries in Green’s formula are null, for any f ∈ Hk,

f(x) =

∫
X

f(y)D∗D(GD∗D,x)(y)dy =

∫
X

Df(y)D(GD∗D,x)(y) =: 〈f,GD∗D,x〉Hk,
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so k(x, y) = GD∗D,x(y). For vector-valued contexts (see Section 1.2.4 below), e.g.
HK = Ws,2(Rd,Rd) and D∗D = (1− σ2∆)s component-wise, we refer to Micheli and
Glaunés, 2014, p. 9. Alternatively, for d = 1, and GD,x defined as D (GD,x)(y) = δx(y),
the kernel associated with the inner product

∫
XDf(y)Dg(y)dy for the space of f “null

at the border“ can be factorized into (see Berlinet and Thomas-Agnan (2004, p. 286)
and Heckman (2012))

k(x, y) =

∫
X

GD,x(z)GD,y(z)dz.

Aronszajn’s formulation of kernels can be seen as a way to bypass Green functions by
picking off-the-shelf kernels rather than solving the related PDEs. The latter would
provide an explicit orthonormal basis of eigenvectors, whereas the kernel functions
kx form a non-orthonormal generating family better suited for pointwise evaluations.
Indeed, applicability of reproducing kernels in machine learning mainly stems from
implicit feature maps as discussed in Section 1.2.5.

1.2.4 Vector-valued RKHSs and reproducing property for derivatives

When real-valued outputs are not sufficient for the problem at hand, one should
resort to vector-valued RKHSs (vRKHSs, see Caponnetto et al., 2008, and references
within). 7 They are defined similarly to Definitions 1.1, 1.2 and 1.3. However the kernel
is now matrix-valued, and we have to take ‘covectors‘ p into account for pointwise
evaluations:

Definition 1.4 (Vector-valued RKHS). Let T be a nonempty set. A Hilbert space
(HK, 〈·, ·〉K) of RQ-vector-valued functions defined on T is called a vector-valued
reproducing kernel Hilbert space (vRKHS) if there exists a matrix-valued kernel
K : T × T → RQ×Q such that the reproducing property holds: for all t ∈ T, p ∈ RQ,
K(·, t)p ∈ HK and for all f ∈ HK, p>f(t) = 〈f, K(·, t)p〉K. By Riesz’s theorem, it is
equivalent to saying that, for every t ∈ T and p ∈ RQ, the evaluation functional
f ∈ HK 7→ p>f(t) ∈ R is continuous.

Necessarily, K has a Hermitian symmetry: for all s, t ∈ T, K(s, t) = K(t, s)>. This
requires more care when manipulating Gram matrices since they are symmetric only
when taking into account the necessary transposition. There is again a one-to-one
correspondence between K and (HK, 〈·, ·〉K) (Micheli & Glaunés, 2014, Theorem 2.6), so,
again, changing T or 〈·, ·〉K changes K. For instance one can consider a time interval
T = [0, 1] and a vector-valued Sobolev space Hs([0, 1],RQ) for s ∈N∗.

7. Vector-valued RKHSs will be used in this thesis to describe trajectories, the components of which
cannot be considered independently due to the dynamic constraints.
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So far, we have not mentioned the regularity properties of the functions in HK. In
general, they share the regularity of the kernel functions K(·, x) in terms of smoothness
or analyticity (Saitoh & Sawano, 2016, p. 73-77). We even have a reproducing property
for derivatives which resembles that of Dirac masses, when denoting by ∂1 (resp. ∂2)
the derivative w.r.t. the first (resp. second) variable of K(·, ·).

Theorem 1.3 (Theorem 2.11, Micheli and Glaunés, 2014). Let HK be a vRKHS with kernel
K : X×X→ RQ×Q for an open subset X of Rd, and s > 0 be an integer. The following two
statements are equivalent:

— HK is continuously embedded in Cs
(
X,RQ

)
, i.e. the inclusion HK ⊆ Cs

(
X,RQ

)
holds

and the identity map from HK to Cs
(
X,RQ

)
is continuous,

— the function ∂r1∂
r
2K exists for all multi-indices r with length satisfying 0 6 |r| 6 s, it is

continuous in each of the two variables (separately), and it is locally bounded.

Under the above assumptions, the following also holds:

— for all x ∈ X, p ∈ RQ, and multi-index r such that 0 6 |r| 6 s, we have ∂r2K(·, x)p ∈
HK and

p>∂rf(x) = 〈∂r2K(·, x)p, f〉HK , ∀ f ∈ HK. (1.3)

Remark 1.3 (Reproducing property for derivatives). Specifically, for s = 0, one has that
D = p>IdHK , so D(f)(x) = p>f(x), and (1.3) reduces to the reproducing property in
vRKHSs of Definition 1.4. For real-valued kernels, the reproducing property for kernel
derivatives has been studied over open sets X (e.g. Saitoh & Sawano, 2016), and over
compact sets which are the closure of their interior (Zhou, 2008). For practitioners,
it cannot be stressed enough that one should apply the differential operator to the
variable at which f is evaluated, i.e. if x appears in second position in K in (1.3) then
one should use ∂2. It was shown in Aubin-Frankowski and Szabó (2020a) that (1.3)
also holds for, possibly unbounded, sets X which are contained in the closure of their
interior. Note that the derivative ∂rf has to be continuous for the property (1.3) to hold.
Even if functions in HK have a derivative in a weak, almost everywhere, distribution
sense, (1.3) cannot be applied, as there would be no Riesz’s theorem to provide a kernel
function ∂r2K(·, x)p ∈ HK to consider continuous pointwise evaluations of derivatives. 8

1.2.5 Two computational tools: the representer theorems and the kernel trick

One important perk of kernel methods stems from the fact that, for problems of
the form (PML), with L defined as in (1.2), the solutions only depend on the observed

8. This explains why for control constraints, whenever the controls are merely L2, one does not have
a reproducing property, as already hinted at in footnote 2 (Page 4).
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samples. This behavior is expressed through “representer theorems“, which ensure
that the solutions of an optimization problem like (PML) live in a finite-dimensional
subspace of HK and consequently enjoy a finite representation. These “representer
theorems“ can be informally summarized as: “a finite number of evaluations implies
a finite number of coefficients“ or “all the information is contained in the samples“.
Indeed, their short proofs merely use the fact that any function v added to f, whenever
v is orthogonal to the kernel functions k(xn, ·) of the samples xn, does not change the
value of f at these samples. However the norm of the extra v in f+ v is penalized by
the regularizing function, so v has to be null for an optimal f̄. In short, representer
theorems are instrumental to obtain a finite-dimensional problem that is exactly
equivalent to the infinite-dimensional (PML).

Representer theorems can be found as early as in Kimeldorf and Wahba (1971, Theo-
rems 3.1 and 5.1) for quadratic norm-penalties and exact or (quadratic) approximate
interpolation. This quadratic formulation was prevalent in polynomial splines studies.
In machine learning, the most classical formulation for the empirical risk minimization
framework is expressed as

Theorem 1.4 (Theorem 2, Schölkopf et al., 2001). Suppose we are given a nonempty set X,
a positive definite real-valued kernel k on X× X, samples S := {(xn, yn)}n∈[N] ⊂ X×R,
a strictly increasing real-valued function R on R+, an arbitrary cost function L : RN →
R ∪ {∞}, and a family of real-valued functions {ψm}m∈[M] on X with the property that
the N×M matrix [ψm (xn)]n,m has rank M. Then any g := f+ h, with f ∈ Hk and h ∈
span {ψm}m∈[M] minimizing the regularized risk functional L(g) = L((g(xn))n∈[N])+R(‖f‖)
admits a representation of the form g(·) =

∑
n∈[N] αnk (·, xn) +

∑
m∈[M] βmψm (·) with

coefficients αn ∈ R and uniquely defined βm ∈ R.

Remark 1.4 (Parametric families in representer theorems). Why would one need a
parametric family {ψm}m∈[M]? This comes from the spline background of representer
theorems which were originally intended for functions f ∈ HM(R,R), the M-th
order Sobolev space, with regularizers of the form RM(f) =

∫
R |f(M)(x)|2dx. These

regularizers RM do not penalize polynomials of order strictly smaller than M. They
are however equal to the squared norm of HM0 (R,R), the subspace of HM(R,R) of
functions with derivatives vanishing at 0, i.e. f(m)(0) = 0 for m ∈ [[0,M− 1]]. The
existence of a “null-space“ of the regularizer is a problem we will meet again in
optimal control, where the uncontrolled trajectories may be unpenalized by the integral
“running cost“ of (PLQ).

Theorem 1.4 can be straightforwardly extended to vector-valued contexts and to
problems with constraints, as in
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Theorem 1.5 (Representer theorem for vRKHSs, Aubin-Frankowski, 2021b). Let (HK, 〈·, ·〉K)
be a vRKHS defined on a nonempty set T. Let I ∈ N and, for i ∈ [[0, I]] and given
Ni ∈N, {ti,n}n∈[[1,Ni]] ⊂ T. Consider the following optimization problem with “loss“ function
L : RN0 → R∪ {+∞}, strictly increasing “regularizer“ function R : R+ → R, and constraint
descriptors di : RNi → R, λi > 0 and {ci,n}n∈[[1,Ni]] ⊂ RQ,

f̄ ∈ arg min
f∈HK

L
(
c>0,1f(t0,1), . . . , c

>
0,N0

f(t0,N0)
)
+ R (‖f‖K)

s.t.

λi‖f‖K 6 di(c>i,1f(ti,1), . . . , c>i,Nif(ti,Ni)), ∀ i ∈ [I].

Then, for any minimizer f̄, there exists {pi,n}n∈[[1,Ni]] ⊂ RQ such that f̄ =
∑I
i=0

∑Ni
n=1 K(·, ti,n)pi,n

with pi,n = αi,nci,n for some αi,n ∈ R.

Remark 1.5 (Representer theorems and the “kernel trick“). If one studies problems
for which representer theorems exist, then this enables to use the so-called “kernel
trick“ which underpins most of kernel methods (Schölkopf & Smola, 2002). The latter
is merely a remark that the reproducing property allows to write:

〈
I∑
i=0

K(·, ti)pi,
J∑
j=0

K(·, t ′j)p ′j〉K =

I∑
i=0

J∑
j=0

p>i K(ti, t
′
j)p
′
j . (1.4)

Hence one does not need to have an explicit form of 〈·, ·〉K on the subspace of HK

appearing in Theorem 1.5 since, for linear combinations of the kernel functions K(·, t)p,
(1.4) allows to compute every pairwise inner product. In this sense the “kernel trick“
is at the core of the kernel-driven approach to kernel methods. This is yet one of the
discrepancies between the kernel-driven and the operator-driven approach to kernels.
As a matter of fact, it considerably restricts the scope of kernel methods to problems of
the form (PML). Indeed, under mild assumptions, only radial regularizers of the form
R(‖f‖) allow for representer theorems (Dinuzzo & Schölkopf, 2012). For more details
on this aspect, we refer to Argyriou and Dinuzzo (2014) and references within.

Remark 1.6 (Necessary condition and sparsity for inequalities). Note that a representer
theorem, similarly to Pontryagin’s Maximum Principle, is only a necessary condition
on the form of the solutions. Theorem 1.5 guarantees the existence or uniqueness
of an optimal solution only when coupled with other assumptions (e.g. that L and
R are lower semi-continuous and R is coercive). This further highlights the analogy
with the Maximum Principle in the quadratic case. Besides, we would like to stress
that the coefficient pn associated with each xn can be interpreted as a dual variable
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(this is extensively used in Chapter 7). For linear pointwise inequality constraints (e.g.
f(xn) > 0), it is even exactly the Lagrange multiplier of the constraint. This implies that
whenever such an inequality is not active, then the corresponding xn does not appear
in the expression of any optimal f̄. Hence, for any optimization problem expressed
mainly through inequality constraints, the solutions obtained through kernel methods
can often be extremely sparsely encoded if most of the constraints are inactive. This is
a well-known explanation of the success of SVMs for classification problems.

This sample-focused strength is however recurrently considered as their computa-
tional pitfall since kernel methods routinely require handling and inverting matrices,
often as large as the number of samples appearing in the problem. In this thesis, we
consider the extreme case of an infinite number of samples. This problem is novel since
most kernel practitioners (Steinwart & Christmann, 2008) have focused on the objective
functions rather than on the constraints. For instance, in least-squares regression, one
may have a considerable amount of observed samples, but one seldom has an infinity
of them. It is quite the opposite with constraints: a convex constraint set is more often
described by an infinite number of inequalities rather than finitely many. The open
question is then: how to capitalize on the simplicity of theorems such as Theorems 1.4
and 1.5 when facing an infinite number of constraints?

1.3 contributions of the thesis

In this thesis, we shall leverage both the kernel-driven approach, when facing
agnostic machine learning problems where all that is requested is to produce a function
satisfying shape constraints, and the operator-driven viewpoint, for control problems
where we have to identify the relevant kernel. We provide in this section a sketch and
summary of the main findings of the thesis. Since the following chapters correspond
to published articles and are thus designed to be self-contained, we first state the
correspondence between chapters and articles. Then, in order to ease the reading, we
give some complementary constructive results of our approach. This should help the
reader to see the connections between the various chapters and he/she may return to
this overview if necessary.

1.3.1 Structure of the thesis

The chapters of this thesis are based on the following articles:
— Chapter 2 was published as a joint work with Nicolas Petit and Zoltán Szabó in

the Proceedings of IFAC World Congress 2020, under the title Kernel Regression for
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Vehicle Trajectory Reconstruction under Speed and Inter-vehicular Distance Constraints
(Aubin-Frankowski et al., 2020).

— Chapter 3 was published as a joint work with Zoltán Szabó in Advances in Neural
Information Processing Systems (NeurIPS), under the title Hard Shape-Constrained
Kernel Machines (Aubin-Frankowski & Szabó, 2020b).

— Chapter 4 was accepted for publication with a single author in SIAM Journal
on Control and Optimization, under the title Linearly-constrained Linear Quadratic
Regulator from the viewpoint of kernel methods (Aubin-Frankowski, 2021b).

— Chapter 5 was published with a single author in Comptes Rendus. Mathématique,
under the title Interpreting the dual Riccati equation through the LQ reproducing kernel
(Aubin-Frankowski, 2021a).

— Chapter 6 was published with a single author in Systems & Control Letters, under
the title Lipschitz regularity of the minimum time function of differential inclusions with
state constraints (Aubin-Frankowski, 2020).

— Chapter 7 was published as a joint work with Nicolas Petit in the Proceedings of the
European Control Conference (ECC) 2020, under the title Data-driven approximation
of differential inclusions and application to detection of transportation modes (Aubin-
Frankowski & Petit, 2020).

We outline below the structure of Section 1.3:
— Section 1.3.2 deals with the SOC tightening of the shape-constrained empirical risk

minimization (PML). This corresponds to Chapters 2 and 3.

— Section 1.3.3 presents the novel LQ kernel, designed for (state-constrained) LQ
optimal control (PLQ). This corresponds to Chapters 4 and 5.

— Section 1.3.4 considers differential inclusions, theoretically, to study the regularity
of the minimal time function and, numerically, to estimate their graphs. This
corresponds to Chapters 6 and 7.

1.3.2 Tightening infinitely many shape constraints into finitely many

This section presents two interpretations, algebraic and geometric, of our advocated
choice of tightening as either an upper bound of a modulus of continuity in HK or
as a consequence of a compact covering scheme in HK. While the algebraic approach
allows to derive immediately the tightening, it veils the much richer geometric inter-
pretation. The latter is implicitly used in Chapter 2 when performing a covering based
on a ball intersected with half-spaces. In this section, we thus present the advocated
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methods in greater generality and in a single formalism, encompassing the two types
of coverings used in Chapter 2 and 3. We will follow a constructive approach to show
that we can tighten infinitely many shape constraints into finitely many by considering
second-order cone (SOC) constraints.

Notations for differential operators: Let the set of linear differential operators of
order at most s ∈N on real-valued functions be denoted by

O1,s :=

D |D(f)(x) =
∑
j∈J
cj∂

rjf(x), card(J) <∞, |rj| 6 s, cj ∈ R (∀j ∈ J)

 .

The set of linear differential operators of order at most s ∈N on RQ-valued functions
is

OQ,s :=

D |D(f)(x) =
∑
q∈[Q]

βqDq(fq)(x), βq ∈ R, Dq ∈ O1,s

 .

For differential operators D, D̃ ∈ OQ,s defined as D(f)(x) =
∑
q∈[Q] γqDq,x(fq)(x) and

D̃(f)(x ′) =
∑
q∈[Q] γ̃qD̃q,x ′(fq)(x

′), and for a kernel K ∈ Cs,s
(
X×X,RQ×Q), let

DK(x ′, x) :=
∑
q∈[Q]

βq[Dq,xK(x
′, x)]eq ∈ RQ, (1.5)

D̃>DK(x ′, x) :=
∑

q,q ′∈[Q]

γ̃q ′γqe
>
q ′D̃q ′,x ′Dq,xK(x

′, x)eq ∈ R, (1.6)

where Dq,xK(x ′, x) := Dq[x ′′ 7→ K(x ′, x ′′)](x) ∈ RQ×Q and eq ∈ RQ is the q-th canoni-
cal basis vector.

Assumptions: In this section, K ∈ Cs,s
(
X×X,RQ×Q) is a smooth matrix-valued kernel

and X ⊆ Rd is a set which is contained in the closure of its interior. Hence, we can
apply the reproducing property for derivatives (1.3) from Theorem 1.3. The compact
set K ⊂ X is assumed to be non-finite, in order to face the problem of dealing with
infinitely many constraints.

We consider at first a single hard affine real-valued shape constraint over K, i.e. (C1)
below, which corresponds to (C) for I = 1. Multiple shape constraints (I > 1) can be
addressed by stacking the results below. Consequently we drop the i index and (C)
simplifies to

C1 :=
{
(f,b) | 0 6 D(f− f0)(x) +β

>b− b0, ∀ x ∈ K
}

. (C1)
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There are two main challenges to tackle: (i) C1 cannot be directly implemented since K

is non-finite, (ii) representer theorems, our battle horses showcased in Section 1.2.5,
require a finite number of evaluations f. We are thus enticed to discretize the constraint
over a collection {x̃m}m∈[M] ⊂ X. However this would only give a relaxation. Since
Theorem 1.5 holds for some extra norm term on the left-hand side of (C1), we can
tighten (C1) by considering the following margin buffer in the constraints:

C1,SOC :=
{
(f,b) |ηm‖f− f0‖K 6 D(f− f0)(x̃m) +β

>b− b0, ∀m ∈ [M]
}

. (C1,SOC)

The value of ηm should be chosen depending on D, K and the {x̃m}m∈[M]. For any given
finite covering K ⊆

⋃
m∈[M] BX(x̃m, δm), one such value of ηm leading to a tightening

is:

ηm := sup
x∈BX(x̃m,δm)

‖DK(·, x̃m) −DK(·, x)‖K, m ∈ [M]. (1.7)

The choice of ηm as in (1.7) can be interpreted in two ways, as:
1. an upper bound of a modulus of continuity of D(f− f0) defined on a finite covering

of the compact set K (see Section 1.3.2.1);

2. a finite compact covering in HK. Indeed (C1) can actually be rewritten as the
inclusion in the vRKHS HK of a compact set in a half-space. We then tighten this
inclusion by taking a finite covering of the compact set in HK, the value ηm as
in (1.7) corresponding to the radius of a specific choice of covering by balls (see
Section 1.3.2.2).

Tightening (C1) into (C1,SOC) leads to second-order cone (SOC) constraints 9 instead of
affine inequalities. Hence the set C1,SOC is still convex but, in order to guarantee the
shape constraints on a neighborhood of the points {x̃m}m∈[M], there is a computational
price to pay because of the second-order cone programming involved.

1.3.2.1 Algebraic interpretation: an upper bound of a modulus of continuity in HK

We first present an interpretation of (C1,SOC) as an upper bound of the modulus of
continuity of D(f− f0) over a finite covering of a compact K ⊆

⋃
m∈[M] BX(x̃m, δm).

Let the modulus of continuity of D(f− f0) on BX (x̃m, δm) be defined as

ωD(f−f0)(x̃m, δm) := sup
x∈BX(x̃m,δm)

|D(f− f0)(x) −D(f− f0) (x̃m)| . (1.8)

9. The “second-order cone“ terminology is classical in optimization following the similarity between
(C1,SOC) and the definition of the Lorentz cone {(z, r) ∈ RN+1 | ‖z‖2 6 r}. In finite dimensions, SOC
constraints write as {z ∈ RN | ‖Az+b‖2 6 β>z− b0} for A ∈ RP×N.
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Would it happen that we have an exact finite covering, i.e. K =
⋃
m∈[M] BX(x̃m, δm),

then, if ωD(f−f0)(x̃m, δm) was known for every m ∈ [M], the constraint (f,b) ∈ C1
would be equivalent to

ωD(f−f0)(x̃m, δm) 6 D(f− f0)(x̃m) +β
>b− b0, ∀m ∈ [M]. (1.9)

The equivalence follows from (1.8) since the modulus of continuity is the smallest
upper bound of the variations of the values. Applying the reproducing property for
derivatives (Theorem 1.3) and the Cauchy-Schwarz inequality, we obtain an upper
bound, with ηm defined as in (1.7),

ωD(f−f0)(x̃m, δm) = sup
x∈BX(x̃m,δm)

|〈f− f0, DK(·, x) −DK(·, x̃m)〉K| 6 ηm‖f− f0‖K. (1.10)

While the original quantity ωD(f−f0)(x̃m, δm) can be hard to evaluate, the bound
ηm ‖f− f0‖K is much more favourable from a computational perspective. Indeed, the
term ηm has an explicit finite-dimensional description as, by Theorem 1.3 and the
definition (1.6) of D>D,

‖DK(·, x) −DK(·, x̃m)‖2K = D>DK(x, x) +D>DK(x̃m, x̃m) − 2D
>DK(x, x̃m).

By (1.10), the SOC term is larger than the modulus of continuity. From (1.9), the
modulus of continuity defines a finite number of inequalities which are equivalent
to the original constraint (C1) with an infinite number of inequalities, i.e. (f,b) ∈ C1.
Hence, when replacing ωD(f−f0)(x̃m, δm) in (1.9) by its upper bound obtained in (1.10),
the equivalence becomes an implication and gives rise to the tightened second-order
cone (SOC) constraints

ηm ‖f− f0‖K 6 D(f− f0)(x̃m) +β
>b− b0, ∀m ∈ [M].

The value of ηm can be computed analytically in various cases. For instance,
for Q = 1 and D = Id, with a monotonically decreasing real-valued radial kernel
K(x,y) = k0(‖x−y‖X) (such as the Gaussian kernel), then

ηm(δm) = sup
x∈BX(0,δm)

√
|2k0(0) − 2k0 (‖x‖X)| =

√
2
√

|k0(0) − k0 (δm)|. (1.11)

Depending on the choice of the kernel, similar computations could be carried out for
higher-order derivatives. For translation-invariant kernels, ηm can be computed on a
single δm-ball around the origin as in (1.11). A fast approximation of ηm can also for
instance be performed by sampling x in the ball BX(x̃m, δm). Moreover, as ηm is related
to the modulus of continuity of DK, the smoother the kernel, the smaller ηm and the
tighter the approximation (1.10). As it intuitively follows from (1.10), ηm is one of the
possible upper bound on the modulus of continuity, enabling guarantees for hard
shape constraints. This bound is also tight in the equality case of the Cauchy-Schwarz
inequality (1.10).
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Figure 1.1 – Illustration of the compact covering.

1.3.2.2 Geometric interpretation: a compact covering scheme in HK

Notations for sets and half-spaces: Given a vRKHS HK, for f ∈ HK and ρ ∈ R, let
the closed half-spaces and the affine hyperplane associated with the pair (f, ρ), as well
the closed ball in HK with center c ∈ HK and radius r > 0 be defined as

HK(f, ρ) := {g ∈ HK | 〈f,g〉K = ρ} , H+
K(f, ρ) := {g ∈ HK | 〈f,g〉K > ρ} ,

BK(c, r) := {f ∈ HK | ‖f− c‖K 6 r} , H−
K(f, ρ) := {g ∈ HK | 〈f,g〉K 6 ρ} .

We generically denote open sets in HK by Ω, whereas Ω̄ (resp. co) refers to their
closure (resp. closed convex hull). The open ball is B̊K(c, r) and H̊+

K(f, ρ) is the open
half-space.

The algebraic approach of Section 1.3.2.1 allowed to derive immediately (C1,SOC).
Nevertheless it veiled a much richer geometric interpretation based on compact cover-
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ings in HK. Applying Theorem 1.3, we rephrase constraint (C1) as an inclusion of sets
using the non-linear embedding ΦD : x ∈ K 7→ DK(·, x) ∈ HK

(f,b) ∈ C⇔ b0 −β
>b 6 D(f− f0)(x) = 〈f− f0, DK(·, x)〉K ∀ x ∈ K

⇔ΦD(K) := {DK(·, x) | x ∈ K} ⊆ H+
K(f− f0, b0 −β

>b). (1.12)

The set ΦD(K) is compact in HK since K is compact in X and ΦD is continuous.
However it is intractable to directly ensure the inclusion described in (1.12) whenever
K is not finite. We thus consider an approximation with a “simpler“ set Ω̄ containing
ΦD(K), and require the inclusion

ΦD(K) ⊆ Ω̄ ⊆ H+
K(f− f0, b0 −β

>b) (1.13)

which implies (1.12). Since ΦD(K) is compact, drawing upon compact coverings, we
assume that

Ω̄ = ∪m∈[M]Ω̄m, (1.14)

where each Ω̄m is the closure of a nonempty finite intersection (JB,m, JH,m ∈ N) of
non-trivial (rm,j > 0, vm,j 6= 0) open balls and open half-spaces

Ωm =

 ⋂
j∈[JB,m]

B̊K(cm,j, rm,j)

∩
 ⋂
j∈[JH,m]

H̊−
K(vm,j, ρm,j)

 . (1.15)

We illustrate in Figure 1.1 one such covering of ΦD(K) using only balls in HK.
Remarks:

— Form of (1.15): The motivation for considering Ω̄ and Ω̄m of the form (1.14) and
(1.15) is several-fold. Having a finite description enables one to derive a representer
theorem. However, only a few sets (mainly points, balls and half-spaces) enjoy
explicit convex separation formulas. 10 Focusing on points leads to a discretization
of ΦD(K) and greedy strategies (such as the Frank-Wolfe algorithm), but without
guarantees outside of the points considered. A finite union of balls can approximate
any compact set in the Hausdorff metric, but balls result in enforcing “buffers“ in
every direction of HK. A finite intersection of half-spaces can approximate any convex
set, 11 but this finite intersection is always unbounded for infinite-dimensional

10. Since Ωm is convex, the inclusion Ωm ⊆ H+
K(f− f0, b0 − Γb) in (1.13) is equivalent to Ωm ∩

H̊−
K(f− f0, b0 − Γb) = ∅ which can be interpreted as a convex separation.
11. To motivate the use of half-spaces in (1.15): notice that since the half-space on the r.h.s. of

(1.12) is closed and convex, (1.12) is equivalent to the fact that the closed convex hull co(ΦD(K)) is a
subset of H+

K(f− f0, b0 −β
>b). Using the support function characterization of closed convex sets, we

have that co(ΦD(K)) =
⋂
g∈HK

H−
K(g, σK(g)) where σK(g) := supx∈KD(g)(x) has to be computed.

Considering any finite collection of g ∈ HK provides an over-approximation of co(ΦD(K)) with finite
description.
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HK resulting in a poor approximation of compact sets. Motivated by obtaining
guarantees, we thus consider combinations of balls and half-spaces as in (1.14)-
(1.15).

— Non-compact K: Coverings of the form (1.14) and (1.15) exist for any bounded
ΦD(K). In particular, if the kernel D>DK(·, ·) is bounded (recall that D> denotes D
applied to the first variable of K), then for any set K ⊆ X, ΦD(K) ⊂ HK is bounded
as well. Consequently the proposed method can be applied to non-compact K

provided that the derivatives of the chosen kernel are bounded.
Owing to the geometric reinterpretation stated in (1.12), one just needs to rewrite

Ω̄ ⊆ H+
K(f− f0, b0 −β

>b) in (1.13) as a separation formula for convex sets, and choose
Ω̄ adequately such that ΦD(K) ⊆ Ω̄. We will consider the simpler case of Ωm being
either a single ball or a ball intersected with a single half-space. 12 Since Ω̄ is defined
as a union in (1.14), when considering its inclusion in H+

K(f− f0, b0 −β
>b), one can

consider each Ωm individually and drop the m index. We consider thus the two
following cases:

— If Ω = B̊K(c, r), then the inclusion is equivalent to saying that the center c is at a
distance r from the hyperplane, i.e.

〈f− f0, c〉K > r ‖f− f0‖K + b0 −β
>b.

— If Ω = B̊K(c, r)∩ H̊−
K(v, ρ) then a similar, though more involved, result states that it

is necessary and sufficient that there exists ξ > 0 such that

〈f− f0 + ξv, c〉K > r ‖f− f0 + ξv‖K + b0 −β
>b+ ξρ.

If (1.13) holds, then, because of the inclusion, we have a tightening of (C1). A natu-
ral choice of Ω of the form (1.14) can be obtained by leveraging the compactness of
K. Indeed, let us take any finite covering of K through balls centered at M points
{x̃m}m∈[M] with radius δm > 0. Then one can cover the sets ΦD(BX(x̃m, δm)) ⊂ HK

by balls Ωm = B̊K(DK(·, x̃m), ηm) with radii ηm given by (1.7). In other words,
ΦD(K) ⊆

⋃
m∈[M]ΦD(BX(x̃m, δm)) ⊆

⋃
m∈[M] Ω̄m =: Ω̄, hence Ω̄ satisfies (1.13) and

(f,b) ∈ C1,SOC.

Coming back to Figure 1.1, the constraint (C) was reformulated as requiring that the
image ΦD(K) of K under the D-feature map ΦD is contained in the halfspace ’above’
the affine hyperplane defined by its normal vector D(f− f0) and bias b0 −β>b. The

12. This more restrictive case is the one considered in Aubin-Frankowski et al. (2020) and Aubin-
Frankowski and Szabó (2020b). Extensions of the formulas to the more general (1.15) can be found in
Aubin-Frankowski and Szabó (2020a).
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𝜂𝑚 

(a) (b)

Figure 1.2 – Two examples of coverings in HK of ΦD(K) by a set Ω̄ = ∪m∈[M]Ω̄m con-
tained in the halfspace H+

K(f − f0, b0 − β
>b). (a): covering through balls

Ωm = B̊K (DK(·, x̃m), ηm). (b): covering through a ball intersected with half-
spaces (JB,m = JH,m = 1).

discretization, presented below in (1.17), of the constraint (C) at the points {x̃m}m∈[M]

only requires the images ΦD(x̃m) of the points to be above the hyperplane. The
constraint (Cη) instead inflates each of those points by a radius ηi. With this sketch in
mind, we provide a visual illustration of the inclusion relation for Ωm being a single
ball, and for Ωm being a ball intersected with a single half-space in Figure 1.2(a) and
Figure 1.2(b), respectively. Figure 1.2 underlines the fact that more complex structures
lead to tighter approximations in Hausdorff distance.

1.3.2.3 Convergence of the tightening for strongly convex problems

In this section and the related Chapter 3, we provide guarantees over the recovery of
the solution of (PML) when replacing the constraint (C1) by (C1,SOC). As the content of
Chapter 3 slightly differs from our matrix-valued presentation so far, we sketch here
the formalism and the main result of Chapter 3 to make it more readable in light of
Section 1.1.1. As a matter of fact, the theorem, published in Aubin-Frankowski and
Szabó (2020b), focuses on multitask learning without the vector-valued structure, and
thus considers a more restrictive case where K is a “tensor kernel“, so the vRKHS is a
Cartesian product of a real-valued RKHS Hk, i.e.

K(x, y) = k(x, y)IdQ, HK = (Hk)
Q.

Aubin-Frankowski and Szabó (2020b) also considered a slightly different objective
L� and regularizer function R� : RQ 7→ R+, the latter being supposed to be strictly
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increasing in each of its arguments. The constraints also involve a matrix W ∈ RQ×Q

playing a role similar to the βi, and Di is now defined on the individual components
in Hk only (e.g. Di = ∂e1):

C� =
{
(f,b) |bi,0 −β

>
i b 6 Di(Wf− f0)i(x), ∀x ∈ Ki, ∀i ∈ [I]

}
. (C�)

Assuming there is a unique solution to the problem (Pη) below, the SOC tightening
at Mi points {x̃i,m}m∈[Mi] ⊆ Ki then writes as:

(fη,bη) = arg min
f∈ (Hk)Q,b∈B⊂RB

L�(f,b) := L
(
b, (f(xn))n∈[N]

)
+ R�

(
(‖fq‖k)q∈[Q]

)
(Pη)

s.t.

bi,0 −β
>
i b+ ηi,m‖(Wf− f0)i‖k 6 min

m∈[Mi]
Di(Wf− f0)i (x̃i,m) ∀i ∈ [I]. (Cη)

We also consider the discretization of the I constraints in (C�), which leads to the
following relaxation of (Pη)

vdisc = min
f∈ (Hk)Q,b∈B

L�(f,b) s.t. bi,0 −β>i b 6 min
m∈[Mi]

Di(Wf− f0)i (x̃i,m) ∀i ∈ [I].

(1.17)

The theorem concerning the convergence of the tightening, to be found in Chapter
3, shows that (Cη) is indeed a tightening of (C�) with a “sandwich property“ of the
optimal values when paired with a relaxation such as (1.17). A representer theorem
is also stated which allows to solve numerically (Pη) and give two bounds on the
distance in HK ×RB between the solution of (Pη) and that of (PML) as a function of
(vη − vdisc) and η respectively. The essential assumptions for the bounds to hold are
that L� is strongly convex in (f,b) and b should be constraint-free, i.e. B = RB and
β>i b should be able to take any value in R. 13 The intuition behind these assumptions
is that, with β>i b left free, one can move up and down the hyperplane of Figure 1.1
until it does not intersect ΦD(K) and this move can be performed independently for
each constraint i.

In control theory (Section 1.3.3 below), the quadratic regularizer identified in Sec-
tion 1.3.3.1 gives the strong convexity assumption straightforwardly but one is not
allowed to play with the boundaries of the constraints since there is no term playing
the role of b. The idea to derive the bound remains similar but the construction is
much more sophisticated and relies heavily on results from control theory to construct
a feasible trajectory (see Chapter 4).

13. The variable b is however necessarily subjected to penalties in L� for the objective to be Lipschitz
or strongly convex in b.
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1.3.2.4 Two examples: Joint quantile regression and convoy trajectory reconstruction

It is instructive to consider a few examples for the problem family (PML) for which
the results of Section 1.3.2 apply:

Joint quantile regression (JQR; as for instance defined by Sangnier et al. (2016)):
Assume that we are given samples ((xn, yn))n∈[N] from the random variable (X, Y)

with values in X ×R ⊆ Rd+1, as well as Q levels 0 < τ1 < . . . < τQ < 1. Our
goal is to estimate jointly the τq-quantiles of the conditional distributions P(Y|X = x)

for q ∈ [Q]. In the JQR problem, the estimated τq-quantile functions (fq + bq)q∈[Q]

(modulo the biases bq ∈ R) belong to a real-valued RKHS Fk associated with a
kernel k : X× X → R, and they have to satisfy jointly a monotonically increasing
property w.r.t. the quantile level τ. It is natural to require this non-crossing property
on the smallest rectangle containing the input points (xn)n∈[N], in other words on

K =
∏
j∈[d]

[
min
{
(xn)j

}
n∈[N]

,max
{
(xn)j

}
n∈[N]

]
. Hence, the optimization problem in

JQR takes the form

min
f∈(Fk)Q,
b∈RQ

L (f,b):=
1

N

∑
q∈[Q]

∑
n∈[N]

`τq (yn − [fq(xn) + bq]) + λb‖b‖22 + λf
∑
q∈[Q]

‖fq‖2Fk

s.t.
fq(x) + bq 6 fq+1(x) + bq+1, ∀q ∈ [Q− 1], ∀x ∈ K

where λb > 0, λf > 0, 14 and the so-called “pinball loss“ is defined as `τ(e) =

max(τe, (τ− 1)e) with τ ∈ (0, 1). This problem can be obtained as a specific case of
(PML) by choosing B = Q, s = 0, I = Q− 1, Pi = 1, Dif = fi+1 − fi, β>i b = bi+1 − bi
(∀i ∈ [I]), K (x, x ′) = k (x, x ′) IQ, f0,i = 0, b0 = 0, B = RB. Further details and numeri-
cal illustration on the JQR problem are provided in Chapter 3.

Convoy trajectory reconstruction: Here, the goal is to estimate vehicle trajectories
based on noisy observations. This is a typical situation with GPS measurements,
where the imprecision can be compensated through side information, not using only
the position of every vehicle but also that of its neighbors. Assume that there are
Q vehicles forming a convoy (i.e. they do not overtake and keep a minimum inter-
vehicular distance between each other) with speed limit on the vehicles. For each
vehicle q we have Nq noisy position measurements (yq,n)n∈[Nq] ⊂ R, each associated
with vehicle-specific time points (xq,n)n∈[Nq] ⊂ X := [t0, T ]. Without loss of generality,

14. Sangnier et al. (2016) used the same loss function but a soft non-crossing inducing regularizer
inspired by matrix-valued kernels, and also set λb = 0.
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let the vehicles be ordered in the lane according to their indices (q = 1 is the first,
q = Q is the last one). Let dmin > 0 be the minimum inter-vehicular distance, and vmin
be the minimal speed to keep. 15 By modelling the location of the qth vehicle at time
x as bq + fq(x) where bq ∈ R, fq ∈ Hk and k : X×X→ R is a real-valued kernel, the
task at hand can be formulated as

min
f=[fq]q∈[Q]∈(Fk)Q,

b∈RQ

L (f,b) :=
1

Q

Q∑
q=1

 1

Nq

Nq∑
n=1

|yq,n − (bq + fq(xq,n)) |
2

+ λ‖fq‖2Fk


s.t.

dmin + bq+1 + fq+1(x) 6 bq + fq(x), ∀q ∈ [Q− 1], ∀x ∈ X,

vmin 6 f
′
q(x) ∀q ∈ [Q], ∀x ∈ X.

This problem can be obtained as a specific case of (PML) by choosing B = Q, s = 1,
I = 2Q− 1, Pi = 1 (i ∈ [I]), K (x, x ′) = k (x, x ′) IQ, Di(f) = fi− fi+1 (i ∈ [Q− 1]), β>i b =

bi − bi+1 (i ∈ [Q− 1]), b0,i = dmin (i ∈ [Q− 1]), Di(f) = f ′i−(Q−1) (i ∈ [[Q, 2Q− 1]]),
βi = 01,Q (i ∈ [[Q, 2Q− 1]]), b0,i = vmin (i ∈ [[Q, 2Q− 1]]), B = RB. This application is
investigated in Chapter 2.

We next discuss how the approach and insights of Section 1.3.2 can be leveraged for
state-constrained LQ optimal control.

1.3.3 A new kernel for (state-constrained) LQ optimal control

There have been many attempts at bridging kernel methods and control theory.
The two are already related in the works of Kailath (1971) and Parzen (1970). More
recently Marco et al. (2017) and Steinke and Schölkopf (2008) have considered kernels
for control systems, mainly to encode the input u(·) or for system identification
purposes (see e.g. the reviews of Chiuso and Pillonetto (2019) and Pillonetto et al.
(2014)). Kernels have also been applied to approximate the Koopman operator over
observers of uncontrolled nonlinear systems, in connection with spectral analysis (Fujii
& Kawahara, 2019; Williams et al., 2015) or for given controls (Sootla et al., 2018). The
kernel Hilbert spaces have also been used to define suitable domains for operators
(Giannakis et al., 2019; Rosenfeld et al., 2019). In most cases, the kernel is taken
off-the-shelf, as with Gaussian kernels in connection with Bayesian inference (Bertalan
et al., 2019; Singh et al., 2018).

15. The requirement vmin = 0 means that the vehicles go forward. A maximum speed constraint can
be imposed similarly.
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On the contrary, departing from the prevalent perspective of using kernel methods
as nonlinear embeddings, this thesis rekindles with a long standing tradition of engi-
neering kernels for specific uses. This operator-driven view has been mainly supported
by the statistics community, especially in connection with splines and Sobolev spaces
(Heckman, 2012; Wahba, 1990). 16 For (PLQ), we show below that the quadratic objec-
tive paired with the linear dynamics encodes the relevant kernel, which defines the
Hilbert space of controlled trajectories. As kernel methods deal with a special class of
Hilbert spaces, they are natural to consider for linear systems or for linearizations of
nonlinear systems. Nonetheless the interactions run deeper. For instance we highlight
below how the controllability Gramian is directly related to matrix-valued kernels, and
we recover the transversality condition merely through a representer theorem. The
LQ matrix-valued kernel defined below is also connected to the dual Riccati equation.
Since the Riccati equation is often used for the online purpose of finding the optimal
control, it enables us to discuss how the kernel formalism effectively allows for optimal
synthesis, favoring an offline trajectory-focused viewpoint.

Remark 1.7 (Role of tref). Our extra degree of freedom tref in (PLQ) allows to define
a non-degenerate inner product over the controlled trajectories, covering the case of
unpenalized “null control“ trajectories. For an optimal control problem such as (PLQ)
one works with fixed initial and final times. On the other hand, the solution of the
Riccati equation is time-dependent and allows to find optimal trajectories for any initial
time. Hence, when working with fixed initial time, we consequently take tref = t0 and
Jref = λ0IdQ for λ0 > 0, in order to cover general terminal costs g(·). For varying initial
time, we take instead tref = T , and consider only quadratic terminal costs, setting
Jref = JT � 0 and g(·) ≡ 0.

1.3.3.1 Introducing the LQ kernel

We first need to bring trajectories to the fore in (PLQ) since the variables are for
now both z(·) and u(·). In his seminal book, Luenberger (Luenberger, 1968, p. 255)
already discussed that an optimal control problem such as (PLQ) can be seen as either
optimizing over the set of controls u(·), or jointly over the set of trajectories z(·) and
controls u(·), connected through the dynamic constraint (z ′ = Az+Bu). Luenberger
also alluded without details to a third possibility, that of optimizing directly over the

16. Drawing inspiration from linear control theory, control theoretic splines were devised (Fujioka
& Kano, 2013; Magnus Egerstedt, 2009), in particular for path-planning problems (Kano & Fujioka,
2018). Similar approaches for nonlinear systems were proposed earlier, as in Petit et al. (2001). Possibly
unbeknownst to non-kernel users, kernel theory, sometimes known as abstract splines, is the natural
generalization of splines (see e.g. Aubin-Frankowski et al., 2020; Berlinet & Thomas-Agnan, 2004).
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controlled trajectories. We follow this last viewpoint and consequently introduce the
vector space S[t0,T ] of controlled trajectories of the linear system:

S[t0,T ] :=
{
z : [t0, T ]→ RQ |∃u(·) s.t. z ′(t) = A(t)z(t) +B(t)u(t) a.e. (1.18)

and
∫T
t0

u(t)>R̃(t)u(t)dt <∞} .

There is not necessarily a unique choice of u(·) for a given z(·) ∈ S[t0,T ].
17 Therefore,

with each z(·) ∈ S[t0,T ], we associate the control u(·) having minimal norm based on
the pseudoinverse B(t)	 of B(t) for the RM-norm ‖ · ‖R̃(t) := ‖R̃(t)1/2 · ‖2: 18

u(t) = B(t)	[z ′(t) −A(t)z(t)] a.e. in [t0, T ]. (1.19)

Problem (PLQ) then induces a natural inner product over S[t0,T ]. As a matter of fact,
the expression

〈z1(·), z2(·)〉K := z1(tref)
>Jrefz2(tref) +

∫T
t0

[
z1(t)

>Q̃(t)z2(t) +u1(t)
>R̃(t)u2(t)

]
dt

(1.20)
is bilinear and symmetric over S[t0,T ] × S[t0,T ]. Since ‖z(·)‖2K = 0 implies that u(·) a.e≡ 0,
as Jref � 0, z(tref) = 0, hence z(·) ≡ 0. The description by S[t0,T ] of the optimization
variables effectively pushes controls in the background while bringing forth trajectories
as the main object of study. This describes (PLQ) more as a regression problem over
S[t0,T ] than as an optimal control problem over controls. By Cauchy-Lipschitz’s theorem,

‖z(·)‖K0 = ‖J1/2refz(tref)‖2 defines a norm over the finite-dimensional subspace S0 of
trajectories with null quadratic cost (hence null control):

S0 :=

{
z(·) |

∫T
t0

z(t)>Q̃(t)z(t)dt = 0 and z ′(t) = A(t)z(t), a.e. in [t0, T ]

}
. (1.21)

As in spline studies and as anticipated in Section 1.2.3, this S0 has to be treated aside
from the controlled trajectories. This further motivates the introduction of the matrix

17. This is the case for instance if B(t) is not injective for a set of times t with positive measure.
18. For any operator B from RP to RQ, the pseudoinverse B	 w.r.t. ‖ · ‖R̃ is defined as the operator

from RQ to RP that assigns to each z ∈ RQ the element which minimizes the ‖ · ‖R̃-norm over the
affine subspace of minimizers ū of ‖z−Bu‖2, i.e. B	z = arg min ‖ū‖2

R̃
for ū ∈ arg minu∈RP ‖z−Bu‖2.

Consequently, BB	B = B, and, if R̃ = IdP, BB	 is the orthogonal projector onto the image Im(B) of
B. As z(·) ∈ S[t0,T ], we have that z ′(t) −A(t)z(t) ∈ Im(B) in (1.19), so our selection u(·) is a control

which can generate z(·). The quantity
∫T
t0
u(t)>R̃(t)u(t)dt is necessarily finite since u(t) has minimal

‖ · ‖R̃-norm among the controls associated with z(·) ∈ S[t0,T ].
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Jref in the definition of (PLQ).

As shown in Chapters 4 and 5 (Aubin-Frankowski, 2021a, 2021b), (S[t0,T ], 〈·, ·〉K) is a
vRKHS over [t0, T ] with a reproducing kernel K[t0,T ], dubbed the LQ kernel, which can
be explicitly computed. Let us denote by ΦA(t, s) ∈ RQ×Q the state-transition matrix
of z ′(τ) = A(τ)z(τ), defined from s to t, i.e. z(t) =ΦA(t, s)z(s). In Chapter 4, the LQ
kernel is related to the Gramian of controllability, 19 when setting tref = t0, Jref = IdQ,
Q̃(·) ≡ 0, since in this case the kernel of the subspace {z(·) ∈ S[t0,T ] | z(t0) = 0} is:

K(s, t) =

∫min(s,t)

t0

ΦA(s, τ)B(τ)R̃(τ)
−1B(τ)>ΦA(t, τ)

>dτ. (1.22)

In Chapter 5, the LQ kernel is related to the dual Riccati equation when setting tref = T ,
Jref = JT and g(·) ≡ 0 in (PLQ). As a matter of fact, in this case, the diagonal initial
values K[t0,T ](t0, t0) are equal to the inverse of the Riccati matrices at time t0. The latter
are the solution of the dual Riccati equation, with terminal condition M(T) = J−1T ,

∂1M(t) = A(t)M(t) +M(t)A(t)> −B(t)R̃(t)−1B(t)> +M(t)Q̃(t)M(t). (1.23)

We now discuss how to apply the result of Section 1.3.2 to LQ optimal control.

1.3.3.2 Dealing with pure state constraints in LQ optimal control

In this section, we deal with the pure state constraints of (PLQ). As discussed in
Section 1.3.2, we suggest replacing “γi(t)>z(t) 6 b0,i(t) (∀ t ∈ [t0, T ])“ by the following
strengthened second-order cone (SOC) constraints:

ηi(δm, tm)‖z(·)‖K + γi(tm)>z(tm) 6 b0,i(δm, tm), ∀m ∈ [Mi], ∀ i ∈ [I], (1.24)

where the (tm)m∈[Mi] ∈ [t0, T ]
Mi are time points associated with radii δm > 0 satisfying

[t0, T ] ⊂ ∪m∈[Mi][tm − δm, tm + δm]. The constants ηi(δm, tm) and b0,i(δm, tm) are
defined as:

ηi(δm, tm) := sup
t∈ [tm−δm,tm+δm]∩[t0,T ]

‖K(·, tm)γi(tm) −K(·, t)γi(t)‖K,

b0,i(δm, tm) := inf
t∈ [tm−δm,tm+δm]∩[t0,T ]

b0,i(t).

To make our approach crystal clear in this control context, we repeat the argu-
ments of Section 1.3.2.1. The tightening of the constraints stems from interpreting

19. The Gramian of controllability is defined as
∫T
t0
ΦA(T, τ)B(τ)R̃(τ)

−1B(τ)>ΦA(T, τ)
>dτ, it is thus

equal to the specific value K(T, T) of the kernel defined by (1.22).
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ηi(δm, tm)‖z(·)‖K as an upper bound of the modulus of continuity of the unknown
γi(·)>z(·) defined as follows

ω
(γiz)
i (δm, tm) := sup

t∈ [tm−δm,tm+δm]∩[t0,T ]
|γi(t)

>z(t) − γi(tm)
>z(tm)|︸ ︷︷ ︸

|〈z(·),K(·,t)γi(t)−K(·,tm)γi(tm)〉K|

6 ηi(δm, tm)‖z(·)‖K.

(1.25)

This inequality is obtained applying successively the reproducing property and the
Cauchy–Schwarz inequality. Since the intractable modulus of continuity controls the
variations of γi(t)z(t), the SOC upper bound provides a tractable tightening. With
the above notations, our strengthened time-varying linear quadratic optimal control
problem with finite horizon and finite number of SOC constraints is

min
z(·)∈S,
z(0)=z0

g(z(T)) + ‖z(·)‖2K

s.t.

ηi(δm, tm)‖z(·)‖K + γi(tm)>z(tm) 6 b0,i(δm, tm), ∀m ∈ [Mi], ∀ i ∈ [I].

(Pδ,fin)

Under general assumptions, as proven in Chapter 4, (PLQ) and (Pδ,fin) have a unique
solution for convex and continuous terminal costs g(·). Furthermore one can approxi-
mate arbitrarily close, both in ‖ · ‖K and ‖ · ‖∞, the solution of (PLQ) by the solution
of (Pδ,fin) when refining the discretization grid, since each ηi(δm, tm) converges then
to zero and each b0,i(δm, tm) to b0,i(tm). As seen in Section 1.3.2, the introduction of
(Pδ,fin) as a tightening of (PLQ) entirely stems from the vRKHS formalism and does not
result from optimal control considerations. It leads to a finite number of evaluations
of the variable z(·) in (Pδ,fin) which allows for a representer theorem (Theorem 1.5 in
Section 1.2.5).

We now illustrate how to apply the SOC tightening procedure in LQ optimal control
in a toy example of a simplified constrained submarine.

1.3.3.3 Illustration through the example of a simplified constrained submarine

The trajectory of an underwater vehicle navigating in a two-dimensional cavern is
described by a curve t ∈ T := [0, 1] 7→ [x(t); z(t)] ∈ R2 corresponding to its lateral (x)
and depth (z) coordinates at time t ∈ T. For simplicity, we assume that the lateral
component satisfies x(0) = 0 and ẋ(t) = 1 for all t ∈ T. In this case, x(t) = t for all
t ∈ T and the control problem reduces to that of ensuring that the depth z(t) stays
between the floor and ceiling of the cavern (z(t) ∈

[
zlow(t), zup(t)

]
for all t ∈ T). We
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Figure 1.3 – Illustration of the optimal control problem (Pcave) of piloting a vehicle staying
between the ceiling (zup) and the floor (zlow) of a cavern. Red solid line: SOC-
based approach. Red dashed line: solution based on a discretization (formally
setting η = 0). Blue solid lines: constraints (zlow,m and zup,m). Green solid lines:
constraints with buffer ±ηm ‖z̄‖K.
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take as initial conditions z(0) = 0 and ż(0) = 0. Denoting the real-valued control by
u ∈ L2(T), our control task can be formulated as

min
u(·)∈L2(T,R)

∫
T

|u(t)|2dt

s.t.
z(0) = 0, ż(0) = 0,

z̈(t) = −ż(t) + u(t), ∀ t ∈ T,

zlow(t) 6 z(t) 6 zup(t), ∀ t ∈ T.

(Pcave)

Defining the full state of the vehicle as z(t) := [z(t); ż(t)] ∈ R2, z(t) evolves according
to the linear dynamics

ż(t) = Az(t) +Bu(t) ∈ R2, z(0) = 0, A =

[
0 1

0 -1

]
∈ R2×2, B =

[
0

1

]
∈ R2.

According to (1.22), as discussed in Section 1.3.3.1 and Chapter 4, the LQ kernel K of
the subspace {z(·) ∈ ST | z(t0) = 0} is then

K(s, t) :=

∫min(s,t)

0
e(s−τ)ABB>e(t−τ)A

>
dτ, s, t ∈ T.

With our kernel-based formulation, the problem (Pcave) can be rewritten as an opti-
mization problem over full-state trajectories

min
z=[z1,z2]∈HK

‖z‖2K

s.t.
zlow(t) 6 z1(t) 6 zup(t), ∀ t ∈ T.

In our experiment we assume that the given bounds zlow and zup are piecewise
constant: taking a uniform δ-covering T = ∪m∈[M]Tm with Tm := [tm − δ, tm + δ] and
tm+1 = tm+2δ form ∈ [M−1], this means that zlow(t) = zlow,m for all t ∈ Tm; similarly
zup(t) = zup,m for all t ∈ Tm. 20 Hence, with the piecewise constant assumption, the
control task (Pcave) reduces to

min
z∈HK

‖z‖2K

s.t.
zlow,m 6 z1(t) 6 zup,m, ∀ t ∈ Tm, ∀m ∈ [M].

20. For the numerical experiment considered, the piecewise constant bounds are obtained as piecewise
approximations of random functions drawn in a Gaussian RKHS.
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This optimization problem belongs to the family (PML) with Q = 2, P = 1, Dm(z) = z1
and b0,m = zlow,m for m ∈ [M] (zlow,m 6 z1(t) for t ∈ Tm and m ∈ [M]), DM+m(z) =

−z1 and b0,M+m = −zup,m for m ∈ [M] (−zup,m 6 −z1(t) for t ∈ Tm and m ∈ [M]),
z0,m = 0 and Γm = 0 for m ∈ [2M], I = 2M and B = {0}.

In Fig. 1.3 we compare the optimal trajectory obtained with the proposed SOC tight-
ening (using ball covering) to the one derived when applying discretized constraints
(formally corresponding to taking ηm = 0, as in (1.17)). As illustrated in Fig. 1.3,
the vehicle guided with discretized constraints crashes into the blue wall at multiple
locations (e.g. t = 0.5 or t = 0.95), whereas the trajectory resulting from the SOC-based
tightening stays within the bounds at all times. The SOC trajectory can be described as
solving a problem where zlow,m (resp. zup,m) was replaced by zlow,m + ηm ‖z̄‖K (resp.
zup,m − ηm ‖z̄‖K). This acts as a supplementary buffer (green solid line). Even though
the SOC trajectory intersects the green boundary, the buffer ηm ‖z̄‖K is guaranteed to
be large enough for the SOC trajectory to never collide with the blue boundary. On the
other hand, the trajectory with discretized constraints is only constrained at the middle
points of every piece of the piecewise constant boundaries, it has no information about
the constraints in-between. This experiment demonstrates the efficiency of the SOC
approach in a safety-critical application where the constraints have to be met at all
times.

1.3.4 Differential inclusions: Lipschitz minimal time and kernel-based graph identification

This final section is devoted to some aspects of autonomous differential inclusions
(z ′(t) ∈ F(z(t))) with state constraints. Whereas the linear systems considered in
Section 1.3.3.1 form a coherent, albeit restrictive, field, nonlinear control systems are
much more diverse. Differential inclusions are to that respect amongst the largest
classes of deterministic finite-dimensional systems one can consider. Owing to their
nonlinear embedding interpretation, reproducing kernels appear promising to capture
some of the nonlinearity of differential inclusions. As shown in Section 1.3.3.1, control-
intrinsic Hilbertian kernels have been related only to linear (or linearized) systems.
Nevertheless a kernel-based approach could still be used to estimate some relevant
quantities, such as the minimal time function in reachability problems with state
constraints, or the graph of the set-valued map F based on samples.

Concerning minimal time, Chapter 6 provides sufficient conditions for it to be
Lipschitz continuous on its domain. This result is based on inward-pointing conditions,
which are also used in the Appendix of Chapter 4. Regularity of the minimal time
acts as a conceptual justification of its numerical approximation by smooth functions
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such as the ones in a RKHS Hk. It is also a first step to study nonlinear controllability
with nonsmooth state constraints. Concerning graph identification, we leverage a
kernel method related to one-class SVMs to encode a set K based on some samples
xn ∈ K. This corresponds to estimating a pair (f, ρ) ∈ Hk×R such that K ≈ {x | f(x) 6
ρ}. We prove that this procedure is “set-consistent“ for the Gaussian kernel, i.e. it
can approximate any compact set K in Hausdorff distance provided that the kernel
bandwidth is small enough and the samples are dense in K. Graphs of set-valued
maps F can thus be approximated through this approach. Since these sections and the
corresponding chapters are of a more standalone fashion w.r.t. the rest of the thesis,
we only describe here their general objectives and principal contributions.

1.3.4.1 Lipschitz minimal time of state-constrained differential inclusions

Studying the regularity of the minimum time function finds its motivation in reach-
ability problems. Let K and C be two closed subsets of RQ and consider a control
system with initial condition z0 ∈ K{

z ′(t) = f(z(t),u(t)), u(t) ∈ U,
z(0) = z0,

(1.26)

where U is a compact subset of RP, the control u(·) is a measurable function and
f : RQ ×U → RQ is sufficiently smooth. The state-constrained time optimal control
problem consists in finding the minimum time τmin(z0) to reach C along solutions of
(1.26) staying in K. Assessing the regularity of τmin allows to answer several questions.
For instance, let a time-optimal state-constrained solution zref(·) of system (1.26) be
given. Take as initial condition a point z1 in a neighborhood of the trajectory set
zref([0, τmin(z0)]). Under what conditions can z1 be steered to the target set C while
respecting the state constraints K? How long would it take compared to τmin(z0)?

More generally, consider the autonomous differential inclusion, with initial condition
z0 ∈ K:

z ′(t) ∈ F(z(t)), z(0) = z0, (1.27)

where F : RQ  RQ is a set-valued map taking closed, nonempty values. Below, an
F-trajectory z(·) on a time interval [0, T ] designates an absolutely continuous function
satisfying z ′(t) ∈ F(z(t)) a.e. on [0, T ]. A trajectory is called "feasible" if z([0, T ]) ⊂ K.

The capture basin CaptF(K,C) is the set of all points z0 ∈ K such that there exists
T > 0 and a feasible F-trajectory starting from z0 and reaching the target set C at time
T . For a given z0 ∈ K, we denote the infimum of such T by τmin(z0). By convention,
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τmin(z0) = +∞ if z0 /∈ CaptF(K,C). By analogy with the control system (1.26), this
defines the minimum time function τmin : K→ [0,+∞] associated with the target set C,
dynamics F and state-constraints K. The Lipschitz regularity of the extended function
τmin(·) thus depends on the links existing between both F,K and C. In order to
exhibit Lipschitz dependence of solutions on initial conditions (through the renowned
Filippov’s theorem), it is classical to suppose the (local) Lipschitzianity of F. On the
other hand, the local Lipschitz continuity of τmin(·) on its domain CaptF(K,C), in the
case without state constraints, has been related to strict inward-pointing conditions
on the boundary ∂C of the target since the 70s (see e.g. Cannarsa & Sinestrari, 2004,
Chapter 8, for a modern presentation and the bibliography therein). More recently,
it has been shown in Bettiol et al., 2012 that strict inward-pointing conditions on the
boundary ∂K ensure L∞-distance estimates between arbitrary F-trajectories and the set
of feasible ones.

We provide in this thesis sufficient conditions for τmin to be locally Lipschitz con-
tinuous on its domain, for state-constrained differential inclusions, under general
assumptions on F, K and C, and a convexified version of the inward-pointing condi-
tions.

1.3.4.2 SVDD approximation of the graph differential inclusions, applied to detection of
transportation modes

Like in Section 1.3.4.1, we first introduce our problem for control systems, as in
(1.26), before extending the framework to differential inclusions, as in (1.27). However,
unlike in Section 1.3.4.1, we do not consider the question of the dependence of the
minimal time on the initial condition since the unknown is now the function describing
the controlled system itself. Given sample trajectories from various fixed systems
(e.g. a car and a bike), we would like to determine which of these systems could
describe the trajectories underlying some new samples. The possible state constraints
are implicit since the sample trajectories are feasible by definition. State constraints
are thus incorporated into the definition of the domain of definition of the dynamics.
More precisely, consider J > 1 forced dynamical systems, each denoted by (fj, Uj), for
some index j ∈ [J] that can be interpreted as a discrete-valued parameter, i.e. a label.
The systems have the governing equations

z ′(t) = fj(z(t),u(t))

where the state vector is z ∈ RQ, with the particularity that the input signal u(·) ∈ Uj
is unknown. Each set Uj is defined as the set of functions containing every possible
input signal given the value of j. For example, without further restriction, the sets Uj
can be subsets of some functional space (e.g. C0, L2) with bounded values in RP. As
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stated above, the forcing signal u(·) is unknown. Further, despite being unambiguously
defined, the sets Uj are unknown as well. To account for this lack of information, the
governing equations above are rewritten as differential inclusions:

z ′(t) ∈ Fj(z(t)) := {fj(z(t),u(t)) |u(·) ∈ Uj},
Kj := {(z, z ′) | z ′ ∈ Fj(z)} ⊂ RQ ×RQ,

where the set-valued map Fj is identified with its graph Kj. 21 We assume that for each
value of j, some properly labeled values (samples) of the pair (z(·), z ′(·)) are available,
forming J datasets. We first build approximations of the graphs Kj based on these
data points. Once these approximations are available, they can be used to determine
which values of j could be compatible with some unlabeled recordings of samples of a
new trajectory (z(·), z ′(·)). In other words, the framework advocated here considers
the training data as labeled clouds of points (z, z ′), each cloud corresponding to an
unknown subset of the unknown Uj. Graphically, constructing an approximation of Kj
amounts to delineating a subset of R2Q based on the training data (learning step). Once
the learning step is achieved, when (new) unlabeled data become available, identifying
j amounts to testing the membership of the new data to the J learned subsets (testing
step).

To define approximations of the sets (Kj)j∈[J], we apply the Support Vector Data
Description algorithm (SVDD, Tax & Duin, 2004). SVDD is a kernel method computing
a minimal enclosing ball around the data. The output of the algorithm is an indicator
function, the evaluation of which allows to readily test membership. The SVDD
problem writes as follows

(fN, rN) := arg min
f∈Hk, r∈R

r2 s.t. ∀n ∈ [N], ‖k(xn, ·) − f(·)‖Hk 6 r. (1.28)

Based on (fN, rN), one can define the closed set

KSVDDN := {x ∈ R2Q | ‖kx(·) − fN(·)‖2Hk 6 r
2
N}

which is the SVDD candidate to approximate K. It is shown in Chapter 7 that KSVDDN

for the Gaussian kernel can estimate any compact set K ⊂ R2Q in the Hausdorff metric
(a “set-consistency” property of the procedure), provided that the kernel bandwidth is
small enough and that the samples are dense in K. Two indexes j0 and j1 can then be
distinguished if the approximations of their Kj differ (which depends on both fj and
Uj). For applications, both learning and testing have to be computationally tractable

21. The graph is bounded whenever the state and its derivatives are bounded for all u(·) ∈ Uj.
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and robust to noise, and SVDD satisfies both conditions. To show the applicability
and relevance of the method, this approach is applied to the problem of detecting
transportation modes.
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2
K E R N E L R E G R E S S I O N W I T H S H A P E C O N S T R A I N T S F O R
V E H I C L E T R A J E C T O RY R E C O N S T R U C T I O N

This chapter was published as a joint work with Nicolas Petit and Zoltán Szabó
in the Proceedings of IFAC World Congress 2020, under the title Kernel Regression
for Vehicle Trajectory Reconstruction under Speed and Inter-vehicular Distance Constraints
(Aubin-Frankowski et al., 2020).

Abstract This chapter tackles the problem of reconstructing vehicle trajectories
with the side information of physical constraints, such as inter-vehicular distance
and speed limits. It is notoriously difficult to perform a regression while enforcing
these hard constraints on time intervals. Using reproducing kernel Hilbert spaces, we
propose a convex reformulation which can be directly implemented in classical solvers
such as CVXGEN. Numerical experiments on a simple dataset illustrate the efficiency
of the method, especially with sparse and noisy data.

Résumé Dans ce chapitre, on s’intéresse au problème de la reconstruction de tra-
jectoires de véhicules en présence d’informations complémentaires sur des contraintes
physiques, telles que la distance inter-véhicules et les limites de vitesse. Il est no-
toirement difficile d’effectuer une régression tout en appliquant ces contraintes sur
des intervalles de temps. En nous appuyant sur des espaces de Hilbert à noyau re-
produisant, nous proposons une reformulation convexe qui peut être directement
implémentée dans des solveurs classiques tels que CVXGEN. Des expériences nu-
mériques sur un jeu de données simplifiées illustrent l’efficacité de la méthode, en
particulier pour des données en petit nombre et fortement bruitées.
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50 kernel regression with shape constraints for vehicle trajectory reconstruction

2.1 introduction

This chapter addresses the problem of shape-constrained regression. This problem
can be found in many domains of engineering, under various terminologies such
as: estimation under constraints, constrained curve fitting or constrained smoothing
to name a few. Taking into account the constraints is well known to improve recon-
struction performance (Alouani & Blair, 1991; Chang et al., 2009). Prime examples of
applications can be found in chemical engineering (Arora & Biegler, 2004), biology
(Motulsky & Christopoulos, 2004), among others. Shape-constrained regression is
of interest in transportation systems, especially in the context of the vehicle to in-
frastructure (V2I; Agosta et al. 2016) concept which is central in the research field of
Intelligent Transportation Systems (ITS; De Wit et al. 2015; Liang et al. 2016; Work
et al. 2009). To illustrate this point, the application problem considered in this article
consists in reconstructing the trajectory of several vehicles under constraints, based on
a set of noisy position measurements. The vehicles are represented as point-like objects
traveling along a one-dimensional path. The constraints are interpreted as some side
information, i.e. external or prior knowledge. In our context, the constraints model the
fact that the vehicles are non-overtaking and have non-negative curvilinear velocity.

Due to its practical importance, several approaches have long been developed to
handle such side information, through Kalman filtering and its advanced forms (EKF,
UKF, to name a few), where inequality constraints have been addressed using the
notion of Pseudo-Measurements (Tahk & Speyer, 1990). In particle filtering (see Papi
et al., 2012 and references therein), affine inequality constraints on dynamics can be
dealt with, at the expense of sub-optimality of the solution, using projection of the
probability density function with simple saturation functions (Agate & Sullivan, 2004).
Other approaches propose to reject estimates that try to escape the region of the state
space where the inequality constraints are satisfied (L.-S. Wang et al., 2002).

Alternatively, in many instances, the problem is recast as a nonlinear programming
problem (Arora & Biegler, 2004). A usual approach relies on smoothing splines, which
constitutes a principled way to perform regression on measurements (Buisson et al.,
2016). However, the discretization of the constraints at the hard-to-select « knot points »
is known to be tiresome. For our part, we perform the regression in a reproducing
kernel Hilbert space (RKHS). We use fundamental properties of RKHSs to replace
the infinite number of constraints (the constraints being defined on a whole time
interval) with finite many, without resorting to discretization. The problem is recast
with second-order cone constraints. This allows for an efficient implementation of our
problem on convex optimization solvers, such as CVXGEN (Mattingley & Boyd, 2012).

The paper is organized as follows. In Section 2.2 we formulate the problem of
reconstructing trajectories under distance and speed constraints on a time interval
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as a regularized convex constrained optimization problem in a functional space, first
expressed for splines and then in RKHSs. Section 2.3 is about the optimization of
our proposed formulation. Importantly, we explain how this reformulation makes
the problem tractable using classical convex programming solvers. In Section 2.4, we
illustrate the approach on a real trajectory dataset, underlining the stability of the
reconstruction w.r.t. noise. Conclusions are drawn in Section 2.5.

2.2 problem formulation

In this section we formulate our problem after introducing a few notations.
Notations: Let R, R+, N = {0, 1, . . .} and N∗ = {1, 2, . . .} stand for the real, non-

negative real, natural numbers and positive integers respectively. We use the [N] :=

{1, . . . ,N} shorthand. The jth (j ∈N) derivative of a function f is denoted by f(j); we
write f ′ for j = 1. The space of continuously differentiable real-valued functions on
T×T ⊆ R2 is denoted by C(1,1)(T×T). The concatenation of vectors v1 ∈ Rd1 , . . . , vM ∈
RdM is written as [v1; . . . ; vM] ∈ R

∑
m∈[M] dm . The zero (resp. all-ones) element of Rd

is denoted by 0d (resp. 1d). The transpose of a vector v ∈ Rd is denoted by vT , its

Euclidean norm being ‖v‖2 =
√∑

i∈[d] v
2
i . Let S be a closed subspace of a Hilbert space

F and S⊥ = {f ∈ F : 〈f, g〉F = 0 for all g ∈ S} its orthogonal complement. Then every
f ∈ F has a unique decomposition of the form f = g+ h (g ∈ S, h ∈ S⊥), i.e F can be
decomposed as F = S⊕ S⊥.

Our goal is to reconstruct the trajectories of a set of vehicles from noisy observations.
The vehicles are assumed to form a convoy (i.e. they do not overtake and keep a
minimum inter-vehicular distance between each other), and we have speed limits on the
vehicles. These two requirements represent our hard constraints to be fulfilled. We
model the trajectories of the vehicles using reproducing kernel Hilbert spaces (RKHS).
In the sequel, we introduce this function class and our optimization problem starting
from splines (arising from a specific RKHS) and assuming that our convoy has a single
vehicle (hence only the speed constraint applies).

Convoy with one vehicle (Q = 1): Assume that our convoy is made of a single
vehicle. Our datapoints consist of N noisy position measurements {xn}n∈[N] ⊂ R

recorded at time points {tn}n∈[N] ⊂ T := [0, T ]. In order to capture the (t, x) relation,
one can use for example splines. Specifically, let us assume that the modelling class is
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the Sobolev space 1 F :=Wm
2 (T). Then the classical polynomial spline approach can be

expressed as the minimization problem

min
f∈F

[
1

N

∑
n∈[N]

|xn − f(tn)|
2

︸ ︷︷ ︸
approximation error

+λ

∫
T

|f(m)(t)|2dt︸ ︷︷ ︸
smoothing term

]
, (2.1)

where λ > 0 defines the trade-off between the approximation error (first term) and
smoothness (second term). It is well-known (Berlinet & Thomas-Agnan, 2004) that the
Sobolev space F can be decomposed as Wm

2 (T) = F1 ⊕F2 with

F1 = span
(
1, t, . . . ,

tm−1

(m− 1)!

)
,

F2 =
{
f ∈Wm

2 (T) | f(j)(0) = 0 (∀j ∈ {0, . . . ,m}) ,

‖f‖2F =

m∑
j=0

|f(j)(0)|2 +

∫
T

∣∣∣f(m)(t)
∣∣∣2 dt = ‖f1‖2F1 + ‖f2‖

2
F2

where f = f1 + f2 (f1 ∈ F1, f2 ∈ F2). In (2.1), the projection onto F1 is not penalized,
and one can rewrite (2.1) as

min
f∈F

 1
N

∑
n∈[N]

|xn − f(tn)|
2 + λ ‖f2‖2F2

 . (2.2)

For further details on splines the reader is referred to Berlinet and Thomas-Agnan
(2004), Wahba (1990), and Y. Wang (2011).

It turns out that not every function class F with a F1⊕F2 decomposition is practically
useful. In order to get computationally tractable schemes the relevant assumptions
are that (i) F1 = span

({
ϕj
}
j∈[J]

)
is a finite-dimensional space spanned by some basis

functions
{
ϕj
}
j∈[J] and (ii) F2 = Fk is a so-called RKHS (Aronszajn, 1950) associated to

a kernel k : T × T → R. This leads to the kernel ridge regression (also called abstract
spline) extension of the polynomial spline fitting problem

min
b∈R, f∈Fk

 1
N

∑
n∈[N]

|xn − (b+ f(tn)) |
2 + λ ‖f‖2Fk

 , (2.3)

1. Classically, the Sobolev space of order m is defined as Wm2 (T) := {f : T →
R | f(j) is absolutely continuous for all j ∈ {0, . . . ,m− 1}, and

∫
T [f

(m)]2(t)dt <∞}.
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where F1 was chosen to be one-dimensional (J = 1) containing only the identically con-
stant functions. Using the RKHS norm as a regularizer in (2.3) ensures the uniqueness
of the solution. We will discuss RKHSs (Fk) and kernels (k) at the end of the section.

Finally, let us formulate our proposed optimization task for a single vehicle taking
into account the minimum speed constraint 2 (vmin) as well:

min
b ∈ R, f ∈ Fk

 1
N

∑
n∈[N]

|xn − (b+ f(tn)) |
2 + λ ‖f‖2Fk


s.t.

vmin 6 f
′(t), ∀t ∈ T.

(2.4)

Convoy with multiple vehicles (Q > 1): We now extend our formulation (2.4) to
handle a convoy. Assume that the convoy contains Q vehicles, and that we have Nq
noisy position measurements for each of its members

{
(tq,n, xq,n)n∈[Nq]

}
⊂ T ×R

(q ∈ [Q]) where the time points might differ per vehicle. Assuming (without loss
of generality) that the vehicles are ordered by index (q = Q being the last, while
q = 1 is the first in the lane) the non-overtaking property with given minimum inter-
vehicular distance dmin > 0 can be formulated as dmin + bQ + fQ(t) 6 bQ−1 + fQ−1(t),
. . ., dmin + b2 + f2(t) 6 b1 + f1(t) for all t ∈ T. This gives our final optimization
problem describing the trajectory reconstruction of the convoy:

min
f1,...,fQ ∈Fk,
b1,...,bQ ∈R

1

Q

Q∑
q=1

 1

Nq

Nq∑
n=1

|xq,n − (bq + fq(tq,n)) |
2

+ λ‖fq‖2Fk

 (2.5a)

s.t.
dmin + bq+1 + fq+1(t) 6 bq + fq(t), ∀q ∈ [Q− 1], t ∈ T, (2.5b)

vmin 6 f
′
q(t), ∀q ∈ [Q], t ∈ T. (2.5c)

We now return to the discussion on the RKHS Fk, the class of functions we use for
modelling. A Hilbert space Fk of T → R functions is called a RKHS (Aronszajn, 1950)
with reproducing kernel 3 k : T × T → R if (i) kt(·) := k(·, t) ∈ Fk for all t ∈ T and (ii)
f(t) = 〈f, kt〉Fk for all t ∈ T and f ∈ Fk. This second (reproducing) property expresses
that the function evaluation (f 7→ f(t)) in a RKHS is reproduced by taking the inner

2. We will discuss in Section 2.3 the similar vmax requirement.
3. We abbreviate the function s ∈ T 7→ k (s, t) ∈ R as k(·, t).



54 kernel regression with shape constraints for vehicle trajectory reconstruction

product with kt; hence the name. Examples for kernels include the Gaussian (kG) or
the 3/2-Matérn kernel (kM) defined on R as

kG (t, s) = e−(t−s)2/(2σ2), (2.6)

kM (t, s) = (1+
√
3|t− s|/σ)e−

√
3|t−s|/σ, (2.7)

where σ > 0 is the « bandwidth ». Constructively, Fk = span (kt : t ∈ T); this means
that for the Gaussian kernel the elements of Fk are the limits of sums of Gaussians
with real coefficients. For instance {kM(·, t) : t ∈ R} spans W2

2(R).
The properties of the kernel determine that of the elements of the associated RKHS

Fk. For example if the kernel is bounded (i.e., supt,s∈T k(t, s) <∞), the same holds for
the elements of Fk. A similar conclusion is valid if k is (i) continuous and bounded, (ii)
m-times continuously differentiable, or (iii) analytic. A second equivalent definition of
kernels is often important from an optimization point of view. A symmetric function
k : T × T → R (k(t, s) = k(s, t) for all t, s ∈ T) is called kernel if the associated
Gram matrix G = [k(ti, tj)]i,j∈[n] is positive semi-definite for any choice of n ∈N∗ and
t1, . . . , tn ∈ T. This property of G will result in a convex objective function. For further
details on RKHS and kernels, the reader might consult Berlinet and Thomas-Agnan
(2004), Saitoh and Sawano (2016), and Steinwart and Christmann (2008).

Having covered our proposed trajectory inference formulation of the convoy (2.5)-
(2.5c) and basic properties of RKHSs, in the next section we focus on the optimization
of our objective function.

2.3 optimization

The primary challenge one has to resolve in the optimization problem (2.5)-(2.5c) is
the infinite number of constraints (due to T) in (2.5b) and (2.5c). In the literature, such
requirements are typically tackled by requiring the constraints to hold only at a finite
number of time points; unfortunately this discretization approach does not guarantee
that the constraints are fulfilled elsewhere. In contrast, we propose a strengthened
optimization problem which implies both (2.5b)-(2.5c) and is computationally tractable.

We assume that k is defined on a set containing T and that its restriction to T belongs
to C(1,1)(T× T) with bound κ := supt,s∈T

√
k (t, s), which holds for example with κ = 1

for the Gaussian and Matérn kernels. Let the union of the measured time points be
{tm}m∈[M] := ∪q∈[Q],n∈[Nq]{tq,n}. We look for solutions of the form fq =

∑
m∈[M] aq,mktm

(aq := (aq,m)m∈[M] ∈ RM).
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Given N ∈N∗ and a finite family of functions {gn}n∈[N] ⊂ Fk, let u = (un)n∈[N] ∈ RN

such that un > supt∈T gn(t). Then, our strengthened convex optimization problem
expresses as:

min
a1,...,aQ ∈RM,
b1,...,bQ ∈R,

α1,...,αQ ∈RN+ ,

β1,...,βQ ∈RN+

1

Q

Q∑
q=1

1

Nq

[
aTq(GMΠ

T
qΠqGM + λNqGM)aq (2.8a)

+Nqb
2
q + 2

(
bq1Nq − xq

)T
ΠqGMaq − 2bq1

T
Nq
xq

]
s.t.

κ
∥∥∥G1/20 [aq −aq+1;αq]

∥∥∥
2
6 bq − bq+1 − dmin −αTqu, ∀q ∈ [Q− 1],, (2.8b)

κ
∥∥∥G1/2D [aq;βq]

∥∥∥
2
6 −vmin −βTqu, ∀q ∈ [Q], (2.8c)

where xq = (xq,n)n∈[Nq] ∈ RNq , Πq ∈ RNq×M is the projector from RM to RNq ,
the Fk-function ∂2k(·, t) is the derivative of k(·, t) w.r.t. the second variable, G0 ∈
R(M+N)×(M+N) is the Gram matrix of (kt1 , . . . , ktM , g1, . . . , gN), GD ∈ R(M+N)×(M+N)

is the Gram matrix of (∂2k(·, t1), . . . , ∂2k(·, tM), g1, . . . , gN), GM ∈ RM×M is the Gram
matrix of (kt1 , . . . , ktM).

In practice, one can set for instanceN =M and gm = −ktm for allm ∈ [M]; this is the
choice made in Section 2.4. Furthermore, constraint (2.8c) can be overly conservative.
An alternative is to cover T with intervals Im := [tm − δm, tm + δm] with δm > 0, set
um = supt∈Im gm(t) and replace (2.8c) by

κ
∥∥∥G1/2m [aq;βq,m]

∥∥∥
2
6 −vmin −βq,mum, ∀q ∈ [Q], m ∈ [M] (2.8d)

with Gm ∈ R(M+1)×(M+1) being the Gram matrix of (∂2k(·, t1), . . . , ∂2k(·, tM), gm).

Remarks:

— While the derivation of the optimization problem (2.8a)-(2.8c) is involved (using
convex analysis in Hilbert spaces), we can give the intuition with even more
strengthened constraints (but which are less useful in practice), the proof of which
is straightforward. Consider requirement (2.5b) for a fixed q ∈ [Q− 1]; (2.5c) can
be handled similarly. In case of (2.5b), one has to satisfy

sup
t∈T

[
fq+1(t) − fq(t)︸ ︷︷ ︸
=〈fq+1−fq,kt〉Fk

]
6 bq − bq+1 − dmin, (2.9)
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where on the l.h.s. we applied the reproducing property of k. Since ‖kt‖2Fk =

〈kt, kt〉Fk = k(t, t) 6 κ2 for any t ∈ T, it is sufficient for (2.9) to hold that fq,
fq+1, bq, bq+1 satisfy

sup
g∈Fk, ‖g‖Fk6κ

〈
fq+1 − fq, g

〉
Fk
6 bq − bq+1 − dmin.

Applying the Cauchy-Schwarz inequality, one gets

κ
∥∥fq+1 − fq∥∥Fk 6 bq − bq+1 − dmin. (2.10)

Under the parameterization fq =
∑
m∈[M] aq,mktm (aq,m ∈ R) and applying again

the reproducing property of k, (2.10) reads, equivalently, as

κ
∥∥∥G1/2M (aq −aq+1)

∥∥∥
2
6 bq − bq+1 − dmin. (2.11)

This inequality is a special case of (2.8b) with αq = 0.
— Solution of (2.8a)-(2.8c) in practice: the convex problem (2.8a)-(2.8c) can be readily

implemented with classical solvers such as CVXGEN (Mattingley & Boyd, 2012). It
has a quadratic objective function and constraints involving a Euclidean norm and
affine terms, i.e. second-order cone constraints. Hence, our problem scales at worst
as O((Q(N+M))3) (Alizadeh & Goldfarb, 2003). Computing the Gram matrices
G boils down to using the reproducing property for function values and for their
derivatives. For all t ∈ T and h ∈ Fk, this writes as

h(t) = 〈h, kt〉Fk , h ′(t) = 〈h, ∂2kt〉Fk ,

which implies that

〈h1, h2〉Fk =
∑
i∈[N1]

∑
j∈[N2]

cidjk(ti, sj)

whenever h1 and h2 can be written in the form of h1 =
∑
i∈[N1] cikti and h2 =∑

j∈[N2] djksj (ci, dj ∈ R, ti, sj ∈ T). Hence, it is worthwhile to choose {gn}n∈[N] ⊂
span({kt}t∈T); this being a mild assumption as span({kt}t∈T) is dense in Fk. Under
this requirement on {gn}n∈[N], all the inner products appearing in G are easy
to compute. As these Gram matrices are positive semi-definite (see the end of
Section 2.2), one can take the matrix square roots G1/2 in (2.8b) and (2.8c), which
can be replaced by the output of their Cholesky decomposition. These computations
need to be done only once, prior to the numerical resolution of (2.8a)-(2.8c).
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— Maximum speed constraint: in addition to the minimum speed constraint (2.5c),
one might also have an upper bound on the speed of the vehicles:

f ′q(t) 6 vmax, ∀q ∈ [Q], t ∈ T.

Such a requirement can be encoded similarly to (2.8c): introducing an additional
variable γq ∈ RN

+ , it is sufficient to add the

κ
∥∥∥G1/2D [−aq;γq]

∥∥∥
2
6 vmax − γ

T
qu, ∀q ∈ [Q] (2.12)

constraint to the optimization problem (2.8a)-(2.8c).
— Group of convoys: one could also consider an extension of the presented trajectory

inference formulation (2.8a)-(2.8c) to groups of cars forming convoys for given time
intervals. In this case, one should just replace the time interval T and the car indices
[Q] with some subsets in the constraint (2.8b), and change the bound u accordingly.
The less restrictive formulation (2.8d) of (2.8c) exploits the same idea.

2.4 numerical experiments

In this section, we demonstrate the efficiency of the proposed trajectory reconstruc-
tion approach with speed and inter-vehicular distance constraints. The goal of the
experiments is two-fold:
— Experiment-1: We show that trajectory reconstruction not taking into account the

speed and inter-vehicular distance requirements can easily lead to inconsistencies,
whereas our constrained solution remains consistent. We illustrate the idea on
GPS-like data from a highway section including a traffic jam.

— Experiment-2: We complement the first experiment by investigating how severe
the error in the trajectory reconstruction is as a function of the measurement noise.
For large levels of noise, enforcing the constraints is quite beneficial.

We start by describing our dataset. We use trajectories from the recent MoCoPo
benchmark (Buisson et al., 2016). These trajectories t 7→ (x, y) correspond to cars
driving on a two-lane highway. For illustration purposes, we select six vehicles (Q = 6)
following each other in the same lane with no overtaking and including a traffic jam.
Including the traffic jam section makes the estimation extremely challenging as the
measurement noise in the positions can easily lead to the (false) prediction that the
vehicles are moving forward and back.

After projecting the two-dimensional position coordinates (x, y) to the distance trav-
elled along the lane (from now on referred to as x), we sub-sample it by decreasing the
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(a) Measurements and reconstructed trajectories t 7→ fq(t). Each colour
represents a vehicle. Grey area: when some vehicles are out of the
road section.

15 20 25 30 35 40 45

t (s)

0

5

10

15

20

25

30

35

40

d 
(m

)
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(c) Reconstructed velocities t 7→ f ′q(t) compared
to the vmin = 0ms−1 threshold. The notation
is the same as in (b).

Figure 2.1 – Reconstruction of the convoy trajectory.
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25 Hz measurement frequency to 1 Hz which is a usual value for GPS measurements.
We then consider 20% of the measurements to be missing resulting in M = N = 350

data points, and corrupt the remaining data by adding Gaussian noise to it with
standard deviation σnoise. We also apply a pre-processing step, taking out an affine
component. This can be interpreted as modelling the discrepancy with respect to a ref-
erence trajectory (acting as a virtual vehicle in the middle of the convoy) rather than the
trajectories themselves. It corresponds to replacing the position measurement xq,n with
xq,n − f0(tq,n) for all q ∈ [Q], n ∈ [Nq]. Here f0(t) = v̄ t+ x̄ is obtained by performing
linear regression on the points {(tq,n, xq,n)}q∈[Q],n∈[Nq]. In the implementation of (2.8c),
we thus change accordingly vmin to vmin − v̄. Unlike the polar coordinates used by
Buisson et al. (2016), and introduced to project 2D to 1D data, we take the projection
step for granted and use information from the whole convoy to reconstruct the individ-
ual trajectories. We also corrupt the data that came from cameras to resemble GPS data.

In our first experiment the measurement noise is at an average level σnoise = 5m.
We require the vehicles to maintain a distance of at least dmin = 5m and a velocity
vmin = 0ms−1; the latter bound encodes that cars cannot go backward on a highway.
We used the 3/2-Matérn kernel (2.7) with bandwidth σ equal to the square root of
the median of the squared pairwise distance of the time points, and applied leave-
one-out cross-validation (see e.g. (Rifkin & Lippert, 2007)) to determine the optimal
regularization parameter λ. We compare our proposed trajectory reconstruction
approach taking into account both the inter-vehicular distance and speed constraints
(solution of (2.8a)-(2.8b)-(2.8d)) with the unconstrained trajectory estimator (solution
of (2.8a) without (2.8b)-(2.8d)). The estimated trajectories are depicted in Fig. 2.1a with
the noiseless (used for performance evaluation) and the noisy measurements (used for
estimation).

The reconstructed pairwise distances t 7→ fq(t) − fq+1(t) (q ∈ [Q− 1]) and velocities
t 7→ f

′
q(t) (q ∈ [Q]) are illustrated in Fig. 2.1b and Fig. 2.1c. As it can be read out

from Fig. 2.1b, one pair of vehicles clearly violates the distance constraint for the
unconstrained kernel ridge regression (KRR), while the proposed scheme respects the
inter-vehicular distance requirement. The situation is even more severe in case of the
estimated speed values: as it can be seen in Fig. 2.1c many speed trajectories obtained
by KRR take negative values. In contrast, the proposed technique correctly handles the
speed constraints, even in the challenging traffic jam scenario. Notice that the values
of velocity never reach vmin due to the conservatism of our strengthened approach.
This experiment demonstrates the efficiency of our trajectory reconstruction method
for an average measurement noise level σnoise = 10m.
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Figure 2.2 – Median, lower and upper quartiles of the RMSE w.r.t. the ground truth trajectories
as a function of the noise level σnoise.

In order to provide further insight into the behaviour of our approach, in the second
experiment we studied the effect of the noise level σnoise on the accuracy of the trajectory
estimation. The accuracy of the estimation was computed as the root-mean-square error
(RMSE) w.r.t. the ground truth trajectories at the time points when all the vehicles were
on the studied road section (white area in Fig. 2.1a) at the original 25 Hz frequency.
The experiment was repeated 40 times and the resulting median, lower and upper
quartiles are reported in Fig. 2.2 for varying noise level. One can see that for large noise
level (say σnoise > 10m) the added constraints offer a more accurate reconstruction
than the unconstrained KRR method even in RMSE sense. For smaller noise level
the precise handling of the inter-vehicular distance and speed bounds is the main
benefit of the proposed approach while keeping comparable RMSE w.r.t. KRR. These
two experiments illustrate the efficiency of our trajectory reconstruction technique
which allows taking into account inter-vehicular distance and speed constraints in a
principled way.
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2.5 conclusions and perspectives

In this article, a method has been presented to recover the curvilinear position
of vehicles from noisy measurements while enforcing constraints of minimum inter-
vehicular distance and speed limits at all times. The proposed method is guaranteed
to provide feasible estimates, benefiting from the RKHS representation of the trajec-
tories. A key feature is that the inequality constraints can be addressed, without any
discretization, as a finite dimensional convex problem that can be efficiently solved.
The obtained numerical results show that we get a good root-mean-square error in
short computation time on a small dataset of real trajectories. We plan to extend
this approach to larger transportation datasets, such as NGSIM (US Department of
Transportation – FHWA, 2008), and to other application fields where the positivity
and monotonicity appear naturally as a valuable side-information when performing a
shape-constrained regression.
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R E A L - VA L U E D A F F I N E S H A P E C O N S T R A I N T S I N R K H S S

This chapter was published as a joint work with Zoltán Szabó in Advances in Neural
Information Processing Systems (NeurIPS), under the title Hard Shape-Constrained
Kernel Machines (Aubin-Frankowski & Szabó, 2020).

Abstract Shape constraints (such as non-negativity, monotonicity, convexity) play
a central role in a large number of applications, as they usually improve performance
for small sample size and help interpretability. However enforcing these shape re-
quirements in a hard fashion is an extremely challenging problem. Classically, this
task is tackled (i) in a soft way (without out-of-sample guarantees), (ii) by special-
ized transformation of the variables on a case-by-case basis, or (iii) by using highly
restricted function classes, such as polynomials or polynomial splines. In this chapter,
we prove that hard affine shape constraints on function derivatives can be encoded
in kernel machines which represent one of the most flexible and powerful tools in
machine learning and statistics. Particularly, we present a tightened second-order
cone constrained reformulation, that can be readily implemented in convex solvers.
We prove performance guarantees on the solution, and demonstrate the efficiency of
the approach in joint quantile regression with applications to economics and to the
analysis of aircraft trajectories, among others.

Résumé Les contraintes de forme (telles que la positivité, la monotonie, ou
la convexité du modèle recherché) jouent un rôle central dans un grand nombre
d’applications, car elles améliorent généralement les performances pour les échantillons
de petite taille et facilitent l’interprétation des résultats. Cependant, l’application de
ces contraintes de forme de manière garantie est un problème extrêmement difficile.
Classiquement, cette tâche est abordée (i) par relaxation (sans garanties hors des points
de mesure), (ii) par une transformation spécifique des variables au cas par cas, ou (iii)
en utilisant des classes de fonctions très restreintes, telles que les polynômes ou les
splines polynomiales. Dans ce chapitre, nous prouvons que les contraintes de forme
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portant de manière affine sur les dérivées des fonctions peuvent être encodées avec
garantie dans des machines à noyau reproduisant. Celles-ci représentent l’un des outils
les plus flexibles et les plus puissants en apprentissage automatique et en statistiques.
En particulier, nous présentons une reformulation surcontrainte par des contraintes
coniques du second ordre, qui peuvent être facilement implémentées dans des solveurs
convexes. Nous prouvons des garanties de performance sur la solution, et démontrons
l’efficacité de l’approche en régression quantile conjointe, avec des applications à
l’économie et à l’analyse des trajectoires d’avion, entre autres domaines.

3.1 introduction

Shape constraints (such as non-negativity, monotonicity, convexity) are omnipresent
in data science with numerous successful applications in statistics, economics, biology,
finance, game theory, reinforcement learning and control problems. For example,
in biology, monotone regression techniques have been applied to identify genome
interactions (Luss et al., 2012), and in dose-response studies (Hu et al., 2005). Economic
theory dictates that utility functions are increasing and concave (Matzkin, 1991),
demand functions of normal goods are downward sloping (Blundell et al., 2012;
Lewbel, 2010), production functions are concave (Varian, 1984) or S-shaped (Yagi
et al., 2020). Moreover cyclic monotonicity has recently turned out to be beneficial
in panel multinomial choice problems (Shi et al., 2018), and most link functions used
in a single index model are monotone (Balabdaoui et al., 2019; Chen & Samworth,
2016; Li & Racine, 2007). Meanwhile, supermodularity is a common assumption in
supply chain models, stochastic multi-period inventory problems, pricing models
and game theory (Simchi-Levi et al., 2014; Topkis, 1998). In finance, European and
American call option prices are convex and monotone in the underlying stock price
and increasing in volatility (Aït-Sahalia & Duarte, 2003). In statistics, the conditional
quantile function is increasing w.r.t. the quantile level. In reinforcement learning and
in stochastic optimization the value functions are regularly supposed to be convex
(Keshavarz et al., 2011; Shapiro et al., 2014). More examples can be found in recent
surveys on shape-constrained regression (Chetverikov et al., 2018; Guntuboyina & Sen,
2018; Johnson & Jiang, 2018).

Leveraging prior knowledge expressed in terms of shape structures has several
practical benefits: the resulting techniques allow for estimation with smaller sample
size and the imposed shape constraints help interpretability. Despite the numerous
practical advantages, the construction of shape-constrained estimators can be quite
challenging. Existing techniques typically impose the shape constraints (i) in a ’soft’
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fashion as a regularizer or at finite many points (Agrell, 2019; Aybat & Wang, 2014;
Blundell et al., 2012; Chen & Samworth, 2016; Delecroix et al., 1996; Han et al., 2019;
Koppel et al., 2019; Mazumder et al., 2019; Sangnier et al., 2016; Takeuchi et al., 2006;
J. Wu et al., 2015; Yagi et al., 2020), (ii) through constraint-specific transformations
of the variables such as quadratic reparameterization (Flaxman et al., 2017), positive
semi-definite quadratic forms (Bagnell & Farahmand, 2015), or integrated exponential
functions (X. Wu & Sickles, 2018), or (iii) they make use of highly restricted functions
classes such as classical polynomials (Hall, 2018) or polynomial splines (Koppel et al.,
2019; Meyer, 2018; Papp & Alizadeh, 2014; Pya & Wood, 2015; Turlach, 2005; X. Wu &
Sickles, 2018). Both the polynomial and spline-based shape-constrained techniques rely
heavily on the underlying algebraic structure of these bases, without direct extension
to more general function families.

From a statistical viewpoint, the main focus has been on the design of estimators
with uniform guarantees (Freyberger & Reeves, 2018; Horowitz & Lee, 2017). Several
existing methods have been analyzed from this perspective and were shown to be
(uniformly) consistent, on a case-by-case basis and when handling specific shape
constraints (Chen & Samworth, 2016; Han et al., 2019; Han & Wellner, 2016; Koppel
et al., 2019; Mazumder et al., 2019; J. Wu et al., 2015; Yagi et al., 2020). While these
asymptotic results are of significant theoretical interest, applying shape priors is
generally beneficial in the small sample regime. In this paper we propose a flexible
optimization framework allowing multiple shape constraints to be jointly handled
in a hard fashion. In addition, to address the bottlenecks of restricted shape priors
and function families, we consider general affine constraints on derivatives, and use
reproducing kernel Hilbert spaces (RKHS) as hypothesis space.

RKHSs (also called abstract splines; Aronszajn, 1950; Berlinet and Thomas-Agnan,
2004; Wahba, 1990; Wang, 2011) increase significantly the richness and modelling
power of classical polynomial splines. Indeed, the resulting function family can be rich
enough for instance (i) to encode probability distributions without loss of information
(Fukumizu et al., 2008; Sriperumbudur et al., 2010), (ii) to characterize statistical
independence of random variables (Bach & Jordan, 2002; Szabó & Sriperumbudur,
2018), or (iii) to approximate various function classes arbitrarily well (Carmeli et al.,
2010; Micchelli et al., 2006; Simon-Gabriel & Schölkopf, 2018; Sriperumbudur et al.,
2011; Steinwart, 2001), including the space of bounded continuous functions. An
excellent overview on kernels and RKHSs is given by Hofmann et al. (2008), Saitoh
and Sawano (2016), and Steinwart and Christmann (2008).

In this paper we incorporate into this flexible RKHS function class the possibility to
impose hard linear shape requirements on derivatives, i.e. constraints of the form

0 6 b+Df(x) ∀ x ∈ K (3.1)
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for a bias b ∈ R, given a differential operator D =
∑
j γj∂

rj where ∂rf(x) = ∂

∑d
j=1 rjf(x)

∂
r1
x1
···∂rdxd

and a compact set K ⊂ Rd. The fundamental technical challenge is to guarantee the
pointwise inequality (3.1) at all points of the (typically non-finite) set K. We show that
one can tighten the infinite number of affine constraints (3.1) into a finite number of
second-order cone constraints

η‖f‖ 6 b+Df(xm) ∀m ∈ {1, . . . ,M} (3.2)

for a suitable choice of η > 0 and {xm}m=1...M ⊆ K.

Our contributions can be summarized as follows.
1. We show that hard shape requirements can be embedded in kernel machines by

taking a second-order cone (SOC) tightening of constraint (3.1), which can be readily
tackled by convex solvers. Our formulation builds upon the reproducing property
for kernel derivatives and on coverings of compact sets.

2. We prove error bounds on the distance between the solutions of the strengthened
and original problems.

3. We achieve state-of-the-art performance in joint quantile regression (JQR) in RKHSs.
We also combine JQR with other shape constraints in economics and in the analysis
of aircraft trajectories.

The paper is structured as follows. Section 3.2 is about problem formulation. Our
main result is presented in Section 3.3. Numerical illustrations are given in Section 3.4.
Proofs and additional examples are provided in the supplement.

3.2 problem formulation

In this section we formulate our problem after introducing some notations, which
the reader may skip at first, and return to if necessary.

Notations: Let N := {0, 1, . . .}, N∗ := {1, 2, . . .} and R+ denote the set of natural
numbers, positive integers and non-negative real numbers, respectively. We use the

shorthand [n] := {1, . . . , n}. The p-norm of a vector v ∈ Rp is ‖v‖p = (
∑
j∈[d] |vj|

p)
1
p

(1 6 p <∞); ‖v‖∞ = maxj∈[d] |vj|. The j-th canonical basis vector is ej; 0d ∈ Rd is the
zero vector. Let B‖·‖(c, r) = {x ∈ Rd : ‖x− c‖ 6 r} be the closed ball in Rd with center
c and radius r in norm ‖·‖. Given a norm ‖·‖ and radius δ > 0, a δ-net of a compact
set K ⊂ Rd consists of a set of points {xm}m∈[M] such that K ⊆ ∪m∈[M]B‖·‖(xm, δ),
in other words

{
B‖·‖(xm, δ)

}
m∈[M]

forms a covering of K. The identity matrix is I.

For a matrix M ∈ Rd1×d2 , M> ∈ Rd2×d1 denotes its transpose, its operator norm is
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‖M‖ = supx∈Rd2 :‖x‖2=1 ‖Mx‖2. The inverse of a non-singular matrix M ∈ Rd×d is
M−1 ∈ Rd×d. The concatenation of matricesM1 ∈ Rd1×d, . . . ,MN ∈ RdN×d is denoted
by M = [M1; . . . ;MN] ∈ R(

∑
n∈[N] dn)×d. Let X be an open subset of Rd with a real-

valued kernel k : X×X→ R, and associated reproducing kernel Hilbert space (RKHS)
Fk. The Hilbert space Fk is characterized by f(x) = 〈f, k(x, ·)〉k (∀x ∈ X, ∀f ∈ Fk)
and k(x, ·) ∈ Fk (∀x ∈ X) where 〈·, ·〉k stands for the inner product on Fk, and k(x, ·)
denotes the function y ∈ X 7→ k(x,y) ∈ R. The first property is called the reproducing
property, the second one describes a generating family of Fk. The norm on Fk is
written as ‖·‖k. For a multi-index r ∈ Nd let the r-th order partial derivative of a

function f be denoted by ∂rf(x) =
∂|r|f(x)

∂
r1
x1
···∂rdxd

where |r| =
∑
j∈[d] rj is the length of r.

When d = 1 the f(n) = ∂nf notation is applied; specifically f ′′ and f ′ are used in case
of n = 2 and n = 1. Given s ∈ N, let Cs(X) be the set of real-valued functions on X

with continuous derivatives up to order s (i.e., ∂rf ∈ C(X) := C0(X) when |r| 6 s). Let
I ∈N∗. Given (Ai)i∈[I] sets let

∏
i∈[I]Ai denote their Cartesian product; we write AI in

case of A = A1 = . . . = AI.
Our goal is to solve hard shape-constrained kernel machines of the form(

f̄, b̄
)
= arg min
f=(fq)q∈[Q] ∈ (Fk)Q,b=(bp)p∈[P] ∈B, (f,b)∈C

L(f,b), (P)

where we are given an objective function L and a constraint set C (detailed below),
a closed convex constraint set B ⊆ RP on the biases, an order s ∈ N, an open
set X ⊆ Rd with a kernel k ∈ Cs(X × X) and associated RKHS Fk, and samples
S = {(xn, yn)}n∈[N] ⊂ X×R. The objective function in (P) is specified by the triplet
(S, L,Ω):

L(f,b) = L

(
b,
(
xn, yn, (fq(xn))q∈[Q]

)
n∈[N]

)
+Ω

(
(‖fq‖k)q∈[Q]

)
,

with loss function L : RP ×
(
X×R×RQ

)N → R and regularizer Ω : (R+)
Q → R.

Notice that the objective L depends on the samples S which are assumed to be fixed,
hence our proposed optimization framework focuses on the empirical risk. The bias
b ∈ RP can be both constraint (such as f(x) > b1, f ′(x) > b2) and variable-related
(fq + bq, see (3.4)-(3.5) later). The restriction of L to B is assumed to be strictly convex
in b, and Ω is supposed to be strictly increasing in each of its arguments to ensure the
uniqueness of minimizers of (P).

The I ∈N∗ hard shape requirements in (P) take the form 1

C = {(f,b) | (b0 −Ub)i 6 Di(Wf− f0)i(x), ∀x ∈ Ki, ∀i ∈ [I]} , (C)

1. In constraint (C), Wf is meant as a formal matrix-vector product: (Wf)i =
∑
q∈[Q]Wi,qfq.
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i.e. (C) encodes affine constraints of at most s-order derivatives (Di =
∑
j∈[ni,j] γi,j∂

ri,j , |ri,j| 6

s, γi,j ∈ R). Possible shifts are expressed by the terms b0 = (b0,i)i∈[I] ∈ RI, f0 =

(f0,i)i∈[I] ∈ (Fk)
I. The matrices U ∈ RI×P and W ∈ RI×Q capture the potential inter-

actions within the bias variables (bp)p∈[P] and functions (fq)q∈[Q], respectively. The
compact sets Ki ⊂ X (i ∈ [I]) define the domain where the constraints are imposed.

Remarks:
— Differential operators: As X ⊆ Rd is open and k ∈ Cs(X× X), any differential

operator Di of order at most s is well defined (Saitoh & Sawano, 2016, Theorems 2.5
and 2.6, page 76) as a mapping from Fk to C(X). Since the coefficients {γi,j}j∈[ni,j] of
Di-s belong to the whole R, (C) can cover inequality constraints in both directions.

— Bias constraint B: Choosing B = {0P} leads to constant l.h.s. b0 in (C). The other
extreme is B = RP in which case no hard constraint is imposed on the bias variable
b.

— Compactness of Ki-s: The compactness assumption on the sets Ki is exploited
in the construction of our strengthened optimization problem (Section 3.3). This
requirement also ensures not imposing restrictions ”too far” from the observation
points, which could be impossible to satisfy. Indeed, let us consider for instance
a c0-kernel k on R, i.e. that k(x, ·) ∈ C0(R) for all x and lim|y|→∞ k(x, y) = 0 for all
x ∈ R (as for the Gaussian kernel). In this case lim|y|→∞ f(y) = 0 also holds for all
f ∈ Fk. Hence a constraint of the form “for all t ∈ R+, f(t) > ε > 0“ can not be
satisfied for f ∈ Fk.

— Assumption on X: If s = 0 (in other words only function evaluations are present in
the shape constraints), then X can be any topological space.

We give various examples for the considered problem family (P). We start with an
example where Q = 1.

Kernel ridge regression (KRR) with monotonicity constraint: In this case the objective
function and constraint are

L(f, b) :=
1

N

∑
n∈[N]

|yn − f(xn)|
2 + λf‖f‖2k, s.t. f ′(x) > 0, ∀x ∈ [xl, xu] (3.3)

with λf > 0. In other words in (P) we have Q = 1, d = 1, s = 1, P = I = 1, K1 = [xl, xu],
Ω(z) = λfz

2, D1 = ∂1, U = W = 1, f1,0 = 0, b1,0 = 0, and b ∈ B = {0} is a dummy
variable.
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Joint quantile regression (JQR; e.g. Sangnier et al., 2016): Given 0 < τ1 < . . . <

τQ < 1 levels the goal is to estimate jointly the (τ1, . . . , τQ)-quantiles of the conditional
distribution P(Y|X = x) where Y is real-valued. In this case the objective function is

L (f,b) =
1

N

∑
q∈[Q]

∑
n∈[N]

lτq (yn − [fq(xn) + bq]) + λb‖b‖22 + λf
∑
q∈[Q]

‖fq‖2k, (3.4)

where λb > 0, λf > 0, 2 and the pinball loss is defined as lτ(e) = max(τe, (τ− 1)e)
with τ ∈ (0, 1). In JQR, the estimated τq-quantile functions {fq + bq}q∈[Q] are not
independent; the joint shape constraint they should satisfy is the monotonically
increasing property w.r.t. the quantile level τ. It is natural to impose this non-
crossing requirement on the smallest rectangle containing the points {xn}n∈[N], i.e.
K =

∏
r∈[d]

[
min{(xn)r}n∈[N],max{(xn)r}n∈[N]

]
. The corresponding shape constraint is

fq+1(x) + bq+1 > fq(x) + bq, ∀q ∈ [Q− 1], ∀x ∈ K. (3.5)

One gets (3.4)-(3.5) from (P) by choosing P = Q, I = Q− 1, s = 0, b0 = 0, f0 = 0,
B = RI, Ki = K (∀i ∈ [I]), Ω(z) = λf

∑
q∈[Q](zq)

2, and

U =W =


−1 1 0 0

0 −1 1 0
... . . . . . . . . .

0 0 −1 1

 ∈ R(Q−1)×Q.

Further examples: There are various other widely-used shape constraints beyond
non-negativity (for which s = 0), monotonicity (s = 1) or convexity (s = 2) which can
be taken into account in (C). For instance one can consider n-monotonicity (s = n),
(n− 1)-alternating monotonicity, monotonicity w.r.t. unordered weak majorization
(s = 1) or w.r.t. product ordering (s = 1), or supermodularity (s = 2). For details on
how these shape constraints can be written as (C), see the supplement (Section 3.5.3).

3.3 results

In this section, we first present our strengthened SOC-constrained problem, followed
by a representer theorem and explicit bounds on the distance to the solution of (P).

2. Sangnier et al. (2016) considered the same loss but a soft non-crossing inducing regularizer inspired
by matrix-valued kernels, and also set λb = 0.



70 real-valued affine shape constraints in rkhss

In order to introduce our proposed tightening, let us first consider the discretization
of the I constraints using Mi points {x̃i,m}m∈[Mi] ⊆ Ki. This would lead to the following
relaxation of (P)

vdisc = min
f∈ (Fk)Q,b∈B

L(f,b) s.t. (b0 −Ub)i 6 min
m∈[Mi]

Di(Wf− f0)i (x̃i,m) ∀i ∈ [I].

(3.6)

Our proposed SOC-constrained tightening can be thought of as adding extra, appro-
priately chosen, ηi-buffers to the l.h.s. of the constraints:

(fη,bη) = arg min
f∈ (Fk)Q,b∈B⊂Rp

L(f,b) (Pη)

s.t.
(b0 −Ub)i + ηi‖(Wf− f0)i‖k 6 min

m∈[Mi]
Di(Wf− f0)i (x̃i,m) ∀i ∈ [I]. (Cη)

The SOC constraint (Cη) 3 is determined by a fixed η = (ηi)i∈[I] ∈ RI
+ coefficient vector

and by the points {x̃i,m}. For each i ∈ [I], the points {x̃i,m}m∈[Mi] are chosen to form a
δi-net of the compact set Ki for some δi > 0 and a pre-specified norm ‖·‖X. 4 Given
{x̃i,m}m∈[Mi], the coefficients ηi ∈ R+ are then defined as

ηi = sup
m∈ [Mi],u∈B‖·‖X(0,1)

‖Di,xk(x̃i,m, ·) −Di,xk(x̃i,m + δiu, ·)‖k, (3.8)

where Di,xk(x0, ·) is a shorthand for y 7→ Di(x 7→ k(x,y))(x0). Problem (Pη) has I
scalar SOC constraints (Cη) over infinite-dimensional variables. Let v̄ = L

(
f̄, b̄
)

be the
minimal value of (P) and vη = L (fη,bη) be that of the discretization (Pη). Notice that,
when formally setting η = 0, (Pη) corresponds to (3.6).

In our main result below (i) shows that (Cη) is indeed a tightening of (C), (ii) provides
a representer theorem which allows to solve numerically (Pη), and (iii) gives bounds on
the difference between the solution of (Pη) and that of (P) as a function of (vη − vdisc)

and η respectively.

Theorem 3.1 (Tightened task, representer theorem, bounds). Let fη = (fη,q)q∈[Q]. Then,
(i) Tightening: any (f,b) satisfying (Cη) also satisfies (C), hence vdisc 6 v̄ 6 vη.
(ii) Representer theorem: For all q ∈ [Q], there exist real coefficients ãi,0,q, ãi,m,q, an,q ∈ R

such that fη,q =
∑
i∈[I]

[
ãi,0,qf0,i +

∑
m∈[Mi] ãi,m,qDi,xk (x̃i,m, ·)

]
+
∑
n∈[N] an,qk(xn, ·).

3. Constraint (Cη) is the precise meaning of the preliminary intuition given in (3.2).
4. The existence of finite δi-nets (Mi < ∞) stems from the compactness of Ki-s. The flexibility in

the choice of the norm ‖·‖X allows for instance using cubes by taking the ‖·‖1 or the ‖·‖∞-norm on Rd

when covering the Ki-s.
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(iii) Performance guarantee: if L is (µfq, µb)-strongly convex w.r.t. (fq,b) for any q ∈ [Q],
then

‖fη,q − f̄q‖k 6

√
2(vη − vdisc)

µfq
, ‖bη − b̄‖2 6

√
2(vη − vdisc)

µb
. (3.9)

If in addition U is of full row-rank (i.e. surjective), B = RP, and L(f̄, ·) is Lb−Lipschitz
continuous on B‖·‖2

(
b̄, cf‖η‖∞) where cf =

√
I
∥∥∥(U>U)−1U>∥∥∥maxi∈[I]

∥∥(Wf̄− f0)i∥∥k,
then

‖fη,q − f̄q‖k 6

√
2Lbcf‖η‖∞

µfq
, ‖bη − b̄‖2 6

√
2Lbcf‖η‖∞

µb
. (3.10)

Proof (idea): The SOC-based reformulation relies on rewriting the constraint (C) as
the inclusion of the sets ΦDi(Ki) in the closed halfspaces H+

φi,βi
:= {g ∈ Fk | 〈φi, g〉k >

βi} for ∀i ∈ [I] where ΦDi(x) := Di,xk(x, ·) ∈ Fk, ΦDi(X) := {ΦDi(x) | x ∈ X}, φi :=
(Wf− f0)i and βi := (b0 −Ub)i. The tightening is obtained by guaranteeing these
inclusions with an ηi-net of ΦDi(Ki) containing the δi-net of Ki when pushed to Fk.
The bounds stem from classical inequalities for strongly convex objective functions.
The proof details of (i)-(iii) are available in the supplement (Section 3.5.1).

Remarks:
The representer theorem allows one to express (Pη) as a finite-dimensional SOC-

constrained problem:

min
A∈RN×Q,
b∈B,

Ã∈RN×Q,
Ã0 ∈RI×Q

L(f,b) s.t. (b0 −Ub)i + ηi
∥∥∥G1/2gi∥∥∥

2
6 min
m∈[Mi]

(
GDigi

)
I+N+m

∀i ∈ [I], ∀q ∈ [Q],

where ẽi ∈ RI and ei ∈ RI+N+M are the canonical basis vectors, gi :=
[
Ã0;A; Ã

]
W>ẽi−

ei and the coefficients of the components of f were collected to Ã0 = [ãi,0,q]i∈[I], q∈[Q] ∈
RI×Q, A = [an,q]n∈[N], q∈[Q] ∈ RN×Q, Ã =

[
ãi,q

]
i∈[I], q∈[Q]

∈ RM×Q with M =
∑
i∈[I]Mi

and ãi,q =
[
ãi,m,q

]
m∈[Mi]

∈ RMi (i ∈ [I], q ∈ [Q]). In this finite-dimensional optimiza-

tion task, G ∈ R(I+N+M)×(I+N+M) is the Gram matrix of {f0,i}i∈I, {k(xn, ·)}n∈[N], and
{Di,xk(x̃i,m, ·)}m∈[Mi],i∈I), GDi ∈ R(I+N+M)×(I+N+M) is the Gram matrix of the differen-
tials Di of these functions, G1/2 is the matrix square root of the positive semi-definite
G.
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The bounds 5 (3.9)-(3.10) show that smaller η gives tighter guarantee on the recovery
of f̄ and b̄. Since

∣∣∂rfη,q(x) − ∂rf̄q(x)∣∣ 6√∂r,rk(x, x) ∥∥fη,q − f̄q∥∥k by the reproducing
property and the Cauchy-Schwarz inequality, the bounds on ‖fη − f̄‖k can be propa-
gated to pointwise bounds on the derivatives (for |r| 6 s). We emphasize again that in
our optimization problem (Pη) the samples S = {(xn, yn)}n∈[N] are assumed to be fixed;
in other words the bounds (3.9) and (3.10) are meant conditioned on S.

The parameters M, δ and η are strongly intertwined, their interplay reveals an
accuracy-computation tradeoff. Consider a shift-invariant kernel (k(x,y) = k0(x− y),

∀x,y), then (3.8) simplifies to ηi := supu∈B‖·‖X(0,1)

√∣∣2Di,xDi,yk0(0) − 2Di,xDi,yk0 (δiu)∣∣,
where Di,y is defined similarly to Di,x. This expression of ηi implies that whenever
Di,xDi,yk0 is Lδ-Lipschitz 6 on B‖·‖X(0, δi), then ηi 6

√
2Lδ
√
δi. By the previous point,

a smaller η ensures a better recovery which can be guaranteed by smaller δi-s, which
themselves correspond to a larger number of centers (Mi-s) in the δi-nets of the Ki-s.
Hence, one can control the computational complexity by the total number M of points
in the nets. Indeed, most SOCP solvers rely on primal-dual interior point methods
which have (in the worst-case) cubic complexity O

(
(P+N+M)3

)
per iterations (Al-

izadeh & Goldfarb, 2003). Controlling M allows one to tackle hard shape-constrained
problems in moderate dimensions (d); for details see Section 3.4. In practice, to reduce
the number of coefficients in fη,q, it is beneficial to recycle the points {xn}n∈[N] among
the Mi virtual centers, whenever the points belong to a constraint set Ki. This simple
trick was possible in all our numerical examples and kept the computational expense
quite benign. Supplement (Section 3.5.2) presents an example of the actual computa-
tional complexity observed.

While in this work we focused on the optimization problem (P) which contains
solely infinite-dimensional SOC constraints (Cη), the proved (Cη) ⇒ (C) implication
can be of independent interest to tackle problems where other types of constraints
are present. 7 For simplicity we formulated our result with uniform coverings (δi, ηi,
i ∈ [I]). However, we prove it for more general non-uniform coverings (δi,m, ηi,m,
i ∈ [I], m ∈ [Mi]; see Section 3.5.1). This can beneficial for sets with complex geometry
(e.g. star-shaped) or when recyling of the samples was used to obtain coverings (as
the samples in S have no reason to be equally spaced); we provide an example (in
economics) using a non-uniform covering in Section 3.4.

5. Notice that (3.9) is a computable bound, while (3.10) is not, as the latter depends on properties of
the unknown solution of (P).

6. For instance any Cs+1 kernel satisfies this local Lipschitz requirement.
7. For example having a unit integral is a natural additional requirement beyond non-negativity in

density estimation, and writes as a linear equality constraint over the coefficients of fη,q.



3.4 numerical experiments 73

In practice, since the convergence speed of SOCP solvers depends highly on the
condition number of G1/2, it is worth replacing G1/2 with (G + εtolI)

1/2, setting a
tolerance εtol ' 10−4. As G+ εtolI < G (in the sense of positive semi-definite matrices),
this regularization strengthens further the SOC constraint. Moreover, SOCP modeling
frameworks (e.g. CVXPY or CVXGEN) suggest to replace quadratic penalties (see (3.4))

with the equivalent
√∑

q∈[Q] ‖fq‖2k 6 λ̃f and ‖b‖2 6 λ̃b forms. This stems from their
reliance on internal primal-dual interior point techniques.

3.4 numerical experiments

In this section we demonstrate the efficiency of the presented SOC technique to
solve hard shape-constrained problems. We focus on the task of joint quantile re-
gression (JQR) where the conditional quantiles are encoded by the pinball loss (3.4)
and the shape requirement to fulfill is the non-crossing property (3.5). Supplement
(Section 3.5.2) provides an additional illustration in kernel ridge regression (KRR, (3.3))
on the importance of enforcing hard shape constraints in case of increasing noise level.
— Experiment-1: We compare the performance of the proposed SOC technique on 9

UCI benchmark datasets with a state-of-the-art JQR solver relying on soft shape
constraints.

— Experiment-2: We augment the non-crossing constraint of JQR with monotonicity
and concavity. Our two examples here belong to economics and to the analysis of
aircraft trajectories.

In our experiments we used a Gaussian kernel with bandwidth σ, ridge regulariza-

tion parameter λf and λb (or upper bounds λ̃f on
√∑

q∈[Q] ‖fq‖2k and λ̃b on ‖b‖2). We
learned jointly five quantile functions (τq ∈ {0.1, 0.3, 0.5, 0.7, 0.9}). We used CVXGEN
(Mattingley & Boyd, 2012) to solve (Pη); the experiments took from seconds to a few
minutes to run on an i7-CPU 16GB-RAM laptop.

In our first set of experiments we compared the efficiency of the proposed SOC
approach with the PDCD technique (Sangnier et al., 2016) which minimizes the same
loss (3.4) but with a soft non-crossing encouraging regularizer. We considered 9 UCI
benchmarks. Our datasets were selected with d ∈ {1, 2, 3}; to our best knowledge none
of the available JQR solvers is able to guarantee in a hard fashion the non-crossing
property of the learned quantiles out of samples even in this case. Each dataset was
split into training (70%) and test (30%) sets; the split and the experiment were repeated
twenty times. For each split, we optimized the hyperparameters (σ, λ̃f, λ̃b) of SOC,
searching over a grid to minimize the pinball loss through a 5-fold cross validation
on the training set. Particularly, the kernel bandwith σ was searched over the square
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Dataset d N PDCD SOC

engel 1 235 48 ± 8 53 ± 9

GAGurine 1 314 61 ± 7 65 ± 6

geyser 1 299 105 ± 7 108 ± 3

mcycle 1 133 66 ± 9 62 ± 5

ftcollinssnow 1 93 154 ± 16 148 ± 13
CobarOre 2 38 159 ± 24 151 ± 17
topo 2 52 69 ± 18 62 ± 14
caution 2 100 88 ± 17 98 ± 22
ufc 3 372 81 ± 4 87 ± 6

Table 3.1 – Joint quantile regression on 9 UCI datasets. Compared techniques: Primal-Dual
Coordinate Descent (PDCD, Sangnier et al., 2016) and the presented SOC technique.
Rows: benchmarks. 2nd column: dimension (d). 3rd column: sample number (N).
4-5th columns: mean ± std of 100× value of the pinball loss for PDCD and SOC;
smaller is better.

root of the deciles of the squared pairwise distance between the points {xn}n∈[N]. The

upper bound λ̃f on
√∑

q∈[Q] ‖fq‖2k was scanned in the log-scale interval [−1, 2]. The

upper bound λ̃b on ‖b‖2 was kept fixed: λ̃b = 10maxn∈[N] |yn|. We then learned a
model on the whole training set and evaluated it on the test set. The covering of
K =
∏
r∈[d]

[
min{(xn)r}n∈[N],max{(xn)r}n∈[N]

]
was carried out with ‖ · ‖2-balls of radius

δ chosen such that the number M of added points was less than 100. This allowed
for a rough covering while keeping the computation time for each run to be less
than one minute. Our results are summarized in Table 3.1. The table shows that
while the proposed SOC method guarantees the shape constraint in a hard fashion, its
performance is on par with the state-of-the-art soft JQR solver.

In our second set of experiments, we demonstrate the efficiency of the proposed SOC
estimator on tasks with additional hard shape constraints. Our first example is drawn
from economics; we focused on JQR for the engel dataset, applying the same parameter
optimization as in the first experiment. In this benchmark, the {(xn, yn)}n∈[N] ⊂
R2 pairs correspond to annual household income (xn) and food expenditure (yn),
preprocessed to have zero mean and unit variance. Engel’s law postulates a monotone
increasing property of y w.r.t. x, as well as concavity. We therefore constrained the
quantile functions to be non-crossing, monotonically increasing and concave. The
interval K =

[
min{xn}n∈[N],max{xn}n∈[N]

]
was covered with a non-uniform partition
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Figure 3.1 – Joint quantile regression on the engel dataset using the SOC technique. Solid
lines: estimated conditional quantile functions with τq ∈ {0.1, 0.3, 0.5, 0.7, 0.9} from
bottom (dark green) to top (blue). Left plot: with non-crossing and increasing
constraints. Right plot: with non-crossing, increasing and concavity constraints.

centered at the ordered centers {x̃m∈[M]} which included the original points {xn}n∈[N]

augmented with 15 virtual points. The radiuses were set to δi,m :=
x̃m+1−x̃m

2 (m ∈
[M− 1], i ∈ [I]). The estimates with or without concavity are available in Fig. 3.1. It is
interesting to notice that the estimated curves can intersect outside of the interval K
(see Fig. 3.1(a)), and that the additional concavity constraint mitigates this intersection
(see Fig. 3.1(b)).

In our second example with extra shape constraints, we focused on the analysis of
more than 300 aircraft trajectories (Nicol, 2013) which describe the radar-measured
altitude (y) of aircrafts flying between two cities (Paris and Toulouse) as a function of
time (x). These trajectories were restricted to their takeoff phase (where the monotone
increasing property should hold), giving rise to a total number of samples N =

15657. We imposed non-crossing and monotonicity property. The resulting SOC-based
quantile function estimates describing the aircraft takeoffs are depicted in Fig. 3.2. The
plot illustrates how the estimated quantile functions respect the hard shape constraints
and shows where the aircraft trajectories concentrate under various level of probability,
defining a corridor of normal flight altitude values.

These experiments demonstrate the efficiency of the proposed SOC-based solution
to hard shape-constrained kernel machines.
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Figure 3.2 – Joint quantile regression on aircraft takeoff trajectories. Number of samples:
N = 15657. Shape constraints: non-crossing and increasing constraints. Dashed
lines: trajectory samples. Solid lines: estimated conditional quantile functions.

3.5 appendix of the results of chapter 3

We provide the proof (Section 3.5.1) of our main result presented in Section 3.3.
Section 3.5.2 is about an additional numerical illustration in the context of kernel ridge
regression on the importance of hard shape constraints in case of increasing level of
noise. For completeness, reformulations of the additional shape constraint examples
for (C) mentioned at the end of Section 3.2 are detailed in Section 3.5.3.

3.5.1 Proof of Theorem 3.1

For i ∈ [I], we shall below denote φi = (Wf− f0)i and βi = (b0 −Ub)i. The proofs
of the different parts are as follows.

(i) Tightening: By rewriting constraint (C) using the derivative-reproducing property
of kernels (Saitoh & Sawano, 2016; Zhou, 2008) we get

〈φi, Di,xk(x, ·)〉k = Diφi(x) > βi, ∀x ∈ Ki. (3.11)

Let us reformulate this constraint as an inclusion of sets

ΦDi(Ki) ⊆ H
+
φi,βi

:= {g ∈ Fk | 〈φi, g〉k > βi},

where ΦDi : x 7→ Di,xk(x, ·) ∈ Fk and ΦDi(X) := {ΦDi(x) | x ∈ X}.



3.5 appendix of the results of chapter 3 77

In order to get a finite geometrical description of ΦDi(Ki), we consider a finite
covering of the compact set Ki:

{x̃i,m}m∈[Mi] ⊆ Ki ⊆
⋃

m∈[Mi]
B‖·‖X (x̃i,m, δi,m) ,

which implies that

ΦDi(Ki) ⊆
⋃

m∈[Mi]
ΦDi

(
B‖·‖X (x̃i,m, δi,m)

)
.

From the regularity of k, it follows that ΦDi is continuous from X to Fk, and we define
ηi,m > 0 (i ∈ [I], m ∈ [Mi]) as

ηi,m := sup
u∈B‖·‖X(0,1)

‖ΦDi (x̃i,m) −ΦDi (x̃i,m + δi,mu) ‖k. (3.12)

This means that for all m ∈ [Mi]

ΦDi
(
B‖·‖X (x̃i,m, δi,m)

)
⊆ ΦDi (x̃i,m) + Bk (0, ηi,m) ,

where Bk(0, ηi,m) := {g ∈ Fk | ‖g‖k 6 ηi,m}. In other words, for (3.11) to hold, it is
sufficient that

ΦDi (x̃i,m) + Bk (0, ηi,m) ⊆ H+
φi,βi

, ∀m ∈ [Mi]. (3.13)

By the definition of H+
φi,βi

, (3.13) is equivalent to

βi 6 inf
g∈Bk
〈φi, Di,xk(x̃i,m, ·) + ηi,mg〉k = Di(φi)(x̃i,m) − ηi,m‖φi‖k, ∀m ∈ [Mi].

Taking the minimum over m ∈ [Mi], we get

‖φi‖k 6 min
m∈[Mi]

1

ηi,m
[−βi +Di(φi) (x̃i,m)] . (3.14)

Hence we proved that for any (f,b) satisfying (3.14), (3.11) also holds. The SOC-
based reformulation is illustrated geometrically in Fig. 3.3. Constraint (C) can be
reformulated as requiring that the image ΦDi(Ki) of Ki under the Di-feature map
ΦDi(x) := Di,xk(x, ·) ∈ Fk is contained in the halfspace ’above’ the affine hyperplane
defined by normal vector (Wf − f0)i and bias (b0 −Ub)i. The discretization (3.6)
of constraint (C) at the points {x̃i,m}m∈[Mi] only requires the images ΦDi(x̃i,m) of the
points to be above the hyperplane. Constraint (Cη) instead inflates each of those points
by a radius ηi.
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Figure 3.3 – Illustration of the SOC constraint (Cη).
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(ii) Representer theorem: For any q ∈ [Q], let fη,q = vq +wq where vq belongs to 8

V := span
(
{f0,i}i∈I, {k(xn, ·)}n∈[N], {Di,xk(x̃i,m, ·)}m∈[Mi],i∈[I]

)
⊂ Fk

while wq is in the orthogonal complement of V in Fk (wq ∈ V⊥ := {w ∈ Fk : 〈w, v〉k =
0, ∀v ∈ V}). Let v := (vq)q∈[Q] ∈ (Fk)

Q. As constraint (Cη) holds for (fη,bη),

(b0 −Ubη)i + ηi‖(Wfη − f0)i‖k 6 min
m∈[Mi]

Di(Wfη − f0)i (x̃i,m) , ∀i ∈ [I].

However (v,bη) also satisfies (Cη) since ‖(Wv− f0)i‖k 6 ‖(Wfη− f0)i‖k and Di(Wv−
f0)i (x̃i,m) = Di(Wfη − f0)i (x̃i,m):∥∥∥∥∥ (Wfη − f0)i

∥∥∥∥∥
2

k

=

∥∥∥∥∥ ∑
q∈[Q]

Wi,q fη,q︸︷︷︸
vq+wq

−f0,i

∥∥∥∥∥
2

k

=

∥∥∥∥∥ ∑
q∈[Q]

Wi,qvq − f0,i︸ ︷︷ ︸
∈V

+
∑
q∈[Q]

Wi,qwq︸ ︷︷ ︸
∈V⊥

∥∥∥∥∥
2

k

=

∥∥∥∥∥ ∑
q∈[Q]

Wi,qvq − f0,i

∥∥∥∥∥
2

k

+

∥∥∥∥∥ ∑
q∈[Q]

Wi,qwq

∥∥∥∥∥
2

k

>

∥∥∥∥∥ ∑
q∈[Q]

Wi,qvq − f0,i

∥∥∥∥∥
2

k

= ‖(Wv− f0)i‖2k ,

Di(Wfη − f0)i (x̃i,m) = Di

∑
q∈[Q]

Wi,q fη,q︸︷︷︸
vq+wq

−f0,i

 (x̃i,m)

= Di(Wv− f0)i (x̃i,m) +Di

∑
q∈[Q]

Wi,qwq

 (x̃i,m)

= Di(Wv− f0)i (x̃i,m) +

〈∑
q∈[Q]

Wi,qwq, Di,xk (x̃i,m, ·)

〉
k︸ ︷︷ ︸

=0

using the derivative-reproducing property of kernels, and that
∑
q∈[Q]Wi,qwq ∈ V⊥,

while Di,xk (x̃i,m, ·) ∈ V . The regularizer Ω is assumed to be strictly increasing in
each argument ‖fη,q‖k. As ‖fη,q‖2k = ‖vq‖

2
k + ‖wq‖

2
k, and (fη,bη) minimizes L, wq = 0

necessarily; in other words fη,q ∈ V for all q ∈ [Q].
(iii) Performance guarantee: From (i), we know that the solution (fη,bη) of (Pη) is

also admissible for (P). Discretizing the shape constraints is a relaxation of (P). Hence
vdisc 6 v̄ 6 vη.

8. The linear hull of a finite set of points (vm)m∈[M] in a vector space is denoted by
span({vm}m∈[M]) = {

∑
m∈[M] amvm |am ∈ R, ∀m ∈ [M]}.
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Let us fix any (pf,pb) ∈ (Fk)
Q ×RP belonging to the subdifferential of L(·, ·) +

χC(·, ·) at point (f̄, b̄), where χC is the characteristic function of C, i.e. χC(u, v) = 0 if
(u, v) ∈ C and χC(u, v) = +∞ otherwise. Since

(
f̄, b̄
)

is the optimum of (P), for any
(f,b) admissible for (P),∑

q∈[Q]

〈pf,q, fq − f̄q〉k + 〈pb,b− b̄〉2 > 0, (3.15)

where pf = (pf,q)q∈[Q]. Hence using the (µfq, µb)-strong convexity of L w.r.t. (fq,b)
we get

L (fη,bη) > L
(
f̄, b̄
)
+
∑
q∈[Q]

〈
pfη,q, fη,q − f̄q

〉
k

+
〈
pb,bη − b̄

〉
2
+
∑
q∈[Q]

µfq
2
‖fη,q − f̄q‖2k

(3.16)

+
µb
2

∥∥bη − b̄∥∥22 .

As vη − vdisc > L (fη,bη) −L
(
f̄, b̄
)
, using the non-negativity (3.15) for (fη,bη), one

gets from (3.16) the claimed bound (3.9).
To prove (3.10), recall that

(
f̄, b̄
)

satisfies (C) and that we assume B = RP. Let
ηi = maxm∈[Mi] ηi,m, i ∈ [I] with ηi,m defined in (3.12), and b̃ =

(
b̃i
)
i∈[I] ∈ RI with

b̃i := ηi
∥∥(Wf̄− f0)i∥∥k . (3.17)

AsU is full-row rank, one can define its right inverse (UU+ = I) asU+ =
(
U>U

)−1
U>.

Then the pair
(
f̄, b̄+U+b̃

)
satisfies (Cη) since for any m ∈ [Mi]

ηi
∥∥(Wf̄− f0)i∥∥k = b̃i = (UU+b̃

)
i
6
(
UU+b̃

)
i
+
(
Ub̄−b0

)
i
+Di

(
Wf̄− f0)i(x̃i,m

)︸ ︷︷ ︸
>0

=
(
U
(
b̄+U+b̃

)
−b0

)
i
+Di

(
Wf̄− f0)i(x̃i,m

)
.

Thus,
(
f̄, b̄+U+b̃

)
is admissible for (Pη) and as (fη,bη) is optimal for (Pη), we have

L (fη,bη) −L
(
f̄, b̄
)
6 L

(
f̄, b̄+U+b̃

)
−L

(
f̄, b̄
) (a)
6 Lb

∥∥U+b̃
∥∥
2
6 Lb

∥∥U+
∥∥ ∥∥b̃∥∥

2

6 Lb
∥∥U+

∥∥√I∥∥b̃∥∥∞ (b)
6 Lb

∥∥U+
∥∥‖η‖∞√Imax

i∈[I]

∥∥(Wf̄− f0)i∥∥k
(c)
= Lbcf‖η‖∞,

where (a) stems from the local Lipschitz property of L (
∥∥U+b̃

∥∥
2
6 cf‖η‖∞), (b) holds

by (3.17), and (c) follows from the definition of cf. Combined with (3.16), this gives
the bound (3.10).
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3.5.2 Shape-constrained kernel ridge regression

In this section we illustrate in kernel ridge regression (KRR, (3.3)) the importance
of enforcing hard shape constraints in case of increasing noise level. We consider
a synthetic dataset of N = 30 points from the graph of a quadratic function where
the values {xn}n∈[N] ⊂ R were generated uniformly on [−2, 2]. The corresponding
y-coordinates of the graph were perturbed by additive Gaussian noise:

yn = x2n + εn (∀n ∈ [N]), {εn}n∈[N]
i.i.d.
∼ N

(
0, ξ2

)
.

We impose a monotonically increasing shape constraint on the interval [xl, xu] = [0, 2],
and study the effect of the level of the added noise (ξ) on the desired increasing
property of the estimate without (KRR) and with monotonic shape constraint (SOC).
Here σ = 0.5 and λf = 10−4, while ξ varies in the interval [0, 4].

Fig. 3.4(a) provides an illustration of the estimates in case of a fixed noise level ξ = 1.
There is a good match between the KRR and SOC estimates outside of the interval
[0, 2], while the proposed SOC technique is able to correct the KRR estimate to enforce
the monotonicity requirement on [0, 2]. In order to assess the performance of the
unconstrained KRR estimator under varying level of noise, we repeated the experiment
1000 times for each noise level ξ and computed the proportion and amount 9 of
violation of the monotonicity requirement. Our results are summarized in Fig. 3.4(b).
The figure shows that the error increases rapidly for KRR as a function of the noise
level, and even for very low level of noise the monotonicity requirement does not hold.
These experiments illustrate that shape constraints can grossly be violated when facing
noise if they are not enforced in an explicit and hard fashion. To explicit the tightening
property of Theorem 3.1, i.e. that vdisc 6 v̄ 6 vη, Fig. 3.4(c) shows the evolution
of the optimal values vη and vdisc when increasing the number M of discretization
points of the constraints on the constraint interval [0, 2]. Since by increasing M, we
decrease η, the value vη decreases when increasing M, whereas vdisc increases as
the discretization incorporates more constraints. Increasing M naturally increases
the polynomial computation time but not necessarily at the worst cubic expense, as
depicted on Fig. 3.4(d), the choice of solver having also importance as it may provide a
factor 2 gain.

9. These performance measures are defined as 1
2

∫2
0 max(0,−f ′(x))dx and

∫2
0 maxy∈[0,x][f(y) −

f(x)]dx. By construction both measures are zero for SOC.
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Figure 3.4 – (a): Illustration for kernel ridge regression. Observation: quadratic function
perturbed with additive Gaussian noise. Shape constraint: monotone increasing
property on [0, 2]. Compared techniques: regression without (KRR) and with hard
shape constraint (SOC). (b): Violation of the shape constraint for the unconstrained
KRR estimator as a function of the amplitude of the added Gaussian noise. Error
measures: median of the proportion (left) and amount (right) of the violation of the
monotone increasing property on [0, 2]. Dashed lines: lower and upper quartiles.
(c): Evolution of the optimal objective values vη and vdisc when increasing the
number M of discretization points of the constraints on [0, 2]. (d): Computation
time of (Pη) depending on the convex optimization solver selected.
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3.5.3 Examples of handled shape constraints

In order to make the paper self-contained, in this section we provide the reformula-
tions using derivatives of the additional shape constraints briefly mentioned at the end
of Section 3.2: n-monotonicity (s = n; Chatterjee et al., 2015), (n− 1)-alternating mono-
tonicity (Fink, 1982), monotonicity w.r.t. unordered weak majorization (s = 1; Marshall
et al., 2011, A.7. Theorem) or w.r.t. product ordering (s = 1), or supermodularity (s = 2;
Simchi-Levi et al., 2014, Section 2).

Particularly, n-monotonicity (n ∈N∗) writes as f(n)(x) > 0 (∀x). (n− 1)-alternating
monotonicity 10 (n ∈ N∗) is similar: for n = 1 non-negativity and non-increasing
properties are required; for n > 2 (−1)jf(j) has to be non-negative, non-increasing and
convex for ∀j ∈ {0, . . . , n− 2}. The other examples are
— Monotonicity w.r.t. partial ordering: These generalized notions of monotonicity

(u 4 v⇒ f(u) 6 f(v)) rely on the partial orderings u 4 v iff
∑
j∈[i] uj 6

∑
j∈[i] vj for

all i ∈ [d] (unordered weak majorization) and u 4 v iff ui 6 vi (∀i ∈ [d]) (product
ordering). For C1 functions mononicity w.r.t. the unordered weak majorization is
equivalent to

∂e1f(x) > . . . > ∂edf(x) > 0 (∀x).

Monotonicity w.r.t. product ordering for C1 functions can be rephrased as

∂ejf(x) > 0, (∀j ∈ [d], ∀x).

— Supermodularity: Supermodularity means that f(u∨ v) + f(u∧ v) > f(u) + f(v)
for all u, v ∈ Rd, where maximum and minimum are meant coordinate-wise, i.e.
u∨ v := (max(uj, vj))j∈[d] and u∧ v := (min(uj, vj))j∈[d] for u, v ∈ Rd. For C2

functions this property corresponds to

∂2f(x)

∂xi∂xj
> 0 (∀i 6= j ∈ [d], ∀x).
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4
S TAT E C O N S T R A I N T S I N L Q O P T I M A L C O N T R O L T H R O U G H
T H E L Q K E R N E L

This chapter was accepted for publication with a single author in SIAM Journal on
Control and Optimization, under the title Linearly-constrained Linear Quadratic Regulator
from the viewpoint of kernel methods (Aubin-Frankowski, 2021b).

Abstract The linear quadratic regulator problem is central in optimal control and
was investigated since the very beginning of control theory. Nevertheless, when it in-
cludes affine state constraints, it remains very challenging from the classical “maximum
principle“ perspective. In this chapter, we present how matrix-valued reproducing
kernels allow for an alternative viewpoint. We show that the quadratic objective
paired with the linear dynamics encode the relevant kernel, defining a Hilbert space of
controlled trajectories. Drawing upon kernel formalism, we introduce a strengthened
continuous-time convex optimization problem which can be tackled exactly with finite
dimensional solvers, and which solution is interior to the constraints. When refining a
time-discretization grid, this solution can be made arbitrarily close to the solution of
the state-constrained Linear Quadratic Regulator. We illustrate the implementation of
this method on a path-planning problem.

Résumé Le problème du régulateur linéaire quadratique a un rôle central en
contrôle optimal et a été étudié depuis les origines de la théorie du contrôle. Néan-
moins, en présence de contraintes d’état affines, il reste très difficile à résoudre dans la
perspective classique du "principe du maximum". Dans ce chapitre, nous présentons
comment les noyaux reproduisants à valeurs matricielles induisent un autre point de
vue sur ce problème. Nous montrons que l’objectif quadratique associé à la dynamique
linéaire encodent le noyau pertinent, définissant un espace de Hilbert de trajectoires
contrôlées. En s’appuyant sur le formalisme des noyaux, nous introduisons un pro-
blème surcontraint d’optimisation convexe en temps continu qui peut être résolu de
manière exacte par des solveurs de dimension finie, et dont la solution est à l’intérieur
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des contraintes d’origine. Si une grille de discrétisation temporelle des contraintes
est raffinée, cette solution peut être rendue arbitrairement proche de la solution du
régulateur quadratique linéaire sous contraintes d’état. Nous illustrons la mise en
œuvre de cette méthode par un problème de planification de trajectoire.

4.1 introduction

In its simplest form, the problem of time-varying linear quadratic optimal control
with finite horizon and affine inequality state constraints writes as

min
x(·),u(·)

g(x(T)) +

∫T
0
[x(t)>Q(t)x(t) +u(t)>R(t)u(t)]dt

s.t.
x(0) = x0,

x ′(t) = A(t)x(t) +B(t)u(t), a.e. in [0, T ],

ci(t)
>x(t) 6 di(t), ∀ t ∈ [0, T ], ∀ i ∈ {1, . . . , P},

(P0)

where the state x(t) ∈ RN, the control u(t) ∈ RM, A(t) ∈ RN,N, B(t) ∈ RN,M, C(t) =
[c1(t)

>; . . . ; cP(t)>] ∈ RP,N (ci(t) ∈ RN), d(t) = (di(t))i ∈ RP, while Q(t) ∈ RN,N and
R(t) ∈ RM,M are positive semidefinite matrices.

Below, for q ∈ {1, 2,∞}, Lq(0, T) denotes the Lq-space of functions over [0, T ] with
integrable norms of the function values (resp. square-integrable, resp. bounded). We
shall henceforth assume that, for all t ∈ [0, T ], R(t) < rIdM with r > 0, as well as
A(·) ∈ L1(0, T), B(·) ∈ L2(0, T), Q(·) ∈ L1(0, T), and R(·) ∈ L2(0, T). To have a fi-
nite objective, it is natural to restrict our attention to measurable controls satisfying
R(·)1/2u(·) ∈ L2(0, T).

Without state constraints, under mild assumptions, the unconstrained Linear Quadratic
Regulator (LQR) enjoys an explicit solution defined through the Hamiltonian matrix
and the related Riccati equation (see e.g. Speyer and Jacobson (2010)). With state
constraints, little can be said as Pontryagin’s Maximum Principle involves not only
an adjoint vector but also measures supported on the constraint boundary. A com-
prehensive review of this approach can be found in Hartl et al., 1995. One has to
guess beforehand when the state-constraint is active (at the so-called junction times) in
order to write the first-order necessary condition (Hermant, 2009). Secondly one has
to impose assumptions to derive the magnitude of the discontinuities of the adjoint
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vector. This has proven to be intractable and made state-constrained continuous-time
optimization a difficult problem. Let us provide an intuition for the appearance of
discontinuities. If one follows an optimal trajectory of the LQR starting in the interior
of state constraints, one may reach the boundary while the unconstrained Hamiltonian
system of the Maximum Principle may incite to use a control leading to violate the
constraint. One has then to apply a different control to remain in the constraint set,
possibly generating a discontinuity in the adjoint vector.

Although LQR problems stand at the origin of control theory, research is still active
in the field, not only for its numerous applications (see e.g. the examples of Burachik
et al. (2014) and references within), but also for its theoretical aspects, even without
constraints (Bourdin & Trélat, 2017) or just control constraints (Burachik et al., 2014).
Many of these improvements are motivated by model predictive control, considered
for instance in a time-invariant discrete-time state-constrained setting in Grüne and
Guglielmi (2018) or continuous-time (van Keulen, 2020). In particular, Kojima and
Morari (2004) proved that the solutions of a time-invariant LQR with discretized
constraints converge to the solution of (P0), putting emphasis on function spaces of
controls. As a matter of fact, the aforementioned approaches focus on the control, used
to parametrize the trajectories. In the present study, trajectories are instead at the core
of the analysis.

When seeking a continuous-time numerical solution, one has to face an infinite num-
ber of pointwise constraints, and has either to relax the computationally intractable
optimization problem or tighten it. Relaxing means either enforcing the constraint
only at a finite number of points, without guarantees elsewhere (as with any time
discretization method, e.g. Kojima & Morari, 2004), or through soft penalties (Gerdts
& Hüpping, 2012), such as approximations of barrier functions (Dower et al., 2019).
Tightening usually implies either choosing u(·) in a convenient subspace of L2(0, T),
such as the one of piecewise constant functions 1 or of splines with prescribed knots
(Mercy et al., 2016), or through hard penalties, such as logarithmic barriers (Chaplais
et al., 2011). Let us illustrate the difference between relaxing and tightening state
constraints. Consider the problem of a traffic regulator whose aim is to enforce a speed
limit over a highway. The drivers for their part want to go as far as possible in a given
time. Deploying speed cameras ensures at best that the speed constraint is satisfied
locally (relaxing). However if a smaller maximum speed is imposed at the camera level
(tightening), then the cars cannot accelerate enough to break the speed limit before
reaching the next camera. In a nutshell, the kernel methods framework we advocate

1. This is known as sampled-data or digital control (Ackermann, 1985), the sampled-data terminology
does not refer to machine learning techniques.
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allows to compute both a threshold and the resulting trajectories.

Kernel methods, being related to Green’s functions, belong to a branch of functional
analysis. Their history was already sketched by Aronszajn (1950), to whom we owe
the modern formulation of the theory. The regain of interest thanks to support vector
machines (see e.g. Schölkopf & Smola, 2002) has reinstated kernel methods as the most
principled technique in machine learning. There have been many attempts since then at
bridging kernel methods and control theory. The two are already related in the works
of Kailath (1971) and Parzen (1970). More recently Marco et al. (2017) and Steinke
and Schölkopf (2008) have considered kernels for control systems, mainly to encode
the input u(·) or for system identification purposes (see e.g. the reviews of Chiuso
and Pillonetto (2019) and Pillonetto et al. (2014)). Kernels have also been applied to
approximate the Koopman operator over observers of uncontrolled nonlinear systems,
in connection with spectral analysis (Fujii & Kawahara, 2019; Williams et al., 2015) or
for given controls (Sootla et al., 2018). The kernel Hilbert spaces have also been used
to define suitable domains for operators (Giannakis et al., 2019; Rosenfeld et al., 2019).
In most cases, the kernel is taken off-the-shelf, as with Gaussian kernels in connection
with Bayesian inference (Bertalan et al., 2019; Singh et al., 2018).

On the contrary, departing from the prevalent perspective of using kernel meth-
ods as nonlinear embeddings, this article rekindles with a long standing tradition
of engineering kernels for specific uses. This view has been mainly supported by
the statistics community, especially in connection with splines and Sobolev spaces
(Heckman, 2012; Wahba, 1990). 2 For (P0), we show below that the quadratic objec-
tive paired with the linear dynamics encode the relevant kernel, which defines the
Hilbert space of controlled trajectories. As kernel methods deal with a special class
of Hilbert spaces, they are natural to consider for linear systems or for linearizations
of nonlinear systems. Nonetheless the interactions run deeper. For instance we prove
below that the controllability Gramian is directly related to matrix-valued kernels,
and we recover the transversality condition merely through a representer theorem.
This approach was further extended in Aubin-Frankowski (2021) to the connexion
between the Linear-Quadratic matrix-valued kernel defined below and the dual Riccati
equation. Since the Riccati equation is often used for the online purpose of finding the
control, Aubin-Frankowski (2021) also discusses how the kernel formalism effectively
allows for optimal synthesis, favoring an offline trajectory-focused viewpoint.

2. Drawing inspiration from linear control theory, control theoretic splines were devised (Fujioka &
Kano, 2013; Magnus Egerstedt, 2009), in particular for path-planning problems (Kano & Fujioka, 2018).
Possibly unbeknownst to non-kernel users, kernel theory, sometimes known as abstract splines, is the
natural generalization of splines (see e.g. Aubin-Frankowski et al., 2020).
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Our main result is to show that through the theory of kernel methods we can solve a
novel strengthened version of (P0), without changing the function spaces involved. This
is achieved by introducing a finite number of second-order cone constraints, stronger
than the infinite number of affine constraints. We furthermore show that the solution
of the strengthened problem can be made arbitrarily close to the solution of (P0), and
that it enjoys a finite representation. One can thus exactly solve the continuous-time
problem using only finite dimensional convex optimization solvers. This computable
trajectory, which is interior to the affine state constraints, can also foster intuitions on
the behavior of the optimal solution of (P0). The considered tightening of (P0) relies
solely on the kernel formalism. It was first introduced in Aubin-Frankowski and Szabó
(2020b) and thoroughly extended in Aubin-Frankowski and Szabó (2020a).

In Section 4.2 we present our strengthened problem and show how the LQR problem
can be expressed as a regression problem over a vector-valued reproducing kernel
Hilbert space. Section 4.3 details the consequences of this framework and identifies the
corresponding Linear-Quadratic kernel. Our main result on approximation guarantees
is stated in Section 4.4. Section 4.5 discusses the implementation and the numerical
behavior of the strengthened constraints. The setting is also extended to intermediate
or terminal equality constraints, as in path-planning problems. The annex pertains to
conditions ensuring the existence of interior trajectories for (P0).

4.2 theoretical preliminaries and problem formulation

In this section, we present the tools from the theory of kernel methods that we
shall apply. We then introduce our strengthened problem with second-order cone
constraints.

Notations: We use the shorthand [[1, P]] = {1, . . . , P}. RN
+ is the subset of RN of elements

with nonnegative components. BN denotes the closed unit ball of RN for the Euclidean
inner product, 1N the vector of all-ones. For a matrix A ∈ RN,N, we write by ‖A‖ its
operator norm. IdN is the identity matrix of RN,N. We chose not to explicit the output
space for the function spaces to avoid cumbersome notations, as it can be always
deduced from the context. The space of functions with continuous derivatives up to
order s is denoted by Cs(0, T). For a function K(·, ·) defined over a subset of R×R,
∂1K(·, ·) denotes the partial derivative w.r.t. the first variable. For a Hilbert space
(Hk, 〈·, ·〉K), BK is the closed unit ball of Hk, ‖ · ‖K denoting the corresponding norm.
Given a subspace V ⊂ Hk, we denote by V⊥ its orthogonal complement w.r.t. 〈·, ·〉K.
A µ-strongly convex function L : Hk 7→ R is a function satisfying, for all f1, f2 ∈ Hk,
α ∈ [0, 1], L(αf1 + (1−α)f2) +α(1−α)

µ
2‖f1 − f2‖

2
K 6 αL(f1) + (1−α)L(f2).
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Definition 4.1. Let T be a non-empty set. A Hilbert space (Hk, 〈·, ·〉K) of RN-vector-
valued functions defined on T is called a vector-valued reproducing kernel Hilbert
space (vRKHS) if there exists a matrix-valued kernel K : T × T → RN,N such that the
reproducing property holds: for all t ∈ T, p ∈ RN, K(·, t)p ∈ Hk and for all f ∈ Hk,
p>f(t) = 〈f, K(·, t)p〉K.

Many properties of real-valued RKHSs have been known since Aronszajn (1950),
the general theory having been developed by Schwartz (1964). By Riesz’s theorem, an
equivalent definition of a vRKHS is that, for every t ∈ T and p ∈ RN, the evaluation
functional f ∈ Hk 7→ p>f(t) ∈ R is continuous. There is also a one-to-one correspon-
dence between the kernel K and the vRKHS (Hk, 〈·, ·〉K) (see e.g. (Micheli & Glaunès,
2014, Theorem 2.6)), hence modifying T or changing the inner product changes the
kernel. We shall use several classical properties: by symmetry of the scalar product, the
matrix-valued kernel has a Hermitian symmetry, i.e. K(s, t) = K(t, s)> for any s, t ∈ T.
Moreover, if the vRKHS can be written as Hk = H0 ⊕H1, then H0 and H1 equipped
with 〈·, ·〉K are also vRKHSs, as closed subspaces of Hk for ‖ · ‖K, and their kernels K0
and K1 satisfy K = K0 +K1.

Let us define our candidate for a vRKHS, the space S of trajectories satisfying the
dynamical system of (P0):

S := {x(·) |∃u(·) s.t. x ′(t) = A(t)x(t) +B(t)u(t) a.e. and
∫T
0
u(t)>R(t)u(t)dt <∞}.

(4.1)
There is not necessarily a unique choice of u(·) for a given x(·) ∈ S (for instance if B(t)
is not injective for some t). Therefore, with each x(·) ∈ S, we associate the control u(·)
having minimal norm based on the pseudoinverse of B(t)	 of B(t) for the RM-norm
‖ · ‖R(t) := ‖R(t)1/2 · ‖:

u(t) = B(t)	[x ′(t) −A(t)x(t)] a.e. in [0, T ]. (4.2)

The vector space S has then a natural scalar-product. As a matter of fact, the expression

〈x1(·), x2(·)〉K := x1(0)
>x2(0) +

∫T
0
[x1(t)

>Q(t)x2(t) +u1(t)
>R(t)u2(t)]dt (4.3)
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is bilinear and symmetric over S× S. 3 It is positive definite over S as ‖x(·)‖2K = 0

implies that u(·) a.e≡ 0 and x(0) = 0, hence that x(·) ≡ 0. Combining (4.2) and (4.3), we
can express ‖ · ‖K as a Sobolev-like norm split into two semi-norms ‖ · ‖K0 and ‖ · ‖K1

‖x(·)‖2K = ‖x(0)‖2︸ ︷︷ ︸
‖x(·)‖2K0

+

∫T
0
[‖x(t)‖2Q(t) + ‖B(t)

	(x ′(t) −A(t)x(t))‖2R(t)]dt︸ ︷︷ ︸
‖x(·)‖2K1

. (4.4)

By Cauchy-Lipschitz’s theorem, ‖x(·)‖K0 = ‖x(0)‖ defines a norm over the finite-
dimensional subspace S0 of trajectories with null quadratic cost (hence null control):

S0 := {x(·) |
∫T
0
x(t)>Q(t)x(t)dt = 0 and x ′(t) = A(t)x(t), a.e. in [0, T ]}. (4.5)

Let us define its (infinite-dimensional) orthogonal complement Su := (S0)
⊥ in S w.r.t. ‖ ·

‖K. From now on we equip S (resp. S0, Su) with ‖ · ‖K (resp. ‖ · ‖K0 , ‖ · ‖K1). These will be
shown to all be vRKHSs. Suppose we identified the matrix-valued kernels K, K0 and K1,
spawning them (a procedure to be found in Section 4.3). In a recent approach in kernel
methods (Aubin-Frankowski & Szabó, 2020b), developed for regression problems with
constraints over derivatives, we suggested replacing “C(t)x(t) 6 d(t) (∀ t ∈ [0, T ])“ by
the following strengthened second-order cone (SOC) 4 constraints:

ηi(δm, tm)‖x(·)‖K + ci(tm)>x(tm) 6 di(δm, tm), ∀m ∈ [[1,NP]], ∀ i ∈ [[1, P]] (4.6)

where the (tm)m∈[[1,NP]] ∈ [0, T ]NP are NP time points associated to radii δm > 0

satisfying [0, T ] ⊂ ∪m∈[[1,NP]][tm− δm, tm+ δm]. The constants ηi(δm, tm) and di(δm, tm)
are then defined as:

ηi(δm, tm) := sup
t∈ [tm−δm,tm+δm]∩[0,T ]

‖K(·, tm)ci(tm) −K(·, t)ci(t)‖K,

di(δm, tm) := inf
t∈ [tm−δm,tm+δm]∩[0,T ]

di(t).

This tightening of the constraints stems from interpreting ηi(δm, tm)‖x(·)‖K as an upper
bound of the modulus of continuity of the unknown C(·)x(·) defined as follows

ω
(Cx)
i (δm, tm) := sup

t∈ [tm−δm,tm+δm]∩[0,T ]
|ci(t)

>x(t) − ci(tm)
>x(tm)|︸ ︷︷ ︸

|〈x(·),K(·,t)c(t)−K(·,tm)c(tm)〉K|

6 ηi(δm, tm)‖x(·)‖K.

(4.7)

3. The description by S of the optimization variables effectively pushes controls in the background
while bringing forth trajectories as the main object of study. This describes (P0) more as a regression
problem over S than as an optimal control problem over controls.

4. The "second-order cone" terminology is classical in optimization following the similarity between
(4.6) and the definition of the Lorentz cone {(z, r) ∈ RN+1 | ‖z‖ 6 r}.
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This inequality is obtained applying successively the reproducing property and the
Cauchy–Schwarz inequality. Since the intractable modulus of continuity controls the
variations of C(t)x(t), the SOC upper bound provides a tractable tightening. This
interpretation through moduli of continuity was extensively developed in Section 3.2
of Aubin-Frankowski and Szabó (2020a).

With the above notations, our strengthened time-varying linear quadratic optimal
control problem with finite horizon and finite number of SOC constraints is 5

min
x(·)∈S,
x(0)=x0

g(x(T)) + ‖x(·)‖2K

s.t.

ηi(δm, tm)‖x(·)‖K + ci(tm)>x(tm) 6 di(δm, tm), ∀m ∈ [[1,NP]], ∀ i ∈ [[1, P]].
(Pδ,fin)

The introduction of (Pδ,fin) as an approximation of (P0) entirely stems from the vRKHS
formalism and does not result from optimal control considerations. It relies on an inner
approximation of a convex set in an infinite-dimensional Hilbert space (see Aubin-
Frankowski & Szabó, 2020a, Section 3.1). From a machine learning perspective, the
initial condition and the terminal cost act as a “loss“ function, whereas the quadratic
cost is turned into a norm over S and can thus be interpreted as a “regularizer“.
Departing also from optimal control, the tightening is obtained by incorporating the
quadratic part of the objective (4.4) in the state constraints to form (4.6). As discussed
in Aubin-Frankowski and Szabó (2020b), introducing (4.6) leads to a finite number
of evaluations of the variable x(·) in (Pδ,fin) which allows for a representer theorem
(Theorem 4.1 in Section 4.3.1).

Our goal is to show that (Pδ,fin) is indeed a tightening of (P0), enjoying a representer
theorem providing a finite-dimensional representation of the solution of problem
(Pδ,fin). We also bound the distance between the trajectories solutions of (P0) and (Pδ,fin),
and prove that it can be made as small as desired by refining the time-discretization
grid.

4.3 revisiting lq control through kernel methods

This section presents a step-by-step approach to identify the matrix-valued kernel
K of the Hilbert space S of solutions of a linear control system, equipped with the

5. Since ‖x(·)‖2K0 = ‖x(0)‖2 and x(0) is fixed, we replaced the integral ‖x(·)‖2K1 by ‖x(·)‖2K in the
objective. Recently, in Aubin-Frankowski (2021), another choice of inner product was introduced, by
incorporating quadratic terminal costs g into ‖x(·)‖2K for another choice of inner product than (4.3).
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scalar product (4.3). This is done independently from the state constraints which
effect is only to select a closed convex subset of the space of trajectories. In Section
4.3.1, we consider the case Q ≡ 0 which enjoys explicit formulas. We also express a
representer theorem (Theorem 4.1 suited for problems of the form (Pδ,fin). This allows
us to revisit, through the kernel framework, classical notions, such as the solution of
the unconstrained LQR problem, or the definition of the Gramian of controllability.
In Section 4.3.2, we consider the case Q 6≡ 0 and relate our solution to an adjoint
equation over matrices. Furthermore, the identification of kernels developed in Section
4.3 is by no means restricted to finite T , hence the kernel formalism can also tackle
infinite-horizon problems. 6

Let us denote by ΦA(t, s) ∈ RN,N the state-transition matrix of x ′(τ) = A(τ)x(τ),
defined from s to t. The key property used throughout this section is the varia-
tion of constants formula, a.k.a. Duhamel’s principle, stating that for any absolutely
continuous x(·) such that x ′(t) = A(t)x(t) +B(t)u(t) a.e. we have

x(t) =ΦA(t, 0)x(0) +

∫ t
0
ΦA(t, τ)B(τ)u(τ)dτ. (4.8)

Lemma 4.1. (S, 〈·, ·〉K) is a vRKHS.

Proof: We have to show that: i) (S, 〈·, ·〉K) is a Hilbert space, ii) for every t ∈ [0, T ] and
p ∈ RN, the evaluation functional x(·) ∈ S 7→ p>x(t) ∈ R is continuous.
i) From (4.3) and the discussion of Section 4.2, it is obvious that 〈·, ·〉K is a scalar
product. We just have to show that S is complete. Let (xn(·))n be a Cauchy sequence
in S, with associated controls (un(·))n. Then (‖xn(·)‖K)n is a Cauchy sequence in
R and thus converges, so (‖xn(0)‖)n and (‖R(·)1/2un(·)‖L2(0,T))n are bounded. Since
R(t) < rIdM with r > 0, (‖un(·)‖L2(0,T))n is thus bounded too, and we can take a
subsequence (uni(·))i weakly converging to some u(·). Let s, t ∈ [0, T ],

xn(t) − xn(s)
(4.8)
= (ΦA(t, s) − IdN)xn(s) +

∫ t
s
ΦA(t, τ)B(τ)un(τ)dτ. (4.9)

Taking s = 0, as (‖xn(0)‖)n is bounded, A(·) ∈ L1(0, T) and B(·) ∈ L2(0, T), we have
that ΦA(·, ·) is continuous and {xn(·)}n is uniformly bounded in C(0, T). Thus (4.9)
implies that the sequence (xni(·))i is equicontinuous. By Ascoli’s theorem, we can take
a (xnij (·))j uniformly converging to some x(·) satisfying (4.8) for u(·), thus x(·) ∈ S.

6. We need to assume T to be finite for the results of Section 4.4 to hold, as we use a procedure
based on compact coverings to deal with the state constraints.
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ii) Let t ∈ [0, T ], p ∈ RN, and x(·) ∈ S. By (4.8) and Cauchy-Schwarz inequality,

p>x(t) = p>ΦA(t, 0)x(0) +

∫ t
0
p>ΦA(t, τ)B(τ)u(τ)dτ

|p>x(t)| 6 sup
τ∈[0,T ]

‖p>ΦA(t, τ)‖ ·
(
‖x(0)‖+ ‖

∫ t
0
B(τ)u(τ)dτ‖

)
6 sup
τ∈[0,T ]

√
2‖p>ΦA(t, τ)‖ ·

(
‖x(0)‖2 + ‖B(·)‖2

L2(0,T)‖u(·)‖
2
L2(0,T)

)1
2

6 sup
τ∈[0,T ]

√
2‖p>ΦA(t, τ)‖ ·

(
1+
‖B(·)‖L2(0,T)√

r

)(
‖x(0)‖2 + ‖R(·)

1
2u(·)‖2

L2(0,T)

)1
2 .

Hence the linear map x(·) ∈ S 7→ p>x(t) ∈ R is continuous.

�

By Definition 4.1, we know that a matrix-valued reproducing kernel K(·, ·) exists. We
now repeatedly use (4.8) to identify it.

4.3.1 Case of vanishing Q

The space S of controlled trajectories is defined as in (4.1) equipped with the
quadratic norm

‖x(·)‖2K = ‖x(0)‖2 +
∫T
0
u(t)>R(t)u(t)dt = ‖x(·)‖2K0 + ‖x(·)‖

2
K1
, (4.10)

where u(·) is defined as in (4.2). We can further specify its subspaces

S0 = {x(·) | x ′(t) = A(t)x(t), a.e. in [0, T ]} Su = {x(·) | x(·) ∈ S and x(0) = 0}.

By uniqueness of the reproducing kernel, we only have to exhibit a candidate K(s, t)
satisfying p>x(t) = 〈x(·), K(·, t)p〉K (∀t ∈ [0, T ], x ∈ S, p ∈ RN) and K(·, t)p ∈ S

(∀t ∈ [0, T ], p ∈ RN). The space (S0, ‖ · ‖K0) being finite dimensional, we can right away
identify its kernel 7

K0(s, t) =ΦA(s, 0)ΦA(t, 0)
>. (4.11)

7. This is a classical result for finite dimensional vRKHSs. Fix any family {vj}j∈[[1,N]] spanning S0,
let V(s) := [vj(s)]j∈[[1,N]] ∈ RN,N and Gv := (〈vi, vj〉K0)i,j∈[[1,N]]. The matrix Gv is invertible as ‖ · ‖K0
is a norm over S0 and thus K0(s, t) = V(s)>G−1

v V(t). Here we have V(s) =ΦA(s, 0)> and Gv = IdN.
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As S = S0 ⊕ Su, from the properties of sums of kernels, we derive that we should look
for K of the form K0 +K1 for which the reproducing property, with 〈·, ·〉K defined in
(4.4), writes as follows, for all t ∈ [0, T ], p ∈ RN, x(·) ∈ S,

p>x(t) = (K(0, t)p)>x(0) +

∫T
0

[
(B(t)	(∂1(K(s, t)p) −A(t)K(s, t)p))

>R(s)u(s)
]

ds.

(4.12)
Setting ∂1K(s, t) : p 7→ ∂1(K(s, t)p), let us define formally Ut(s) := B(s)	(∂1K1(s, t) −
A(s)K1(s, t)). By the Hermitian symmetry of K and the fact that K0(·, t)p belongs to
S0 and K1(0, t)p = 0, (4.12) holds if and only if for all t ∈ [0, T ] and x(·) ∈ S

x(t) = K0(t, 0)x(0) +

∫T
0
Ut(s)

>R(s)u(s)ds.

This expression can be identified with (4.8) when defining Ut(s) as follows

Ut(s) :=

{
R(s)−1B(s)>ΦA(t, s)

> ∀s 6 t,
0 ∀s > t.

(4.13)

Consequently, to ensure that, for all t ∈ [0, T ], p ∈ RN, K1(·, t)p ∈ Su, K1 has to
satisfy the following differential equation for any given t ∈ [0, T ]:

∂1K1(s, t) = A(s)K1(s, t) +B(s)Ut(s) a.e. in [0, T ] with K1(0, t) = 0. (4.14)

Since A(·) ∈ L1(0, T), B(·) ∈ L2(0, T), and R(t) < rIdM with r > 0, we have that
Ut(·) ∈ L2(0, T). By applying the variation of constants formula to (4.14), with Ut(·)
defined in (4.13), we get an explicit expression for K1, satisfying a Hermitian symmetry
when permuting s and t,

K1(s, t) =

∫min(s,t)

0
ΦA(s, τ)B(τ)R(τ)

−1B(τ)>ΦA(t, τ)
>dτ. (4.15)

Remark (Gramian): Formula (4.15) for K1(T, T) corresponds to the Gramian of control-
lability. The link is straightforward as the controllability problem of steering a point
from (0, 0) to (T, xT ) simply writes as, with u(·) defined as in (4.2) and R(·) ≡ IdM,

min
x(·)∈S

∫T
0
‖u(t)‖2dt

s.t.
x(0) = 0,

x(T) = xT ,

(4.16)



100 state constraints in lq optimal control through the lq kernel

which set of solutions can actually be made explicit. 8 As a matter of fact, in kernel
methods, it is classical to look for a “representer theorem“, i.e. a necessary condition
to ensure that the solutions of an optimization problem live in a finite dimensional
subspace of S and consequently enjoy a finite representation. Such theorems are usually
stated without constraints and for real-valued kernels (e.g. Schölkopf et al., 2001). Here
we formulate a representer theorem for conic constraints and matrix-valued kernels,
as it will prove instrumental to derive a finite formulation for the SOC-strengthening
of (P0).

Theorem 4.1 (Representer theorem). Let (Hk, 〈·, ·〉K) be a vRKHS defined on a set T. Let P ∈
N and, for i ∈ [[0, P]] and givenNi ∈N, {ti,j}j∈[[1,Ni]] ⊂ T. Consider the following optimization
problem with “loss“ function L : RN0 → R∪ {+∞}, strictly increasing “regularizer“ function
Ω : R+ → R, and constraints di : RNi → R, λi > 0 and {ci,m}m∈[[1,Ni]] ⊂ RN,

f̄ ∈ arg min
f∈Hk

L
(
c>0,1f(t0,1), . . . , c

>
0,N0

f(t0,N0)
)
+Ω (‖f‖K)

s.t.

λi‖f‖K 6 di(c>i,1f(ti,1), . . . , c>i,Nif(ti,Ni)), ∀ i ∈ [[1, P]].

Then, for any minimizer f̄, there exists {pi,m}m∈[[1,Ni]] ⊂ RN such that

f̄ =

P∑
i=0

Ni∑
m=1

K(·, ti,m)pi,m

with pi,m = αi,mci,m for some αi,m ∈ R.

Proof: Let f̄ be an optimal solution and let V := span
(
{K(·, ti,m)ci,m}m6Ni, i6P

)
. Take

v ∈ V and w ∈ V⊥ such that f̄ = v+w. As c>i,mw(ti,m) = 〈w(·), K(·, ti,m)ci,m〉K = 0,
the terms appearing in L and di are the same for f̄ and v. Moreover, ‖v‖K 6 ‖f̄‖K,
hence v belongs to the constraint set since f̄ does. Furthermore Ω (‖v‖K) 6 Ω

(
‖f̄‖K

)
,

so, by optimality of f̄, w = 0 which concludes the proof.

�

In other words, Theorem 4.1 states that to each time t where the variable f is eval-
uated corresponds a multiplier pt ∈ RN in the expression of the optimal solutions.
Hence, if the number of such evaluations is finite, then the representation of f̄ is

8. When choosing the terminal cost g(·) to be equal to the indicator function of {xT }, (4.16) does
correspond to (P0) in the absence of state constraints.
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finite. 9 Besides, a representer theorem, like Pontryagin’s Maximum Principle, is only a
necessary condition on the form of the solutions. Theorem 4.1 guarantees the existence
or uniqueness of an optimal solution only when coupled with other assumptions (e.g.
that L and Ω are convex, and L is lower semi-continuous). This further highlights the
analogy with the Maximum Principle in the quadratic case. Theorem 4.1 is instrumen-
tal to obtain a finite-dimensional equivalent of (Pδ,fin).

Theorem 4.1 applied to (4.16) implies that any candidate optimal solution x̄(·)
can be written as x̄(s) = K(s, 0)p0 + K(s, T)pT , with p0,pT ∈ RN. As x̄(0) = 0,
projS0(x̄(·)) = 0, and as K1(·, 0) ≡ 0, x̄(s) = K1(s, T)pT . So x̄(T) = xT is satisfied if
and only if xT ∈ Im(K1(T, T)) where the operator K1(T, T) is defined by (4.14), setting
R ≡ Id. Hence (4.16) has a solution for any xT (i.e. the system is controllable) if and
only if the Gramian of controllability K1(T, T) is invertible.

Remark (LQR without state constraints): We derive also from the kernel framework
the transversality condition, as well as the classical solution of the LQR problem
without state constraints, defined as follows, with u(·) again defined as in (4.2),

min
x(·)∈S

g(x(T)) +
1

2

∫T
0
u(t)>R(t)u(t)dt

s.t.
x(0) = 0.

(Puncons)

Similarly, through the representer theorem, we deduce that x̄(·) = K1(·, T)pT . Hence,
by the reproducing property,∫T

0
ū>(t)R(t)ū(t)dt = ‖K1(·, T)pT‖2K = p>T K1(T, T)pT .

Assume that g(·) ∈ C1(RN,R) and that it is convex. Applying the first-order optimality
condition, we conclude that

0 = ∇
(
p 7→ g(K1(T, T)p) +

1

2
p>K1(T, T)p

)
(pT ) = K1(T, T)(∇g(K1(T, T)pT ) +pT ).

(4.17)

So it is sufficient to take pT = −∇g(K1(T, T)pT ) = −∇g(x̄(T)), i.e. to have the transver-
sality condition satisfied. However this formula says more than that, as it covers the

9. The property of having a finite number of evaluations is precisely what distinguishes the un-
constrained controllability problem (4.16) or the SOC-constrained problem (Pδ,fin) from the original
state-constrained problem (P0) which has an infinite number of affine constraints.



102 state constraints in lq optimal control through the lq kernel

problem of degeneracies of the “controllability Gramian“ K1(T, T) and gives an explicit
equation (4.17) to be satisfied by pT . Notice that we do not consider any adjoint
equation, only adjoint vectors that are not explicitly propagated. In our framework,
the Hamiltonian is implicit.

4.3.2 Case of nonvanishing Q

For the case with Q 6≡ 0, we have a more intricate formula. The reproducing
property for K, in which the term Ut(·) will be explicitly specified below 10, writes as
follows, for all t ∈ [0, T ], p ∈ RN, x(·) ∈ S,

p>x(t) = (K(0, t)p)>x(0) +

∫T
0
(K(s, t)p)>Q(s)x(s)ds+

∫T
0
(Ut(s)p))

>R(s)u(s)ds.

(4.18)
By the Hermitian symmetry of K and the variation of constants formula (4.8), we can
rewrite (4.18) as, for all t ∈ [0, T ], x(·) ∈ S,

x(t) = K(t, 0)x(0) +

∫T
0
K(t, s)Q(s)

(
ΦA(s, 0)x(0) +

∫ s
0
ΦA(s, τ)B(τ)u(τ)dτ

)
ds

+

∫T
0
Ut(s)

>R(s)u(s)ds.

After some regrouping of terms, a change of integration bounds and identification
with (4.8), we get the integral equations:

ΦA(t, 0) = K(t, 0) +

∫T
0
K(t, s)Q(s)ΦA(s, 0)ds,

∀ s 6 t, ΦA(t, s)B(s) = Ut(s)>R(s) +
∫T
s
K(t, τ)Q(τ)ΦA(τ, s)B(s)dτ

∀ s > t, 0 = Ut(s)>R(s) +
∫T
s
K(t, τ)Q(τ)ΦA(τ, s)B(s)dτ,

which can be summarized as

K(t, 0) =ΦA(t, 0) − K̃(t, 0) with K̃(t, s) :=
∫T
s
K(t, τ)Q(τ)ΦA(τ, s)dτ,

Ut(s)
>R(s) =

{
(ΦA(t, s) − K̃(t, s))B(s) ∀s 6 t,

−K̃(t, s)B(s) ∀s > t.
(4.19)

10. Recall that Ut(s) := B(s)	[∂1K(s, t) −A(s)K(s, t)].
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Although not as explicit as formula (4.15) from the case Q ≡ 0, this integral
expression for Q 6≡ 0 will still prove valuable to investigate the regularity of K(·, ·)
(Lemma 4.2 below). To provide further insight on this expression, again for fixed t, let
us introduce formally an adjoint equation for a variable Π(s, t) ∈ RN,N,

∂1Π(s, t) = −A(s)>Π(s, t) +Q(s)K(s, t) Π(T, t) = IdN. (4.20)

Again, applying the variation of constants formula to Π(s, t), taking the transpose and
owing to the symmetries of K(·, ·) and Φ(·, ·), we derive that

Π(s, t) =Φ(−A>)(s, T)Π(T, t) +

∫ s
T
Φ(−A>)(s, τ)Q(τ)K(τ, t)dτ

Π(s, t)> =ΦA(T, s) −

∫T
s
K(t, τ)Q(τ)ΦA(τ, s)dτ =ΦA(T, s) − K̃(t, s).

Since ∂1K(s, t) = A(s)K(s, t) +B(s)Ut(s), by (4.19), for any given time t,

∂1K(s, t) = A(s)K(s, t) +B(s)R(s)−1B(s)>

{
Π(s, t) −ΦA(T, s)

> +ΦA(t, s)
> ∀s 6 t,

Π(s, t) −ΦA(T, s)
> ∀s > t.

K(0, t) = Π(0, t) +ΦA(t, 0)
> −ΦA(T, 0)

>.
(4.21)

The difference of behavior between the two cases Q ≡ 0 and Q 6≡ 0 is classical in
optimal control. While the control equation runs forward in time, the adjoint equation
runs backward. For Q ≡ 0, the adjoint equation can be solved independently from
K, which is why Πt was not introduced. For Q 6≡ 0, we have two coupled differential
equations (4.20)-(4.21) over K(·, t) and Πt(·). This system does not enjoy an explicit
expression, however its solutions can still be computed as a two-point boundary
value problem. For quadratic terminal costs, see Aubin-Frankowski (2021), where the
connections between computing the kernel and solving the Hamiltonian system or its
Riccati equation counterpart are stressed.

4.4 theoretical approximation guarantees

In this section, we show that the SOC-constrained problem (Pδ,fin) is a tightening of
the original problem (P0). We also provide bounds on the ‖ · ‖K-distance between the
optimal trajectory of (P0) and that of (Pδ,fin). This shows that the SOC-tightening is
consistent in a numerical analysis sense, as, for bounded kernels K, convergence in
‖ · ‖K is stronger than uniform convergence of the states, and also implies convergence
of the L2-norms of the controls. We prove that the kernels K(·, ·) identified in Section
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4.3 are indeed C0-continuous.

We shall manipulate various forms of state constraints. We thus write our generic
problem (P∗), with objective L and constraints defined through the constraint set V∗,
as follows

x̄∗(·) ∈ arg min
x(·)∈V∗

L(x(·)) := g(x(T)) + ‖x(·)‖2K

s.t.
x(0) = x0.

(P∗)

Existence and uniqueness of the solution for each (P∗) will be discussed below. Recall
that S is defined in (4.1). Let (tm)m∈[[1,N0]] ∈ [0, T ]N0 be N0 time points associated to
radii δm > 0 chosen so that they form a covering [0, T ] ⊂ ∪m∈[[1,N0]][tm − δm, tm + δm].
The vectors dm(δm, tm) := (di(δm, tm))i∈[[1,P]] ∈ RP, −→η (δ, t) := (ηi(δ, t))i∈[[1,P]] ∈ RP and
−→
ω(δ, t) := (ωi(δ, t))i∈[[1,P]] ∈ RP are defined component-wise: 11

ηi(δ, t) := sup
s∈ [t−δ,t+δ]∩[0,T ]

‖K(·, t)ci(t) −K(·, s)ci(s)‖K, (4.22)

ωi(δ, t) := sup
s∈ [t−δ,t+δ]∩[0,T ]

|di(t) − di(s)|, (4.23)

di(δm, tm) := inf
s∈ [tm−δm,tm+δm]∩[0,T ]

di(s). (4.24)

For −→ε ∈ RP
+, we shall consider the following constraints

V0 := {x(·) ∈ S |C(t)x(t) 6 d(t), ∀ t ∈ [0, T ]},

Vδ,fin := {x(·) ∈ S |
−→
η (δm, tm)‖x(·)‖K +C(tm)x(tm) 6 d(δm, tm), ∀m ∈ [[1,N0]]},

Vδ,inf := {x(·) ∈ S |
−→
η (δ, t)‖x(·)‖K +−→ω(δ, t) +C(t)x(t) 6 d(t), ∀ t ∈ [0, T ]},

Vε := {x(·) ∈ S |
−→
ε +C(t)x(t) 6 d(t), ∀ t ∈ [0, T ]}.

To these closed constraint sets correspond the problems (P0), (Pδ,fin) (Pδ,inf), and (Pε).
In particular, x̄0(·) denotes the optimal solution of (P0). When C(·) and d(·) are
C0-continuous, we prove right away that ηi(·, t) and ωi(·, t) converge uniformly in t to
0 as δ→ 0+, so that the SOC inequalities defining the set Vδ,inf converge to the original
affine constraints in a pointwise sense.

11. The computation of ηi can be performed using that, by the reproducing property, ‖K(·, t)ci(t) −
K(·, s)ci(s)‖2K = ci(t)

>K(t, t)ci(t) + ci(s)
>K(s, s)ci(s) − 2ci(t)

>K(t, s)ci(s). We chose to overload
the notation of di to define the constants di(δm, tm) in order to draw the parallel with the other
perturbations of the constraints, ηi(δ, t) and ωi(δ, t).
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Lemma 4.2 (Uniform continuity of K). If A(·) ∈ L1(0, T) and B(·) ∈ L2(0, T), then K(·, ·)
is uniformly continuous. Assume furthermore that C(·) and d(·) are C0-continuous. Then for
all i ∈ [[1, P]], the increasing functions ηi(·, t) and ωi(·, t) converge to 0 uniformly w.r.t. t as
δ→ 0+.

Proof: Since A(·) ∈ L1(0, T), ΦA(·, ·) is uniformly continuous. Hence, for Q ≡ 0,
through the explicit formulas (4.11) and (4.15), we deduce that K(·, ·) is uniformly
continuous. Consequently, for any i ∈ [[1, P]], and s, t ∈ [0, T ], recalling that BN denotes
the closed unit ball of RN,

‖K(·, t)ci(t) −K(·, s)ci(s)‖K 6 ‖(K(·, t) −K(·, s))ci(t)‖K + ‖K(·, s)(ci(t) − ci(s))‖K
6 ‖ci(t)‖ sup

p∈BN

‖(K(·, t) −K(·, s))p‖K + ‖ci(t) − ci(s)‖ sup
p∈BN

‖p>K(s, s)p‖1/2,

which proves the statement for ηi(·, t), whereas the result for ωi(·, t) stems directly
from the uniform continuity of d(·). Obviously, the components ηi(·, t) and ωi(·, t) are
increasing for any given t.

For Q 6≡ 0, we do not have explicit formulas such as (4.11) and (4.15). Nonetheless,
the ‖ · ‖K-norm (4.4) for Q 6≡ 0 is stronger than the ‖ · ‖K-norm for Q ≡ 0. Since,
for Q ≡ 0, K is uniformly continuous, owing to Schwartz, 1964, Proposition 24, the
topology induced by K over S is stronger than the topology of uniform convergence over
[0, T ]. Hence the topology induced by K for Q 6≡ 0 is also stronger. Therefore, using
again the result of Schwartz (1964), for Q 6≡ 0, K(·, ·) is continuous w.r.t. each variable
and locally bounded. 12 Hence K(·, ·) is bounded on the compact set [0, T ]× [0, T ]. Let
us prove the continuity of t 7→ K(t, t). Since K is bounded, by (4.19), K̃ is bounded,
so Ut(·) ∈ L2(0, T). Let p ∈ BN and t ∈ [0, T ], then, by definition of K, K(·, t)p ∈ S is
associated to the control Ut(·)p. Let δ > 0, by the variation of constants formula (4.8),
we have

‖(K(t+ δ, t) −K(t, t))p‖ 6 ‖ΦA(t+ δ, 0) −ΦA(t, 0)‖ · ‖K(0, t)p‖

+

∫ t+δ
t
‖ΦA(t, s)B(s)Ut(s)p‖ds.

Let λ > 0. With a similar computation when permuting t and t + δ, taking the
supremum over p ∈ BN, one can find ∆ > 0 such that for any δ ∈ [0, ∆],

max(‖K(t+ δ, t) −K(t, t)‖, ‖K(t, t+ δ) −K(t+ δ, t+ δ)‖) 6 λ/2.

12. This allows to derive the continuity of ηi(·, t) but does not provide a uniform bound w.r.t to t.
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Hence, owing to the Hermitian symmetry of K, for any δ ∈ [0, ∆],

‖K(t+ δ, t+ δ) −K(t, t)‖ 6 ‖K(t+ δ, t) −K(t, t)‖+ ‖K(t, t+ δ) −K(t+ δ, t+ δ)‖ 6 λ.

This shows that K is indeed continuous on the diagonal. As underlined by Laurent
Schwartz, showing the continuity of t 7→ K(t, t) is enough to conclude. We reproduce
briefly his argument (see Schwartz, 1964, p194): for any p ∈ RN, whenever t converges
to t0, K(·, t)pweakly converges in S to K(·, t0)p, however, by continuity on the diagonal,
the norm p>K(t, t)p converges to p>K(t0, t0)p, so K(·, t)p strongly converges in S and
by extension in C0(0, T), exactly showing that K(·, ·) is continuous, hence uniformly
continuous.

�

Generically, under the minimal assumptions of Lemma 4.2, one can apply the SOC-
scheme to obtain (Pδ,fin), which is equivalent to a finite dimensional problem owing to
the representer theorem (Theorem 4.1). By Lemma 4.2, the scheme is coherent since
for δ decreasing to zero, the coefficients of the SOC constraints converge uniformly in
t to those of the original problem (P0). However, ensuring that the solution x̄δ,fin(·)
converges to x̄0(·) requires a more thorough analysis.

Proposition 4.1 (Nested sequence). Let δmax := maxm∈[[1,N0]] δm. For any δ > δmax, if, for
a given y0 > 0,

−→
ε > supt∈[0,T ][

−→
η (δ, t)y0 +

−→
ω(δ, t)], then we have a nested sequence

(Vε ∩ y0BK) ⊂ Vδ,inf ⊂ Vδ,fin ⊂ V0. (4.25)

Proof: The inclusion Vε ∩ y0BK ⊂ Vδ,inf stems from the definition of the sets. Since
di(δm, tm) > di(tm) −ωi(δm, tm), Vδ,inf ⊂ Vδ,fin. Recall that [0, T ] ⊂ ∪m∈[[1,N0]][tm −

δm, tm + δm]. Let t ∈ [0, T ] and x(·) ∈ Vδ,fin. Take m ∈ [[1,N0]] such that t ∈ [tm −

δm, tm + δm]. For any i ∈ [[1, P]], applying the reproducing property and Cauchy-
Schwarz inequality,

ci(t)
>x(t) = ci(tm)

>x(tm) + 〈x(·), K(·, t)ci(t) −K(·, tm)ci(tm)〉K
ci(t)

>x(t) 6 ci(tm)
>x(tm) + ηi(δm, tm)‖x(·)‖K 6 di(δm, tm) 6 di(t),

di(δm, tm) being by definition the infimum of the i-th component di(t) of d(t) on
[tm − δm, tm + δm]. So x(·) ∈ V0, hence Vδ,fin ⊂ V0.

�

Proposition 4.1 states that, on the one hand, enforcing a finite number of SOC con-
straints with −→η as in (4.22) is more restrictive than enforcing an infinite number of
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affine constraints. On the other hand, SOC constraints are less restrictive than shrinking
the affine constraints by some −→ε > 0. The nested property (4.25) is instrumental in our
analysis. As a matter of fact, we shall focus on ε-perturbations of affine constraints
rather than on SOC constraints to construct a trajectory xε(·) ∈ Vε close to x̄0(·). We
shall then resort to strong convexity arguments to derive bounds on ‖x̄δ,fin(·) − x̄0(·)‖K.

We now list the hypotheses used to prove our main result.

(h-gen) A(·) ∈ L1(0, T) and B(·) ∈ L2(0, T), C(·) and d(·) are C0-continuous.

(h-sol) C(0)x0 < d(0) and there exists −→ε > 0 such that Vε ∩ {x(·) | x(0) = x0} 6= ∅, i.e.
there exists a trajectory xε(·) ∈ S satisfying strictly the affine constraints, as well
as the initial condition, with x0 interior to the state constraints.

(h-l) There exists µ > 0 such that the objective function L : x(·) ∈ S 7→ g(x(T)) +

‖x(·)‖2K is µ-strongly convex. The terminal cost g(·) is continuous over RN,
Q(·) ∈ L1(0, T), and R(·) ∈ L2(0, T). There exists r > 0 such that R(t) < rIdM for
all t ∈ [0, T ].

Discussion of the Assumptions: Assumption (H-gen) ensures the C0-continuity of the
kernel K and of the functions ηi and ωi (Lemma 4.2). Assumption (H-L) concerns the
objective function, whereas (H-sol) ensures that the set of trajectories satisfying the
state constraints is non-empty if the latter are shrunk:
— The existence requirement in (H-sol) can be derived from assumptions on the

existence of interior viable trajectories. We provide in the Annex an example
of such assumptions (Lemma 4.4) based on inward pointing conditions on the
boundary and on regularity assumptions on the constraints and the dynamics.
The assumption C(0)x0 < d0 ensures that x0 is a suitable initial condition for the
−→
ε -tightening Vε. 13

— The strong convexity requirement in (H-L) is obviously satisfied whenever g(·)
is convex. 14 It is required in order to bound the distance on solutions since the
problems (P∗) share the same objective but different constraint sets. The terminal
cost g(·) is supposed C0-continuous, but could be taken merely locally continuous
in a neighborhood 15 of x̄0(T) and lower bounded over any compact subset of RN.
By Lemma 4.3, (P0) has a unique optimal solution x̄0(·).

13. Since the SOC tightening lies in-between the −→ε -tightening and the original constraints (Proposition
4.1), it cannot be guaranteed that an initial condition on the border of the constraints would be suitable
for the SOC tightening.

14. More generally, g could be µ0-semiconvex (i.e. g(·) + µ0
2 ‖ · ‖

2 is convex) with 2 >

µ0 supp∈BN
‖p>K(T, T)p‖1/2.

15. This neighborhood is considered with respect to the relative topology of the terminal constraint
set {x ∈ RN |C(T)x 6 d(T)}.
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Lemma 4.3 (Existence and uniqueness of solutions). Under Assumptions (H-gen), (H-sol),
and (H-L), x̄0(·) exists and is unique. The same result holds true for (Pδ,fin), (Pδ,inf), and (Pε)

for any δ ∈ [0, δ0], where δ0 > 0 satisfies that −→ε > supt∈[0,T ][
−→
η (δ0, t)‖xε(·)‖K +−→ω(δ0, t)]

for −→ε as in (H-sol).

Proof: The existence result is a consequence of Tonelli’s direct method, usually stated
for lower bounded and lower semi-continuous g(·). We detail the proof since our
Assumptions are both slightly different and stronger. Since by Assumption (H-sol),
V0 6= ∅, let (xn(·),un(·)) be a minimizing sequence of (P0) converging to the optimal
value m̄. As L(·) is µ-strongly convex, L(x(·))

‖x(·)‖K → +∞ as ‖x(·)‖K → +∞. Hence
m̄ is finite, and (xn(·))n is a subset of a ball M0BK ⊂ S, for some M0 > 0. Since
x(·) ∈ S 7→ x(T) is continuous, {x(T) | x(·) ∈M0BK} is also bounded. By continuity of
g(·), let mg := − infx(·)∈M0BK

g(x(T)) < +∞. Consequently, for n large enough,

r‖un(·)‖2L2(0,T) 6 ‖xn(·)‖
2
K 6 m̄+ 1− g(xn(T)) 6 m̄+ 1+mg,

so (un(·))n is bounded in L2, and we can take a subsequence (uni(·))i weakly con-
verging to some u(·). Let s, t ∈ [0, T ]. By the variation of constants formula (4.8), we
had derived (4.9). Since A(·) ∈ L1(0, T) and B(·) ∈ L2(0, T), and xn(s) is uniformly
bounded in n and s by the reproducing property and continuity of K (Lemma 4.2),
(xni(·))i is equicontinuous. By Ascoli’s theorem, we thus have a subsequence (xnij (·))j
uniformly converging to some x(·) satisfying (4.8) for u(·), thus x(·) ∈ S. By continuity
of g(·), L(x(·)) = m̄. Since L(·) is strongly convex, the optimal trajectory is unique and
belongs to the closed set V0. To conclude, replace V0 with Vδ,fin (resp. Vδ,inf, and Vε),
the inequality satisfied by δ0 shows that xε(·) ∈ Vδ,fin, consequently the constraint sets
are non-empty. The same arguments as above yield the result.

�

Theorem 4.2 (Main result - Approximation by SOC constraints). Under Assumptions
(H-gen), (H-sol), and (H-L), for any λ > 0, there exists δ̄ > 0 such that for all N0 > 0 and
(δm)m∈[[1,N0]], with [0, T ] ⊂ ∪m∈[[1,N0]][tm− δm, tm+ δm] satisfying δ̄ > maxm∈[[1,N0]] δm, we
have

1

γK
· sup
t∈[0,T ]

‖x̄δ,fin(t) − x̄0(t)‖ 6 ‖x̄δ,fin(·) − x̄0(·)‖K 6 λ (4.26)

with γK := supt∈[0,T ],p∈BN

√
p>K(t, t)p.

Proof: Let λ > 0. Consider any λ̃ > 0 such that

2λ̃+ λ̃(λ̃+ 2‖x̄0(·)‖L∞(0,T))‖Q(·)‖L1(0,T) 6 λ. (4.27)



4.4 theoretical approximation guarantees 109

By Assumption (H-sol), pick xε(·) ∈ Vε such that xε(0) = x̄0(0). Denote by uε(·) the
associated control. Take α > 0 small enough such that xαε(·) := αxε(·) + (1−α)x̄0(·) ∈
S and uαε(·) := αuε(·) + (1−α)ū0(·) satisfy

‖x̄0(·) − xαε(·)‖L∞(0,T) = α‖x̄0(·) − xε(·)‖L∞(0,T) 6 λ̃

|‖R(·)1/2ū(·)‖2
L2(0,T) − ‖R(·)

1/2uαε(·)‖2
L2(0,T)| 6 λ̃

and, by continuity of g(·), |g(x̄0(T)) − g(xαε(T))| 6 λ̃. Consequently xαε(0) = x̄0(0) and
for all t ∈ [0, T ], C(t)xαε(t) 6 α(d(t) −−→ε ) + (1−α)d(t) = d(t) −α−→ε , so xαε(·) ∈ Vαε.
Hence

L(xαε(·)) −L(x̄0(·)) 6 |g(x̄0(T)) − g(xαε(T))|+
∣∣∣‖x̄0(·)‖2K − ‖xαε(·)‖2K∣∣∣

6 λ̃+
∫T
0

∣∣∣(x̄0(t) − xαε(t))>Q(t)(x̄0(t) + xαε(t))
∣∣∣dt

+
∣∣∣‖R(·)1/2ū(·)‖2L2(0,T) − ‖R(·)1/2uαε(·)‖2L2(0,T)∣∣∣

6 2λ̃+ λ̃(λ̃+ 2‖x̄0(·)‖L∞(0,T))‖Q(·)‖L1(0,T)
(4.27)
6 λ.

Let δ0 > 0 such that α−→ε > supt∈[0,T ][
−→
η (δ0, t)‖xαε(·)‖K + −→ω(δ0, t)]. Then xαε(·) ∈

Vδ0,inf ⊂ Vδ0,fin, the sets thus being non-empty. Notice that, for any δ ∈ [0, δ0], as x̄∗(·)
is optimal for (P∗), from the nested property (4.25), we derive that

L(x̄δ,fin(·)) 6 L(x̄δ,inf(·)) 6 L(x̄δ0,inf(·)).

As L(·) is µ-convex, L−1(] −∞,L(x̄δ0,inf(·))]) is a bounded set, contained in a ball
M0BK for some M0 > 0, and containing all the {x̄δ,inf(·)}δ∈[0,δ0]. Since S is a vRKHS,
x(·) ∈ S 7→ x(T) is continuous. So {x(T) | x(·) ∈M0BK} is also bounded. Hence, for any
δ ∈ [0, δ0],

g(x̄δ,inf(T)) + ‖x̄δ,inf(·)‖2K 6 L(x̄δ0,inf(·)) 6 |g(x̄δ0,inf(T))|+ ‖x̄δ0,inf(·)‖2K

‖x̄δ,inf(·)‖K 6 ‖x̄δ0,inf(·)‖K +
√
|g(x̄δ0,inf(T))|+ | inf

x(·)∈M0BK

g(x(T))|
1
2 =: y0.

As ‖x̄δ0,inf(·)‖K 6 y0, xαε(·) and x̄δ0,inf(·) are both admissible for the following problem,

min
x(·)∈Vδ0,inf

‖x(·)‖K6y0+‖x̄αε(·)‖K

L(x(·))

with x̄δ0,inf(·) being optimal by definition, hence we have L(x̄δ0,inf(·)) 6 L(xαε(·)). To
conclude, let δ̄ ∈]0, δ0] such that α−→ε > supt∈[0,T ][

−→
η (δ̄, t)y0 +

−→
ω(δ̄, t)]. Then, for any

δ ∈]0, δ̄], by strong convexity of L(·), x̄0(·) being optimal for (P0),
µ

2
‖x̄δ,fin(·) − x̄0(·)‖2K 6 L(x̄δ,fin(·)) −L(x̄0(·)) 6 L(xαε(·)) −L(x̄0) 6 λ.
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Replacing λ by
√
2λ/µ, we deduced that ‖x̄δ,fin(·)− x̄0(·)‖K 6 λ. By Cauchy-Schwarz in-

equality, for any t ∈ [0, T ], ‖x̄δ,fin(t)− x̄0(t)‖ 6 ‖x̄δ,fin(·)− x̄0(·)‖K supp∈BN

√
p>K(t, t)p.

By definition of γK, taking the supremum over [0, T ], we derive the remaining inequal-
ity.

�

Theorem 4.2 states that, when the discretization steps (δm)m go to zero, then the
solution x̄δ,fin(·) of the SOC-approximation (Pδ,fin) can be made arbitrarily close to the
solution x̄0(·) of the original problem (P0), uniqueness being ensured by Assumption
(H-L). Concerning the stability of solutions under shrinking perturbation of the state
constraints, the result of Theorem 4.2 actually also holds when replacing x̄δ,fin(·) by
x̄ε(·), showing that, when −→ε goes to zero, x̄ε(·) converges to x̄0(·).

4.5 finite-dimensional implementation and numerical example

In this section, we express the finite-dimensional equivalent of problem (Pδ,fin) owing
to the representer theorem (Theorem 4.1) and discuss its implementation on a numerical
example. In general, the SOC transformation requires only the minimal hypotheses
of Lemma 4.2 to be conceptually grounded. Theorem 4.2 essentially states theoretical
guarantees of convergence for small discretization steps. For numerical applications,
the problem can thus be extended to incorporate costs or equality constraints at any
finite number of intermediate times, as in path planning problems. This situation
was already met when discussing the controllability Gramian (4.16). We consequently
enrich (Pδ,fin) to optimization problems considered in Theorem 4.1, of the following
form, with ‖x(·)‖2K = ‖x(0)‖2 + ‖x(·)‖2K1 ,

min
x(·)∈S

L
(
c>0,1x(t0,1), . . . , c

>
0,N0

x(t0,N0)
)
+ ‖x(·)‖2K

s.t.

ηi(δi,m, ti,m)‖x(·)‖K + ci(ti,m)>x(ti,m) 6 di(δi,m, ti,m), ∀m ∈ [[1,Ni]], ∀ i ∈ [[1, P]],
(PSOC)

for {c0,m}m∈[[1,N0]] ⊂ RN . The differences between (Pδ,fin) and (PSOC) are that g(·),
which depended only on the terminal point, is now replaced with a loss L : RN0 →
R∪ {+∞}, defined on a finite number (t0,m)m∈[[1,N0]] of intermediate points (taken with
repetition), and that different discretization grids (δi,m, ti,m)i,m∈[[1,Ni]] are used for each
constraint i ∈ [[1, P]]. As no structural assumptions are imposed on L, it may incorporate
indicator functions to account for the initial condition or for rendezvous points. 16 In

16. To write (Pδ,fin) as (PSOC), take N0 = 2N, t0,1 = · · · = t0,N = 0, t0,N+1 = · · · = t0,N0 =

T , c0,i = c0,N+i = ei for i ∈ [[1,N]]. Denoting by χx0(·) the indicator function of x0, set
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Section 4.4, the SOC constraints were introduced to turn an infinite number of affine
constraints over [0, T ] into a finite number of SOC constraints. The logic is therefore
to separate the discrete pointwise requirements (which go to L) from the constraints
that should hold on [0, T ] (which are approximated by SOC constraints). Since the
constraints on [0, T ] may apply to different components of the state, we may consider
different grid steps for each i.

In general, adding the SOC terms leads to more conservative solutions w.r.t. the
one with affine constraints. The SOC constraints formulation only requires estimating
ηi(δi,m, ti,m) and −di(δi,m, ti,m) defined in (4.22) and (4.24). Both quantities should in
principle be overestimated for the guarantees to hold. However, since the tightening
results from a worst-case Cauchy-Schwarz scenario as discussed in (4.7), in practice,
underestimation does not affect the numerical results. Moreover the definition (4.22)
of ηi is not the only possible formulation. 17 Its choice results from geometrical
considerations on coverings 18 of compact sets in infinite-dimensional Hilbert spaces
(see Section 3 of Aubin-Frankowski and Szabó (2020a) for more details). Even for
other values of ηi than (4.22), considering SOC terms in the constraints proves to be
beneficial in terms of local satisfaction of the constraints on a neighborhood of ti,m.
Besides, the discretization grids considered here are ’static’ in the sense that they are
fixed before solving (PSOC). Extensions to ’dynamic’ grids, refined depending on the
optimization steps, can be found in Section 5 of Aubin-Frankowski and Szabó (2020a).

L
(
c>0,1x(t0,1), . . . , c

>
0,N0

x(t0,N0)
)
:= χx0(x(t0,1)) + g(x(t0,N0)) turning a vector notation into its com-

ponentwise version.
17. Using that x(·) = z0(·) + z1(·) ∈ S0 ⊕ Su one could consider two η-terms instead of one to derive

a less conservative tightening. In the same spirit d(t) could be projected onto S, and the projection
incorporated in the scalar products of the left hand-side. For Q(·) 6≡ 0, ‖x(0)‖2 could be replaced in
(4.4) by an S0-norm ‖S0x(0)‖2 with a surjective S0 ∈ RN0,N where N0 = dim(S0). This would not
change the formulation, but lead to a “tighter“ norm ‖x(·)‖K.

18. Definition (4.22) corresponds to a covering made of balls in S.
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By Theorem 4.1, for x(·) =
∑P
j=0

∑Nj
m=1 K(·, tj,m)pj,m and z = ‖x(·)‖K, 19 (PSOC) is

equivalent to

min
z∈R+,

j∈[[0,P]],m∈[[1,Nj]],
pj,m∈RN, αj,m∈R

L


 P∑
j=0

Nj∑
m=1

K(t0,n, tj,m)pj,m


n∈[[1,N0]]

+ z2

s.t.

z2 =

P∑
i=0

Ni∑
n=1

P∑
j=0

Nj∑
m=1

p>i,nK(ti,n, tj,m)pj,m,

pj,m = αj,mcj(tm), ∀m ∈ [[1,Nj]], ∀ j ∈ [[1, P]],

ηi(δi,m, ti,m)z+
∑P
j=0

∑Nj
m=1 ci(ti,m)

>K(ti,m, tj,m)pj,m
6 di(δi,m, ti,m),

∀m ∈ [[1,Ni]], ∀ i ∈ [[1, P]].

For quadratic L with indicator functions, after incorporating the quadratic objective
into the constraints through a change of variables, (PSOC) writes as a second-order
cone program (SOCP). Hence this problem can be straightforwardly implemented in
convex solvers or modeling frameworks such as CVXGEN (Mattingley & Boyd, 2012).
SOCP is slightly more expensive computationally than the quadratic programs (QP)
classically derived for LQR (Kojima & Morari, 2004). Both QP and SOCP have polyno-
mial computation times, however the exponent is problem-dependent, so achieving
a theoretical comparison is challenging. From a numerical viewpoint, it seems to
be also very much framework-dependent. For instance, when using CVXGEN, the
baseline cost of calling CVX blurs the difference in computation times between QP
and SOCP. As the more time points, the more coefficients, it is beneficial to define
the grids as subsets of a ’master grid’. Furthermore when computing ηi or K(s, t),
one has to approximate the supremum in (4.22) or the integral in (4.15), for instance
through sampling. For time-invariant dynamics and Q(·) ≡ 0, one can use the method
proposed in Van Loan (1978) to quickly compute K1(s, t) in (4.15). If sought for, the
analysis of the approximation error would correspond to that of the stability of the
solution when perturbing the constants and matrices appearing in the SOCP. This
leads to a large body of articles (e.g. Bonnans and Ramirez (2005) and quoting articles)
which exceeds the purposes of this study. If one overestimates the value of η and adds
a term λcond

∑P
i=0

∑Ni
n=1 ‖pi,n‖

2 to z2, then the state constraints are further tightened.
This is done in practice to improve the conditioning of the matrices, and discussed

19. The reproducing property, 〈K(·, t1)p1, K(·, t2)p2〉K = p>2 K(t2, t1)p1, applied to x(·) allows to
explicit z.
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along other numerical implementation details of a SOC-constrained kernel regression
in Aubin-Frankowski and Szabó (2020b). For a sufficiently small error in K, constraints
satisfaction could be guaranteed, even when facing numerical errors, through this
further tightening involving λcond.

To highlight the behavior of the SOC-transformation (PSOC) of problem (P0), we
consider the problem (Ppend) of a ’linear’ pendulum with angle x(t) where we control
the derivative u(t) of a forcing term w(t), with state constraints both on w(t) and on
ẋ(t), the full state being x := [x, ẋ,w] ∈ R3,

min
x(·),u(·)

− λT ẋ(T) + λu‖u(·)‖2L2(0,T) + ‖x(0)‖
2

s.t.
x(0) = 0.5, ẋ(0) = 0, w(0) = 0,

x(T/3) = 0.5, x(T) = 0,

ẍ(t) = −10 x(t) +w(t), ẇ(t) = u(t), a.e. in [0, T ],

ẋ(t) ∈ [−3,+∞[, w(t) ∈ [−10, 10], ∀ t ∈ [0, T ].

(Ppend)

The objective of (Ppend) can be interpreted as trying to maximize the terminal velocity
ẋ(T) with an L2-cost over the control. This example underlines how (PSOC) effectively
allows for more possibilities than (Pδ,fin). We have both an initial, an intermediate
and a final condition on x(·). Since the full state x := [x, ẋ,w] is not fixed at the
intermediate time T/3, the problem cannot be split into independent problems over
two time intervals. We take R(·) ≡ λu ∈ R in order to have (Ppend) written as (PSOC).
We identify the kernels K0 and K1 as in (4.11) and (4.15) and use a uniform grid of
NP points for the two affine constraints over ẋ(t) and w(t) and turn them into SOC
constraints for all m ∈ [[1,NP]]

ηẋ‖x(·)‖K − ẋ(tm) 6 −3,

ηw‖x(·)‖K +w(tm) 6 10,
ηw‖x(·)‖K −w(tm) 6 10,

where ηẋ and ηw are defined as in (4.22) for C = [0 -1 0 ; 0 0 1 ; 0 0 -1]. For the experiment
of Fig. 4.1, we take T = 1, λT = 106 and λu = 104. All computations took less than 30

seconds.
We first compare SOC constraints with discretized constraints (ηw = 0) for a mod-

erate value of NP = 200. Whereas the SOC-constrained optimal trajectory is fairly
conservative w.r.t. to the bounds over w(t), the optimal trajectory for discretized
constraints suffers from chattering and does not satisfy the w-constraints. This was
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Figure 4.1 – Optimal solutions of (Ppend) for varying NP and ηw. The red circles indicate
the equality-constrained points, the grayed areas the constraints over [0, T ]. We
report the values of ẋ(T) and of the maximum of w(·). Top: Comparison of
SOC constraints (guaranteed ηw) versus discretized constraints (ηw = 0) for
NP = 200. Center: Comparison of SOC constraints for varying NP and guaranteed
ηw. Bottom: Comparison of SOC constraints for varying ηw and NP = 200.



4.5 finite-dimensional implementation and numerical example 115

already hinted at in the speed limit example of the introduction: the control sticks to
the w-constraints at the points (tm)m but violates them in between. Hence the optimal
value of ẋ(T) = 3.18, corresponding to the optimal solution with discretized constraints
(red curve on top row, middle column of Fig. 4.1), is attained only by repeated violation
of the w-constraints. We then present the consequences of changing the number of
grid points NP and of lowering ηw w.r.t. to the value of its definition. The parameter
ηẋ is kept fixed to its nominal value as it has little influence on the optimal solutions.
We first investigate the effect of changing NP while keeping the guaranteed value
of ηw, defined as in (4.22). We see that the threshold applied to the w-constraints
decreases, albeit slowly. Secondly, for NP = 200, we divide ηw first by a factor 5, then
by a factor 10. The w-constraints threshold drastically diminishes and, for ηw = 0.001,
the inflexion at t = 0.5 appears, as a result of the constrained arc over ẋ(·). In the limit
case, we would recover the trajectory with discretized constraints (ηw = 0).

We conclude from this example that incorporating SOC terms in the constraints
proves to be beneficial, even for −→η chosen smaller than its nominal value. Nevertheless
increasing NP leads, as stated in Theorem 4.2, to convergence to the optimal trajectory
x̄0(·) with affine state constraints through trajectories x̄δ,fin(·) that are always both
feasible and interior. Moreover the shapes of the SOC-optimal trajectories provide
intuition on the times and properties of constrained arcs.

annex : existence of interior trajectories

We provide here conditions ensuring the existence of interior trajectories for (P0). For
any −→ε ∈ RP

+, let Aε := {(t, x) | t ∈ [0, T ], −→ε +C(t)x 6 d(t)} and Aε,t := {x |(t, x) ∈ Aε}.
Below, for (t, x) ∈ Aε, TAε(t, x) denotes the contingent cone to the set Aε at point (t, x)
(see e.g. Haddad (1981)).

(h1) A(·) and B(·) are C0-continuous. C(·) and d(·) are C1-continuous and C(0)x0 <
d(0).

(h2) There exists Mu > 0 such that, for all t ∈ [0, T ] and x ∈ RBN satisfying C(t)x 6
d(t), with R := (1+ ‖x0‖)eT‖A(·)‖L∞(0,T)+TMu‖B(·)‖L∞(0,T) , there exists ut,x ∈MuBM
such that

∀ i ∈ It,x := {i | ci(t)
>x = di(t)}, C

′
i(t)

>x− d ′i(t) + ci(t)
>(A(t)x+B(t)ut,x) < 0.

(4.28)

The inward-pointing condition (H2) is a geometrical assumption on the boundary of
the constraints. In particular, (H2) implies that the constraint set is non degenerate, i.e.
A0,t is the closure of its interior at all times t.
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Lemma 4.4 (Existence of interior trajectories). Under Assumptions (H1) and (H2), the
following properties are satisfied

i) there exists −→ε 0 > 0, Mv > 0, ξ > 0, and η > 0 such that for all −→ε 6 −→ε 0 and all
(t, x) ∈ (∂Aε + (0, ηBN)) ∩Aε ∩ ([0, T ]× (R − 1)BN), there exists ut,x ∈ MuBM
such that v = A(t)x+B(t)ut,x ∈MvBN and

y+ δ(v+ ξBN) ⊂ Aε,t+δ (4.29)

for all δ ∈ [0, ξ] and all y ∈ x+ ξBN such that y ∈ Aε,t. Hence v ∈ TAε(t, x), and

ii) there exists a trajectory in S satisfying strictly the affine constraints, as well as the initial
condition.

The proof below is composed of two parts. The first part translates an inward-
pointing condition written in normal form (4.28) to its tangent form (4.29). This allows
in the second part to invoke a viability argument to derive the existence of a strictly
feasible trajectory. This approach may seem remindful of a result by Soner (1986).
However, unlike Soner (1986), we do not need to explicitly construct a feasible trajec-
tory approximating a reference one, nor derive an estimate on their distance. Moreover
the proof leverages the linear structure of the dynamics and of the constraints, allowing
for time-varying constraints which Soner (1986) did not consider.

Proof: i) Define h(t, x) := C(t)x−d(t) and ξ(t, x,u) := C ′(t)x−d ′(t) +C(t)(A(t)x+
B(t)u).

Step 1: We claim that there exists −→e > 0, ρ > 0, and Mv > 0 such that for all t ∈ [0, T ]

and x ∈ RBN satisfying h(t, x) 6 0 with some active constraints (i.e. It,x 6= ∅), there
exists ut,x ∈ RM such that v = A(t)x+B(t)u ∈MvBN and

∀ i ∈ Iet,x := {i |hi(t, x) > −ei}, ξi(t, x,ut,x) 6 −ρ. (4.30)

Let ut,x as in (4.28), and set

ρt,x := − max
i∈It,x

ξi(t, x,ut,x) > 0 et,x := − max
i/∈It,x

hi(t, x,ut,x) > 0.

Since ξ(·, ·,ut,x) and h(·, ·) are continuous, we can find ∆t,x > 0 such that

sup
δ∈[t−∆t,x,t+∆t,x]∩[0,T ],

w∈BN

‖h(t, x) −h(t+ δ, x+∆t,xw)‖∞ 6 et,x
2

sup
δ∈[t−∆t,x,t+∆t,x]∩[0,T ],

w∈BN, i∈It,x

|ξi(t, x,ut,x) − ξi(t+ δ, x+∆t,xw,ut,x)| 6
ρt,x

2
.
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This implies that the index set of active constraints does not increase in size for points
in the open set Ωt,x := (t, x) +∆t,x] − 1, 1[×B̊N, denoting by B̊N the open unit ball of
RN. Moreover, for any point in Ωt,x, ut,x satisfies our claim for the constants ρt,x/2
and (et,x/2) 1N. Since we are considering a compact set, we can select a finite number
of (tj, xj)j∈[[1,J]] such that

([0, T ]× RBN)∩A0 ⊂
⋃
j∈[[1,J]]

Ωtj,xj .

To conclude, simply take 20

ρ := min
j∈[[1,J]]

ρtj,xj
2
, e :=

(
min
j∈[[1,J]]

etj,xj
2

)
1N, Mv := R‖A(·)‖L∞(0,T) +Mu‖B(·)‖L∞(0,T).

Step 2: Thanks to the uniform constants of the normal form (4.30), we derive the
constants of the tangent form (4.29). Let us choose ξ, η ∈]0, 1] such that for all
(t, x) ∈ ∂A0 ∩ ([0, T ]× RBN), setting vt,x = A(t)x+B(t)ut,x ∈MvBN, for

et,x,δα,β,γ := (C(t+δ)−C(t))(x+ηγ+ξα)+δC(t+δ)(vt,x+ηA(t)γ+ξβ)+d(t)−d(t+δ),

we have

e

2
> sup
δ∈[t−ξ,t+ξ]∩[0,T ]
α,β,γ∈BN

et,x,δα,β,γ ,
−δρ

2
> sup
δ∈[t−ξ,t+ξ]∩[0,T ]
α,β,γ∈BN, i∈Iet,x

(et,x,δα,β,γ)i. (4.31)

The first inequality can be derived from the C1-smoothness of C(·) and d(·), and from
the fact that both x, vt,x, A(·) and C(·) are uniformly bounded. The second inequality

stems from (4.30), as limδ→0+
et,x,δ0,0,0
δ = ξ(t, x,ut,x). The two inequalities of (4.31) state

that, for y := x+ ηγ+ ξα, if y ∈ A0,t then

y+ δ(v+ ξBN) ⊂ A0,t+δ with v := vt,x + ηA(t)γ = A(t)(x+ ηγ) +B(t)ut,x.

Step 3: There just remains to extend the result of Step 2 to the perturbed constraint
sets Aε. For any t ∈ [0, T ], let wt be an eigenvector of the largest eigenvalue µt of
C(t)C(t)T satisfying ‖wt‖∞ = maxi∈[[1,P]]wt,i = 1. Let µ̄ := mint∈[0,T ] µt > 0. Take any
−→
ε 0 > 0 such that

sup
t∈[0,T ]

2‖−→ε 0‖∞‖C(t)>wt‖
µ̄

6
η

2
.

20. If A0 is bounded, take Mu := 1+ maxj∈[[1,J]] ‖utj,xj‖.
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Let −→ε 6 −→ε 0, take (t, x) ∈ ∂Aε ∩ ([0, T ]× (R− 1)BN). Then

∃ i ∈ [[1, P]], ci(t)
>
(
x+

2‖−→ε 0‖∞C(t)>wt

µ̄

)
= di(t) −

−→
ε i +

2µt

µ̄
‖−→ε 0‖∞ > 0.

Since η 6 1, one can therefore find x̆ ∈ RBN ∩ ∂A0,t such that ‖x− x̆‖ = dA0,t(x) 6 η/2,
to which the conclusions of Step 2 apply. So the set considered in (4.29) at x, taking
as constants ξ/2 and η/2, is a subset of the one defined by x̆, ξ and η. Since only
differences of d(·) appeared in Step 2 and that x ∈ ∂Aε,t, adding −→ε has no effect on the
computations, so it follows that (4.29) is satisfied. For y = x, by definition of TAε(t, x),
we have that (1, v) ∈ TAε(t, x).

ii) Let F(t, x) := {(1,A(t)x+B(t)u) |u ∈MuBM}. SinceA(·) and B(·) are C0-continuous,
the bounded set-valued map F(·, ·) is upper semicontinuous. Let Ω := Aε ∩ ([0, T ]×
(R− 1)B̊N). The open ball B̊N being open in RN, Ω is locally compact in [0, T ]×RN. In
i) we have shown that the local viability condition is satisfied for Aε. The intersection
with an open set does not add boundary points, so, for (t, x) ∈ Ω, F(t, x)∩ TΩ(t, x) 6= ∅.
We may therefore apply (Haddad, 1981, Theorem 1) which provides a trajectory xε(·)
satisfying xε(0) = x0, xε,

′
(t) ∈ F(t, xε(t)), and h(t, xε(t)) +−→ε 6 0. Let [0, t1[ be the

maximal interval of existence of xε(·). Since xε,
′
(·) is measurable, by (Vinter, 1990,

Theorem 2.3.13), we can find some measurable uε(·) with values bounded by Mu,
s.t. xε,

′
(·) = A(t)x+B(t)uε(t) a.e. in [0, T ] . The dynamics being sublinear as A(·),

B(·), and uε(·) are bounded, xε(·) can be continuously extended to (t1, x
ε(t1)) ∈ Ω.

So t1 > T , otherwise the viability condition would allow to extend xε(·) beyond t1.
Since uε(·) is measurable and bounded, uε(·) ∈ L2(0, T). Hence xε(·) ∈ S satisfies the
required properties.

�
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5
T H E L Q R E P R O D U C I N G K E R N E L A N D T H E R I C C AT I E Q UAT I O N

This chapter was published with a single author in Comptes Rendus. Mathématique,
under the title Interpreting the dual Riccati equation through the LQ reproducing kernel
(Aubin-Frankowski, 2021a).

Abstract In this chapter, we provide an interpretation of the dual differential
Riccati equation of Linear-Quadratic (LQ) optimal control problems. Adopting a novel
viewpoint, we show that LQ optimal control can be seen as a regression problem over
the space of controlled trajectories –an idea already alluded by Luenberger (1968)–
and that the latter has a very natural structure as a reproducing kernel Hilbert space
(RKHS). The dual Riccati equation then describes the evolution of the values of the
LQ reproducing kernel when the initial time changes. This unveils new connections
between control theory and kernel methods, a field widely used in machine learning.

Résumé Dans ce chapitre, nous proposons une interprétation de l’équation
différentielle de Riccati duale pour des problèmes de contrôle optimal linéaires-
quadratiques (LQ). En adoptant un point de vue nouveau, nous montrons que le
contrôle optimal LQ peut être considéré comme un problème de régression sur l’espace
des trajectoires contrôlées – une formulation déjà évoquée par Luenberger (1968)– et
que ce dernier a une structure très naturelle d’espace de Hilbert à noyau reproduisant
(RKHS). L’équation de Riccati duale décrit en conséquence l’évolution des valeurs
du noyau de reproduction LQ lorsque le temps initial varie. Cette étude dévoile de
nouvelles connexions entre la théorie du contrôle et les méthodes à noyau, un domaine
largement utilisé en apprentissage automatique.

NB: The invertibility of the Riccati matrices J(t, T) under our assumptions is a consequence, for
instance, of the proof of Caroff and Frankowska (1993, Theorem 3.1). As the Riccati equation preserves
positive semidefiniteness, when taking P1,T = −JT ≺ 0 and P2,T = 0, we obtain that J(t, T) = −P1(t) �
−P2(t) � 0. The above theorem was published without its proof in Caroff and Frankowska (1992).
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5.1 introduction

We consider the problem of finite-dimensional time-varying linear quadratic (LQ)
optimal control with finite horizon and quadratic terminal cost as in

V(t0, x0) := min
u(·)

x(T)>JT x(T) +

∫T
t0

[x(t)>Q(t)x(t) +u(t)>R(t)u(t)]dt (1)

s.t.
x ′(t) = A(t)x(t) +B(t)u(t), a.e. in [t0, T ], (5.1a)
x(t0) = x0, (5.1b)

where the state x(t) ∈ RN and the control u(t) ∈ RM. We shall henceforth as-
sume that JT � 0, 1 and for all t ∈ [t0, T ], R(t) < rIdM with r > 0, as well as
A(·) ∈ L1([t0, T ],RN,N), B(·) ∈ L2([t0, T ],RN,M), Q(·) ∈ L1([t0, T ],RN,N), and R(·) ∈
L2([t0, T ],R

N,N). To have a finite objective, we restrict our attention to measurable
controls satisfying R(·)1/2u(·) ∈ L2([t0, T ],RN). Problem (5.1) is intimately related to
the differential Riccati equation, 2 expressed as

−∂1J(t, T) = A(t)>J(t, T) + J(t, T)A(t) − J(t, T)B(t)R(t)−1B(t)>J(t, T) +Q(t),

J(T, T) = JT ,
(5.2)

which solution J(·, T) satisfies V(t0, x0) = x>0 J(t0, T)x0. It is well-known (e.g. Bensous-
san et al., 2007, pp. 31, 408) that under the above positivity assumptions, J(t, T) is a
symmetric positive definite matrix, which inverse M(t, T) := J(t, T)−1 satisfies a dual
Riccati equation

∂1M(t, T) = A(t)M(t, T) +M(t, T)A(t)> −B(t)R(t)−1B(t)> +M(t, T)Q(t)M(t, T),

M(T, T) = J−1T .
(5.3)

This inverse matrix has been used as a tool to obtain a representation formula in
infinite-dimensional LQ control (Barbu & Prato, 1992) but it has not received the
deserved interest yet. Whereas the solution of (5.2) is equal to the Hessian of the
value function V(t0, ·), i.e. J(t0, T) = ∂x,xV(t0, ·), we show (Theorem 5.2 below) that
the solution of (5.3) is equal to the diagonal element of a matrix-valued reproducing
kernel K(·, ·), naturally associated with (5.1). Owing to this interpretation, the dual
Riccati equation (5.3) is thus no less fundamental and effectively allows to reverse the

1. Here < (resp. �) denotes the (strict) partial order over positive semi-definite matrices.
2. The index T in J(·, T) is kept as a reminder that (5.2) is defined w.r.t. a given terminal time T . We

denote by ∂1 the derivative w.r.t. the first variable.
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perspective between the adjoint vector and the optimal trajectory.

We first need to bring trajectories to the fore in (5.1). In his seminal book, Luenberger
(Luenberger, 1968, p255) already discussed that an optimal control problem such as
(5.1) can be seen as either optimizing over the set of controls u(·), or jointly over the
set of trajectories x(·) and controls u(·), connected through the dynamic constraint
(5.1a). Luenberger also alluded without details to a third possibility, that of optimizing
directly over the controlled trajectories. We follow this last viewpoint and consequently
introduce the vector space S[t0,T ] of controlled trajectories of the linear system: There
is not necessarily a unique choice of u(·) for a given x(·) ∈ S[t0,T ].

3 Therefore, with
each x(·) ∈ S[t0,T ], we associate the control u(·) having minimal norm based on the
pseudoinverse B(t)	 of B(t) for the RM-norm ‖ · ‖R(t) := ‖R(t)1/2 · ‖:

u(t) = B(t)	[x ′(t) −A(t)x(t)] a.e. in [t0, T ]. (5.4)

Problem (5.1) then induces a natural inner product over S[t0,T ]. As a matter of fact, the
expression

〈x1(·), x2(·)〉K := x1(T)
>JT x2(T) +

∫T
t0

[x1(t)
>Q(t)x2(t) +u1(t)

>R(t)u2(t)]dt (5.5)

is bilinear and symmetric over S[t0,T ] × S[t0,T ]. It is positive definite over S[t0,T ] as

‖x(·)‖2K = 0 implies that u(·) a.e≡ 0 and, as JT � 0, x(T) = 0, hence x(·) ≡ 0. Therefore

V(t0, x0) = min
x(·)∈S[t0,T ]

‖x(·)‖2K

s.t.
x(t0) = x0.

(5.6)

In other words the value function V(t0, x0) of (5.1) coincides with the optimal value of
a constrained norm minimization over S[t0,T ]. The solution of (5.6) can be made explicit
as (S[t0,T ], 〈·, ·〉K) is not an arbitrary Hilbert space, but a vector-valued reproducing
kernel Hilbert space (vRKHS).

5.2 vector spaces of linearly controlled trajectories as vrkhss

Definition 5.1. Let T be a non-empty set. A Hilbert space (HK(T), 〈·, ·〉K) of RN-vector-
valued functions defined on T is called a vRKHS if there exists a matrix-valued kernel
KT : T × T → RN,N such that the reproducing property holds: for all t ∈ T, p ∈ RN,
KT(·, t)p ∈ HK(T) and for all f ∈ HK(T), p>f(t) = 〈f, KT(·, t)p〉K.

3. This is the case for instance if B(t) is not injective for a set of times t with positive measure.
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Remark: It is well-known that by Riesz’s theorem, an equivalent definition of a vRKHS
is that, for every t ∈ T and p ∈ RN, the evaluation functional f ∈ HK(T) 7→ p>f(t) ∈ R

is continuous. There is also a one-to-one correspondence between the kernel KT and the
vRKHS (HK(T), 〈·, ·〉K) (see e.g. (Micheli & Glaunès, 2014, Theorem 2.6)). Moreover, by
symmetry of the scalar product, the matrix-valued kernel has a Hermitian symmetry,
i.e. KT(s, t) = KT(t, s)

> for any s, t ∈ T.

Lemma 5.1. (S[t0,T ], 〈·, ·〉K) is a vRKHS over [t0, T ] with a reproducing kernel K[t0,T ] which
we call the LQ kernel.

Proof of Lemma 5.1: The proof is identical to the one of Lemma 1 in (Aubin-Frankowski,
2021) where S[t0,T ] was equipped with the following inner product

〈x1(·), x2(·)〉K,init := x1(t0)
>x2(t0) +

∫T
t0

[x1(t)
>Q(t)x2(t) +u1(t)

>R(t)u2(t)]dt. (5.7)

�

Owing to Lemma 5.1, we can look for a “representer theorem“, i.e. a necessary
condition to ensure that the solutions of an optimization problem like (5.6) live in a
finite dimensional subspace of S[t0,T ] and consequently enjoy a finite representation.

Theorem 5.1. (Aubin-Frankowski, 2021) Let (HK(T), 〈·, ·〉K) be a vRKHS defined on a set T.
For a given I ∈N, let {ti}i∈[[1,I]] ⊂ T. Consider the following optimization problem with “loss“
function L : RI → R ∪ {+∞}, strictly increasing “regularizer“ function Ω : R+ → R, and
vectors {ci}i∈[[1,I]] ⊂ RN

min
f∈HK(T)

L
(
c>1 f(t1), . . . , c

>
I f(tI)

)
+Ω (‖f‖K) .

Then, for any minimizer f̄, there exists {pi}i∈[[1,I]] ⊂ RN such that f̄ =
∑I
i=1 KT(·, ti)pi with

pi = αici for some αi ∈ R.

Taking L(e>1 x(t0), . . . ,e
>
Nx(t0)) := χx0(x(t0)) and Ω(y) = y2, with ei the i-th basis

vector of RN, χx0 the indicator function of x0, we apply Theorem 5.1 to (5.6). Since ‖ · ‖2K
is strongly convex and there exists x(·) ∈ S[t0,T ] satisfying x(t0) = x0, the solution of
(5.6) is unique and can be written as x̄(t) = K[t0,T ](t, t0)p0, with p0 = K[t0,T ](t0, t0)

	x0 ∈
RN, where K[t0,T ](t0, t0)

	 is the pseudoinverse of K[t0,T ](t0, t0) for the RN-seminorm
‖K[t0,T ](t0, t0)

1/2 · ‖. Thus, owing to the reproducing property,

V(t0, x0) = ‖x̄(·)‖2K = 〈K[t0,T ](·, t0)p0, K[t0,T ](·, t0)p0〉K = p>0 K[t0,T ](t0, t0)p0 (5.8)

= x>0 K[t0,T ](t0, t0)
	x0 = p

>
0 x0.

So we conjecture that K[t0,T ](t0, t0)
	 = J(t0, T). We actually have a stronger result:
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Theorem 5.2. Let Kd : t0 ∈] −∞, T ] 7→ K[t0,T ](t0, t0). Then Kd(t0) = J(t0, T)−1.

The proof of Theorem 5.2 (in Section 5.3 below) boils down to identifying the
reproducing kernel of (S[t0,T ], 〈·, ·〉K). Informally, the inverse relation comes from
inverting the graph of the (x,p)-relation. As a matter of fact, consider the solution
p(t) of the adjoint equation

p ′(t) = −A(t)>p(t) +Q(t)x̄(t) p(T) = −JT x̄(T). (5.9)

Then we have p(t) = −J(t, T)x̄(t). In other words, the solution J(·, T) of the differential
Riccati equation maps the optimal trajectory x̄(·) to its adjoint vector p(·). On the
contrary, since x̄(t) = K[t0,T ](t, t0)p0, the kernel K[t0,T ](·, t0) maps an initial covector
p0 ∈ Rn to the optimal trajectory x̄(·). This effectively inverts the graph of the relation
between x̄(·) and p(·). The inversion performed is related to yet another change of
perspective, from an online and differential approach to an offline and integral one.

Through Pontryagine’s Maximum Principle (PMP), it is well known that the optimal
control ū(·) satisfies ū(t) = R(t)−1B(t)>p(t) = −R(t)−1B(t)>J(t, T)x̄(t) =: G(t)x̄(t).
Hence, based on J(t, T), one has a closed feedback loop, with gain matrix G(t), and
knows the control to apply based only on the present time and state. However the
optimal trajectory x̄(·) is not encoded as simply as in the kernel formula x̄(t) =

K[t0,T ](t, t0)p0. It has to be derived through numerical approximations of the dynamics
(5.1a). Conversely, the kernel K[t0,T ] performs the integration of the Hamiltonian
system (5.1a)-(5.9) and sparsely encodes x̄(·) over [t0, T ] by p0. This sparsity partly
stems from the smaller number of constraints in (5.6) w.r.t. (5.1) since the dynamics
(5.1a) were incorporated in the definition of S[t0,T ]. Unlike in the PMP, the adjoint
vector p(t) disappears in the kernel perspective and only the initial condition (or some
intermediate rendezvous points) induce a covector pi.

More generally, for a given interval [t0, T ], Theorem 5.1 states that to encode the
optimal trajectories one needs at most as many covectors pi as there are points ti where
the trajectory is evaluated in the optimization problem. It is a classical property of
“kernel machines“, frequently leveraged in classification tasks (e.g. SVMs in Schölkopf
and Smola, 2002). This result was exploited in (Aubin-Frankowski, 2021) to tackle
affine state constraints. From the PMP perspective, it resulted in focusing only on
the measures supported on the constraint boundary. Unlike the adjoint vector p(t)
associated with the equality constraint (5.1a), which never vanishes except for abnormal
trajectories, the covectors corresponding to inequality constraints are null whenever the
constraint is not active. This led to extremely sparse encoding of the optimal trajectory
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by specifying only the active covectors on the [t0, T ] time interval. 4 Offline computation
of the kernel is indeed well suited for path-planning problems. The kernel formalism
however conflicts with the online perspective since varying t0 changes the domain of
K[t0,T ]. As the correspondence between the kernel KT and the vRKHS (HK(T), 〈·, ·〉K)
is one-to-one (e.g. (Micheli & Glaunès, 2014, Theorem 2.6)), varying T = [t0, T ] or
modifying the inner product changes the kernel. In general, restricting the domain
leads to complicated relations between a vRKHS and its kernel Saitoh and Sawano,
2016, pp.78-80. In our case, the dual Riccati equation (5.3) precisely describes how the
values of the LQ kernel change when varying t0.

5.3 proof of theorem 5 .2

The proof corresponds to the identification of the reproducing kernel of (S[t0,T ], 〈·, ·〉K).
Since we shall proceed with fixed initial time t0, we drop the corresponding index
and set K(·, ·) = K[t0,T ](·, ·). By existence and unicity of the reproducing kernel, we just
have to exhibit a function K(·, ·) which satisfies the requirements of Definition 5.1.

Let us denote by ΦA(t, s) ∈ RN,N the state-transition matrix of z ′(τ) = A(τ)z(τ),
defined from s to t, i.e. z(t) = ΦA(t, s)z(s). The key property used throughout this
section is the variation of constants, a.k.a. Duhamel’s principle, stating that for any
absolutely continuous x(·) such that x ′(t) = A(t)x(t) +B(t)u(t) a.e., we have for any
σ, t ∈ [t0, T ]

x(t) =ΦA(t, σ)x(σ) +

∫ t
σ
ΦA(t, τ)B(τ)u(τ)dτ. (5.10)

Setting ∂1K(s, t) : p 7→ d
ds(K(s, t)p), let us define formally U(s, t) := B(s)	[∂1K(s, t) −

A(s)K(s, t)]. The reproducing property for K then writes as follows, for all t ∈ [t0, T ],
p ∈ RN, x(·) ∈ S[t0,T ],

p>x(t) = (K(T, t)p)>JTx(T) +

∫T
t0

(K(s, t)p)>Q(s)x(s)ds+
∫T
t0

(U(s, t)p))>R(s)u(s)ds.

(5.11)

4. In (Aubin-Frankowski, 2021), we considered the inner product (5.7) rather than (5.5) which
assumes a terminal quadratic cost. The choice of (5.7) was more appropriate for fixed initial time and
general lower semicontinuous convex terminal costs, alongside affine state constraints.
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By the Hermitian symmetry of K and the variation of constants (5.10) written for σ = T ,
we can rewrite (5.11) as, for all t ∈ [t0, T ], x(·) ∈ S[t0,T ],

x(t) = K(t, T)JTx(T) +

∫T
t0

K(t, s)Q(s)

(
ΦA(s, T)x(T) +

∫ s
T
ΦA(s, τ)B(τ)u(τ)dτ

)
ds

+

∫T
t0

U(s, t)>R(s)u(s)ds.

Regrouping terms,

x(t) =

(
K(t, T)JT +

∫T
t0

K(t, s)Q(s)ΦA(s, T)ds

)
x(T)

+

∫T
t0

K(t, s)Q(s)

∫ s
T
ΦA(s, τ)B(τ)u(τ)dτds+

∫T
t0

U(s, t)>R(s)u(s)ds

Setting K̃(t, s) :=
∫s
t0
K(t, τ)Q(τ)ΦA(τ, s)dτ, and applying Fubini’s theorem, we get

x(t) =
(
K(t, T)JT + K̃(t, T)

)
x(T)

+

∫T
t0

[
U(s, t)>R(s) −

∫ s
t0

K(t, τ)Q(τ)ΦA(τ, s)B(s)dτ
]
u(s)ds.

Identifying with (5.10) for σ = T , we derive that

K(t, T)JT =ΦA(t, T) − K̃(t, T),

U(s, t)>R(s) =

{
(−ΦA(t, s) + K̃(t, s))B(s) ∀s > t,

K̃(t, s)B(s) ∀s < t.
(5.12)

Let us introduce formally an adjoint equation defined for a variable Π(s, t) ∈ RN,N.
For any given t ∈ [t0, T ],

∂1Π(s, t) = −A(s)>Π(s, t) +Q(s)K(s, t) Π(t0, t) = −IdN.

This is the matrix version of (5.9) but with an initial rather than terminal condition.
Again, applying the variation of constants (5.10) with σ = t0 to Π(s, t), taking the
transpose and owing to the symmetries of K(·, ·) and Φ(·, ·), we derive that

Π(s, t) =Φ(−A>)(s, t0)Π(t0, t) +

∫ s
t0

Φ(−A>)(s, τ)Q(τ)K(τ, t)dτ

Π(s, t)> = −ΦA(t0, s) +

∫ s
t0

K(t, τ)Q(τ)ΦA(τ, s)dτ = −ΦA(t0, s) + K̃(t, s).
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Since ∂1K(s, t) = A(s)K(s, t) +B(s)U(s, t), by (5.12), for any given time t ∈ [t0, T ], we
have two coupled differential equations for K(·, t) and Π(·, t)

∂1K(s, t) = A(s)K(s, t) +B(s)R(s)−1B(s)>

{
Π(s, t) +ΦA(t0, s)

> −ΦA(t, s)
> ∀s > t,

Π(s, t) +ΦA(t0, s)
> ∀s < t.

∂1Π(s, t) = −A(s)>Π(s, t) +Q(s)K(s, t),

Π(t0, t) = −IdN K(t, T)JT = −Π(T, t)> +ΦA(t, T) −ΦA(t0, T).
(5.13)

Equations (5.13) seem quite intricate but they become simpler for t = t0, and as seen
in (5.8), t0 is actually the only time that interests us to solve the LQ optimal control
problem (5.6). For t = t0, the equations boil down to

∂1K(s, t0) = A(s)K(s, t0) +B(s)R(s)
−1B(s)>Π(s, t0)

∂1Π(s, t0) = −A(s)>Π(s, t0) +Q(s)K(s, t0)

Π(t0, t0) = −IdN ; Π(T, t0) = −JTK(T, t0).

(5.14)

Let us solve (5.14) by variation of the constant JT . We thus look for a function J(·, T),
which we will prove solves (5.2), such that J(T, T) = JT and Π(s, t0) = −J(s, T)K(s, t0).
We take the derivative in s of the latter expression to obtain

−A(s)>Π(s, t0) +Q(s)K(s, t0) = −J(s, T)
(
A(s)K(s, t0) +B(s)R(s)

−1B(s)>Π(s, t0)
)

− (∂1J(s, T))K(s, t0)

Therefore, applying to the right of the equations any pseudo-inverse of K(s, t0),

0 =
[
A(s)>J(s, T)> + J(s, T)A(s)

−J(s, T)B(s)R(s)−1B(s)>J(s, T) +Q(s) + ∂1J(s, T)
]

projImK(s,t0)
.

So it suffices that J(·, T) solves the differential Riccati equation (5.2) and that, by
symmetry of K,

Π(t0, t0) = −IdN = −J(t0, T)K(t0, t0) = −K(t0, t0)J(t0, T).

Consequently K(t0, t0) = J(t0, T)
−1 which formalizes our intuition of the inverse

relation between J and K. Now let us vary the initial time and consider the func-
tion Kd : t0 7→ K[t0,T ](t0, t0). Taking the derivative w.r.t. t0 of Π(t0, t0) = −IdN =

−J(t0, T)K[t0,T ](t0, t0), we get

0 = (∂1J(t0, T)Kd(t0) + J(t0, T)(∂1Kd(t0)),
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applying Kd(t0) to the left of the equation and using that Kd(t0) = J(t0, T)−1, we obtain

0 = −Kd(t0)A(t0)
> −A(t0)Kd(t0) +B(t0)R(t0)

−1B(t0)
> −Kd(t0)Q(t0)Kd(t0) + ∂1Kd(t0).

This concludes our proof as Kd(·) solves the dual matrix Riccati equation (5.3) which
has a unique solution.
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6
L I P S C H I T Z M I N I M U M T I M E F O R D I F F E R E N T I A L I N C L U S I O N S
W I T H S TAT E C O N S T R A I N T S

This chapter was published with a single author in Systems & Control Letters, under
the title Lipschitz regularity of the minimum time function of differential inclusions with state
constraints (Aubin-Frankowski, 2020).

Abstract For control systems, the local regularity of the minimum time function
τmin in the absence of state constraints has been extensively studied and related both
to inward-pointing conditions and to small-time controllability in the neighborhood
of a closed target C. In the presence of state constraints, assessing this regularity is
crucial to ensure the existence of solutions when perturbing the initial condition. In
this chapter, we prove, without imposing the inclusion C ⊂ IntK, that, for differential
inclusions with closed state constraints K and under general assumptions, τmin is
locally Lipschitz continuous on its domain which is open in K. We discuss as well
extensions to nonautonomous systems and to point targets.

Résumé Pour les systèmes contrôlés, la régularité locale de la fonction temps
minimum τmin en l’absence de contraintes d’état a été largement étudiée et liée à la
fois aux conditions rentrantes au bord (inward-pointing) et à la contrôlabilité en temps
court dans le voisinage d’une cible fermée C. En présence de contraintes d’état, cette
régularité est cruciale pour garantir l’existence de solutions en cas de perturbation
de la condition initiale. Dans ce chapitre, sans imposer l’inclusion C ⊂ IntK, nous
prouvons, pour des inclusions différentielles avec des contraintes d’état fermées K et
sous des hypothèses générales, que τmin est localement Lipschitz sur son domaine,
qui est ouvert dans K. Nous discutons également des extensions aux systèmes non
autonomes et aux cibles ponctuelles.
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6.1 introduction

Studying the regularity of the minimum time function finds its motivation in reach-
ability problems. Let K and C be two closed subsets of Rn and consider a control
system with initial condition x0 ∈ K{

x ′(t) = f(x(t), u(t)), u(t) ∈ U,
x(0) = x0,

(6.1)

where U is a compact subset of Rm, the control u(·) is a measurable function and
f : Rn ×U → Rn is sufficiently smooth. The state-constrained time optimal control
problem consists in finding the minimum time τmin(x0) to reach C along solutions
of (6.1) staying in K. Assessing the regularity of τmin allows to answer several ques-
tions. For instance, let a time-optimal state-constrained solution xref(·) of system
(6.1) be given. Take as initial condition a point x1 in a neighborhood of the trajec-
tory set xref([0, τmin(x0)]). Under what conditions can x1 be steered to the target set C
while respecting the state constraints K? How long would it take compared to τmin(x0)?

More generally, consider the autonomous differential inclusion 1 with initial condi-
tion x0 ∈ K:

x ′(t) ∈ F(x(t)) x(0) = x0 (6.2)

where F : Rn  Rn is a set-valued map taking closed, nonempty values. Below, an
F-trajectory x(·) on a time interval [0, T ] designates an absolutely continuous function
satisfying x ′(t) ∈ F(x(t)) a.e. on [0, T ]. A trajectory is called "feasible" if x([0, T ]) ⊂ K.

The capture basin CaptF(K,C) is the set of all points x0 ∈ K such that there ex-
ists T > 0 and a feasible F-trajectory starting from x0 and reaching the target set C
at time T . For a given x0 ∈ K, we denote the infimum of such T by τmin(x0). By
convention, τmin(x0) = +∞ if x0 /∈ CaptF(K,C). By analogy with the control system
(6.1), this defines the minimum time extended function τmin : K→ [0,+∞] associated
with the target set C, dynamics F and state-constraints K. The Lipschitzianity of the
extended function τmin(·) thus depends on the "Lipschitz regularity" of both F, K and C.

In order to exhibit Lipschitz dependence of solutions on initial conditions (through
the renowned Filippov’s theorem), it is classical to suppose the (local) Lipschitzian-
ity of F. On the other hand, the local Lipschitz continuity of τmin(·) on its domain

1. We shall consider nonautonomous systems in Section 6.3.1, when F is also locally Lipschitz in the
time variable.
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CaptF(K,C), in the case without state constraints, has been related to strict inward-
pointing conditions on the boundary ∂C of the target since the 70s (see e.g. Cannarsa
and Sinestrari, 2004, Chapter 8 for a modern presentation and the bibliography therein).
More recently, it has been shown in Bettiol et al., 2012 that strict inward-pointing condi-
tions on the boundary ∂K ensure L∞-distance estimates between arbitrary F-trajectories
and the set of feasible ones. These three ingredients allow us to prove in this paper the
openness of CaptF(K,C) in K and the local Lipschitz continuity of τmin(·).

Inquiries on the regularity of the minimum time function using constraint qualifica-
tions (albeit without state-constraints) go back at least to the early 70s. As a matter of
fact, the latter regularity can be related to a controllability property in the vicinity of
the target. For control systems, (local) Lipschitz continuity was already obtained for C2-
regular target sets in a general setting of differential games in Friedman, 1970, Theorem
5 and in a neighborhood of point targets in Petrov, 1970, Theorem 4.1. Through viscos-
ity solutions theory, Lipschitz continuity on CaptF(R

n, C) was then shown for compact
piecewise-C2 targets in Bardi and Falcone, 1990, Theorem 5.4 and in a neighborhood of
general closed target sets in Soravia, 1993, Corollary 3.7. Based on nonsmooth analysis
and moving to differential inclusions, Veliov, 1997, Theorem 3.1 showed the Lipschitz
continuity of τmin on CaptF(R

n, C) for nonautonomous convex-valued F (measurable
in time), while Wolenski and Zhuang, 1998, Theorem 6.1 revisited the regularity in a
neighborhood of a closed target set C. Finally, for state-constrained nonautonomous
control systems (Lipschitz in time), the local Lipschitz continuity of τmin was shown
in Cannarsa and Castelpietra, 2008, Theorem 3.8 under assumptions similar to ours,
although more stringent as they bore on f(x,U) rather than its convex hull co (f(x,U)).
We also discard the strong assumption of Cannarsa and Castelpietra, 2008 of having C
interior to K. Though we only consider compact-valued F, we have to mention that
the minimum time problem has also been studied for control-affine systems where
U = Rm as in Motta and Sartori, 2003 and references therein.

In this article on state-constrained differential inclusions, under general assumptions
on F, K and C, and a convexified version of the inward-pointing conditions, we prove
the local Lipschitz continuity of τmin, that had been shown for control systems without
state constraints. Such a property is a first step in studying nonlinear controllabil-
ity with nonsmooth state constraints. Furthermore our results encompass those of
Cannarsa and Castelpietra, 2008 on nonautonomous control systems, as presented in
Section 6.3.1. In Section 6.3.3, we show as well that, for point targets that are interior to
the constraints, the classical small-time controllability condition is sufficient to retrieve
the local Lipschitzianity of τmin on its domain CaptF(K,C).
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6.2 main results

Notation: We denote by B the closed unit ball in Rn, by Sn−1 the unit sphere in Rn

and by ‖ · ‖ and 〈·, ·〉 the Euclidean norm and scalar product. We denote by R+ the set
of nonnegative real numbers. We write ΠK(x) for the (possibly set-valued) projection of
a point x into K. The function dK(·) designates the distance to K. The set IntK stands
for the interior of K and the set ∂K for its boundary. We denote by TK(x) (resp. NK(x))
the Clarke tangent (resp. normal) cone to the subset K at point x. We use the notation
co F for the set-valued map that maps x to the convex hull of F(x).

Assumption 6.1. General assumptions{
F takes closed, nonempty values on Rn,

C and K are two closed nonempty subsets of Rn.

Assumption 6.2. Sublinear growth and local Lipschitz continuity of F

∃A > 0, ∀ x ∈ Rn, F(x) ⊂ A(1+ ‖x‖)B

∀R > 0, ∃ kF > 0, ∀ x, y ∈ RB, F(y) ⊂ F(x) + kF‖x− y‖B

Assumption 6.3. Strict inward-pointing condition on ∂K

∀ x ∈ ∂K, co F(x)∩ Int TK(x) 6= ∅

Assumption 6.4. Strict inward-pointing condition on ∂C∩K

∀ x ∈ ∂C∩K, co F(x)∩ Int TK(x)∩ Int TC(x) 6= ∅

Remark 6.1. It stems directly from Rockafellar, 1979, Theorem 2 that for any x ∈ C∩K
such that Int TK(x)∩ Int TC(x) 6= ∅, we have

Int TC∩K(x) = Int TK(x)∩ Int TC(x).

Remark 6.2. For any closed subset K of Rn, at a given x ∈ ∂K, for v ∈ Rn and a fixed
ε > 0, we have:

(v+ εB) ⊂ TK(x)⇔ max
n∈NK(x)

〈
v,

n

‖n‖

〉
6 −ε (6.3)

The existence at x ∈ ∂K of such v ∈ co F(x) and ε is implied by Assumption 6.3. Relation
(6.3) allows us to juggle the two translations of strict inward-pointing conditions (based
either on the normal cone or on the Clarke tangent cone to the sets). As a matter of
fact, while the tangent cone is suitable to build trajectories staying in a set, the normal
cone is easier to use when designing trajectories outside a set. In our case, we have
both to stay in K and to reach C, leading us to use both perspectives.
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Remark 6.3. Assumptions 6.3 and 6.4 actually have deeper implications on the regular-
ity of the sets K and C. If for every x ∈ ∂K, Int TK(x) 6= ∅ (i.e. K is wedged), then ∂K is
epi-Lipschitzian (it can be represented locally as the epigraph of a Lipschitz function
after a nonsingular linear transform, see Rockafellar, 1979, Theorem 3), and the same
observation applies to ∂C∩K. Furthermore, the characterization of the interior of the
Clarke tangent cone (e.g. Rockafellar, 1979, Theorem 2) implies that both K and C∩K
are the closure of their interiors. Therefore Assumptions 6.3 and 6.4 implicitly require
∂K and ∂C∩K to be "Lipschitzian surfaces" and K and C∩K to be the closure of open
sets of Rn. In particular C cannot be a point target. Notice that we did not require C to
be a subset of K, unlike Cannarsa and Castelpietra, 2008 where the inclusion C ⊂ IntK
was assumed.

Remark 6.4. Owing to Aubin and Frankowska, 1990, Theorem 10.1.6, the above
assumptions also imply that K is viable under co F (i.e. for any x0 ∈ K there exists a
feasible co F-trajectory defined on [0,+∞[ starting at x0). Bettiol et al., 2012, Theorem
2.3 shows that K is even viable under F.

The two following theorems are the main results of this article. Examples 6.1, 6.2
and 6.3 illustrate when they apply.

Theorem 6.1. Under Assumptions 6.1, 6.2 and 6.3, Assumption 6.4 implies the following
property of the minimum time function τmin to reach the target C subject to the state constraints
K:

∀R > 0, ∃ δ > 0, k > 0, ∀ x ∈ (C+ δB)∩ RB∩K, τmin(x) 6 kd(x) := kdC∩K(x) (6.4)

where, by convention, d∅(x) = +∞.

Theorem 6.2. Under Assumptions 6.1, 6.2, 6.3 and 6.4, CaptF(K,C) is open in K and τmin is
locally Lipschitz continuous on CaptF(K,C).

Example 6.1. Consider a two-dimensional simplified lunar landing module with
orientable exhaust nozzle, subject to the lunar gravity pulling downwards. Define the
constraints as being above the surface of the moon K = R×R+ and the target as a
box C = [−ε, ε]× [0, ε] with ε > 0. When close to the ground, the pilot is gradually
allowed to activate emergency boosters, strong enough to overcome the gravity, so that
its dynamics are

F(x) := (0,−1)︸ ︷︷ ︸
gravity

+ [−1, 1]× {0}︸ ︷︷ ︸
nozzle

+max(0, 1/2− x2){(0, 0), (0, 4)}︸ ︷︷ ︸
boosters

⊂ R2.

It can be easily checked that the triplet (F, K,C) satisfies all the Assumptions 6.1-6.4,
and that CaptF(K,C) = K.
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Example 6.2. Define a scalar potential gy(x) = max(0,min(1− ‖x− y‖, ‖x− y‖)) cen-
tered at y. Consider a navigation problem: a child in a two-dimensional stream
R× [−2, 2] wants to reach an aquatic slide C = B((0, 0), 1/2) which creates a local
whirl attractor. This defines the following dynamics

x ′ ∈ F(x) := (1, 0)︸ ︷︷ ︸
flow

+ B((0, 0),
1

2
)︸ ︷︷ ︸

swimmer’s controls

− 2g(0,0)(x)
x

‖x‖︸ ︷︷ ︸
whirl attractor

⊂ R2,

with the whirl continuously extended as (0, 0) at x = (0, 0). A wave generator
centered at xK = (−2, 0) is added. The constraint set is defined as K = (R ×
[−2, 2])\ Int(B(xK, 1/2)) and the new dynamics, when the wave generator is on, are

x ′ ∈ F̃(x) := F(x) + gxK(x)
x− xK
‖x− xK‖︸ ︷︷ ︸

wave generator

.

One can verify that (F̃, K, C) satisfies the assumptions of Theorem 6.2. One can also
check that CaptF̃(K,C) ( K is a proper open subset of K. On the other hand, when the
wave generator is off, (F, K,C) does not satisfy the strict-inward pointing condition at
(−5/2, 0) ∈ ∂K.

6.3 discussion on the main results

6.3.1 Nonautonomous systems

Consider the nonautonomous differential inclusion with initial condition x0 ∈ K:

x ′(t) ∈ F(t, x(t)) x(0) = x0

where F : R+ ×Rn  Rn is a set-valued map taking closed, nonempty values on
R+ ×Rn. Below, we shall make the same assumption as in Cannarsa and Castelpietra,
2008 that F(·, x) is locally Lipschitz continuous to show that Theorem 6.2 encompasses
the results of Cannarsa and Castelpietra, 2008 for nonautonomous systems. This
may appear as a restriction 2, however there are comparatively much less attempts at
considering nonautonomous systems in their full generality (i.e. when F(·, x) is merely
measurable). For differential inclusions and a moving target C(t) but without state

2. Time-Lipschitzianity was acknowledged in Cannarsa and Castelpietra, 2008 as too restrictive.
Nonetheless Cannarsa and Castelpietra, 2008 also considered the case of F(t, x) = c(t, x)B where c is a
bounded scalar function, globally Lipschitz in x and merely measurable in t.
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constraints, we should mention Veliov, 1997. For differential inclusions with fixed
state constraints K but without target, we refer to Bettiol et al., 2012. As a midway,
Cannarsa and Castelpietra, 2008 considered a nonautonomous control system with
compact control set and fixed K and C.

Assumption 6.5. Sublinear growth and local Lipschitz continuity of nonautonomous F

∃A > 0, ∀ (t, x) ∈ R+ ×Rn, F(t, x) ⊂ A(1+ ‖x‖)B
∀R > 0, ∀ T > 0 ∃ kF > 0, ∀ x, y ∈ RB, ∀ t, s ∈ [0, T ]

F(s, y) ⊂ F(t, x) + kF(‖x− y‖+ |t− s|)B

By augmenting the dynamics, our results encompass those of Cannarsa and Castelpi-
etra, 2008. As a matter of fact, let K and C be two closed subsets of Rn. We define the
augmented system x̂ ′(t) ∈ F̂(x̂) under state constraints K̂ and with target Ĉ as

K̂ = R+ ×K, Ĉ = R+ ×C
x̂(·) = (τ(·), x(·))
F̂(x̂) = (1, F(x̂))

x̂(0) = (0, x0)

As τ ′(·) = 1 and K̂ and Ĉ are unbounded on the right in the time variable, Assumptions
6.1, 6.3, 6.4 and 6.5 on F, K and C jointly imply Assumptions 6.1, 6.2, 6.3, 6.4 bearing
on F̂, K̂ and Ĉ. So we may apply Theorem 6.2 to the augmented system. This
shows that CaptF̂(K̂, Ĉ) is open in K̂ for the relative Euclidean topology of R+ ×Rn

which is stronger than the Cartesian product topology. Furthermore the minimum
time functions coincide for the two systems. We obtain therefore the conclusions of
Theorem 6.2 for the original nonautonomous system.

In the proof of Theorems 6.1 and 6.2, a key ingredient, namely Bettiol et al., 2012,
Theorem 2.3, was proven for nonautonomous differential inclusions when F(·, x) is
absolutely continuous from the left. As a consequence, our results could eventually be
extended to this class of systems.

6.3.2 Weakening the hypotheses

Among the other hypotheses, few could be relaxed. Indeed Assumptions 6.1 and 6.2
are fairly general and related to the global existence of solutions of (6.2) and to their
Lipschitz dependence on initial conditions. Hence, they could hardly be weakened
when we seek Lipschitz regularity.
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Assumption 6.4 cannot be replaced by Assumption 6.3 expressed for C instead of K,
as shown in (counter)-Example 6.3, so we require a jointly inward-pointing condition
on K and C.

Example 6.3. Consider a modification of Example 6.1, where the controller over the
nozzle of the landing module broke. The dynamics are now x ′ ∈ F(x) = {(0,±1)} ⊂ R2,
the constraints are still K = R×R+, and the target is now C = Hyp(x1 7→ 1− x21),
where Hyp stands for the hypograph. It is clear that K and C satisfy inward-pointing
conditions with respect to F, while C ∩ K does not. Furthermore CaptF(K,C) =

K ∩ ([−1, 1]×R) is closed in K and τmin is discontinuous on K. In other words,
for some initial conditions, an infinitesimal perturbation may impede reaching the
target.

We cannot either drop altogether assuming inward-pointing conditions on C. Indeed,
the problem without state constraints is a special case of a state-constrained problem. So
the necessary and sufficient conditions from Veliov, 1997, Theorem 2.1 have to remain
valid. Let Γ = GraphC(·) where (C(t))t>0 is a moving target. In the simpler case of
F(·, x) being continuous and F(t, ·) being locally Lipschitz, the necessary condition for
the local Lipschitzianity of the minimum time, as shown in Veliov, 1997, Corollary
2.1, Theorem 3.1 can be stated as follows 3: for every compact set G ⊂ R+ ×Rn, there
exists ε > 0 such that, for every (t, x) ∈ ∂Γ ∩G,

sup
(p0,p)∈NΓ (t,x)∩Sn

(
min
v∈F(t,x)

(
p0 + 〈p, v〉

))
6 −ε (6.5)

Condition (6.5) would then have to be satisifed. On the other hand, if the set K is
invariant under F (i.e. for any x0 ∈ K all the solutions of the differential inclusion (6.2)
are feasible), then no inward-pointing condition on K is required as all the trajectories
are already feasible. Nevertheless we still need a strict inward-pointing condition on
C, such as (6.5).

6.3.3 Considering point targets

Originally, Petrov, 1970 considered point targets (i.e. C = {x̄}) and devised a
necessary and sufficient condition (0 ∈ Int(co F(x̄))) for the Lipschitz continuity of the
minimum time in a neighborhood of x̄, in the case without constraints. Since then,
research focused mainly on inward-pointing conditions which preclude point targets
as discussed in Remark 6.3. We show below that for point targets x̄ ∈ IntK, we still

3. The original condition of Veliov, 1997 bore on the proximal normal cone to Γ but, by taking the
limit and the closed convex hull, it can be restated for the Clarke normal cone.
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have the results of Theorems 6.1 and 6.2. Whenever x̄ ∈ ∂K, it is still an open question
as to formulating sufficient conditions for local Lipschitzianity of the minimum time.

We begin with an extension of Petrov, 1970, Theorem 4.1 to differential inclusions
without state constraints.

Proposition 6.1. Let x̄ ∈ Rn and suppose that 0 ∈ Int(co F(x̄)). Then, under Assumptions
6.1 and 6.2, the minimum time function τmin to reach the target x̄ without state constraints
has the following property:

∃ δ > 0, k > 0, ∀ x ∈ (x̄+ δB), τmin(x) 6 k‖x− x̄‖ (6.6)

A proof of Proposition 6.1 appears in the next section. We first state our result for
point targets x̄ ∈ IntK.

Proposition 6.2. Let x̄ ∈ IntK and suppose that 0 ∈ Int(co F(x̄)). Then, under Assumptions
6.1, 6.2 and 6.3, τmin satisfies (6.6) and is locally Lipschitz continuous on CaptF(K, {x̄}),
which is open in K.

Proof of Proposition 6.2: Fix η > 0 such that (x̄+ ηB) ⊂ IntK. Apply Proposition 6.1
to the system (6.2) without constraints, this gives δ0 > 0 and k > 0 such that, for any
ε > 0 and any x ∈ (x̄+ δ0B), there exists τ ∈ [0, k‖x− x̄‖+ ε] and an F-trajectory y(·)
defined on [0, τ] satisfying:

y(0) = x y(τ) = x̄ (6.7)

Let A > 0 be as in Assumption 6.2. Fix any δ ∈]0, δ0] and ε > 0 satisfying:

(δ+ (kδ+ ε) · (A+A‖x̄‖)) eA(kδ+ε) 6 η

Take x ∈ (x̄+ δB) and consider τ and y(·) as in (6.7). Then for any t ∈ [0, τ] we have:

‖x̄− y(t)‖ 6 ‖x̄− x‖+ ‖x− y(t)‖ 6 δ+
∫ t
0
‖y ′(s)‖ds

6 δ+
∫ t
0
(A+A‖x̄‖+A‖x̄− y(s)‖)ds

6 δ+ τ(A+A‖x̄‖) +A
∫ t
0
‖x̄− y(s)‖ds

Using Gronwall’s lemma, we get that for any t ∈ [0, τ], as τ 6 kδ+ ε

‖x̄− y(t)‖ 6 (δ+ τ(A+A‖x̄‖)) eAτ 6 η

Consequently y([0, τ]) ⊂ x̄+ ηB ⊂ IntK, so y(·) is feasible. As ε is arbitrary, we get
that the minimum time with state constraints coincides on (x̄+ δB) with the minimum
time without state constraints, and that both are therefore Lipschitz continuous on
(x̄+ δB). The results of Theorem 6.2 follow immediately, which concludes the proof.

�
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6.4 proofs

Proof of Theorem 6.1: This proof is partially inspired by Cannarsa and Sinestrari,
2004, pp. 239-243 where the result was proven for a control system without state
constraints. The proof differs however due to Assumption 6.4 which is weaker than in
Cannarsa and Sinestrari, 2004 as it bears on co F rather than F, and as we consider a
general differential inclusion rather than a control system. Moreover the presence of
constraints requires to design feasible trajectories (i.e. respecting the state constraints).
This leads to applying both the celebrated relaxation theorem and a "correction" theo-
rem Bettiol et al., 2012, Theorem 2.3 to build F-trajectories staying in K.

Fix any R > 0. Let kF > 0 such that:

∀ x, y ∈ 2RB, F(y) ⊂ F(x) + kF‖x− y‖B

Let cF := 5nkF and define
M = n+ sup

x∈2RB

sup
v∈F(x)

‖v‖.

By Assumptions 6.3 and 6.4 and Bettiol et al., 2012, Lemma 5.3, there exists ε ∈]0, 1],
η0 > 0 such that:{

∀ x ∈ (∂(C∩K) + η0B)∩ 2RB∩C∩K, ∃ v ∈ co F(x),
∀y ∈ (x+ η0B)∩C∩K, y+ [0, ε](v+ εB) ⊂ C∩K

(6.8)
∀ x ∈ (∂C∩ ∂K+ η0B)∩ 2RB∩C∩K, ∃ v ∈ co F(x),
∀y ∈ (x+ η0B)∩K, y+ [0, ε](v+ εB) ⊂ K
∀z ∈ (x+ η0B)∩C∩K, z+ [0, ε](v+ εB) ⊂ C∩K.

(6.9)

In order to use Gronwall’s lemma later on, we require a technical condition on ε, which
has to be chosen small enough as to satisfy:

εecFε/(16M
2) 6 8MR (6.10)

Since co(F) is locally Lipschitz continuous, there exists η1 > 0, such that for every
x̃ ∈ ∂C∩K∩ 2RB and ṽ ∈ co F(x̃)

∀ x ∈ (x̃+ η1B), ∃ v ∈ co F(x), ‖v− ṽ‖ 6 ε/4. (6.11)
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Let η := min(η0, η1, R)/2. For any δ ∈]0, η/3], we now define the following sets and
quantities:

∆ = ∂C∩ ∂K∩ 2RB C̃ = (∂C∩K∩ 2RB) \(∆+
η

2
B) ρ̃ = inf

x∈C̃
d∂K(x)

Cδ = ∂C∩K+ δB C̃δ =

(
Cδ ∩K∩

3R

2
B

)
\(∆+ ηB) ρ̃δ = inf

x∈C̃δ
d∂K(x)

where, by convention, ∅+B = ∅. The initial conditions x0 of interest are in Cδ ∩K∩RB,
hence they either belong to (∆+ ηB) or to C̃δ.

Claim 6.1. Whenever C̃δ 6= ∅, ρ̃ > 0 is finite, independently of ∆ being empty or not.

Proof of Claim 6.1: Suppose C̃δ 6= ∅ and let x ∈ C̃δ ⊂ Cδ. Fix any x̄ ∈ ∂C∩K such that
‖x− x̄‖ 6 δ. As δ 6 η

3 6
R
6 and x ∈ 3R

2 B, we have that x̄ ∈ (x+ δB) ⊂ 2RB. Further,

d∆(x̄) > d∆(x) − ‖x− x̄‖ > η− δ > η/2.

Therefore x̄ ∈ C̃, implying it is not empty. If ∆ 6= ∅, by definition, ρ̃ > 0. If ∆ = ∅, then
C̃ = ∂C∩K∩ 2RB is compact and C̃∩ ∂K = ∅, so ρ̃ > 0. In both cases, as C̃δ ⊂ C̃+ δB,
ρ̃δ > ρ̃− δ.

We now define the key constants that the proof of Theorem 6.1 will require:

k0 := 4/ε γ :=

√
1−

( ε

16M

)2
k :=

2

ε
(1+ γ) γ̃ :=

1+ γ

2

Notice that
k(1− γ̃) =

k(1− γ)

2
=

ε

(16M)2
. (6.12)

Define

δ := min
(
1,
η

3
,

ρ̃

4+ 16k0M
,
ε

8cFM
,

R

32kM

)
. (6.13)

As δ 6 1, we may replace ε by εδ in (6.10).

Let us show that for any x0 ∈ (Cδ ∩ K ∩ RB), we can define, for j ∈ N, a feasible
F-trajectory yj(·) on [0, tj] with tj > 0, satisfying the following properties for d(x) :=
dC∩K(x)

xj+1 := yj+1(0) = yj(tj) ∈
3R

2
B

∞∑
j=0

tj 6 16kd(x0)
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and the two inequalities

d(xj) 6 γ̃
jd(x0) ‖xj − x0‖ 6

ε

16M

j−1∑
k=0

γ̃kd(x0). (6.14)

Let us first make sure that the (xj)j satisfying (6.14) belong to 3R
2 B, by applying (6.12).

Indeed

‖xj‖ 6 ‖x0‖+ ‖xj − x0‖ 6 R+
ε

16M

1

1− γ̃
d(x0) 6 R+ 16kMδ 6

3R

2
.

Let j ∈N. The inequalities (6.14) are obviously satisfied for j = 0, so we will proceed
by induction on j. Assume we have already constructed our trajectories up to step j
and have not yet reached C (i.e. xj /∈ C). Let x̄j ∈ ∂(C∩K) be such that d(xj) = ‖xj− x̄j‖
(i.e. x̄j ∈ ΠC∩K(xj)).

As xj ∈ Cδ ∩K∩ (3R/2)B = C̃δ ∪ (∆+ ηB), we distinguish two cases. In Case 1, we
consider the situation where ∆ 6= ∅ and xj ∈ (∆+ ηB). If the xj+1 that we design below
belongs to C̃δ, then we move to Case 2, otherwise the induction proceeds according to
Case 1. In Case 2, xj ∈ C̃δ and we build by induction (xm)m>j+1 ∈ Cδ. Owing to Claim
1, we will show that, for any m > j+ 1 and t ∈ [0, tm], the designed trajectory ym(·)
satisfies d∂K(ym(t)) > 0. This latter property ensures that once the designed trajectory
is far enough from ∂K (i.e. xj ∈ C̃δ), it stays so, and we can focus on reaching C.

Case 1: Suppose ∆ 6= ∅ and xj ∈ (∆ + ηB)\C, then take any x̃j ∈ ∆ ∩ B(xj, η).
Consider ṽj ∈ co F(x̃j) satisfying (6.9). As x̃j ∈ ∆ ⊂ C∩K∩ 2RB,

‖xj − x̄j‖ = d(xj) 6 ‖xj − x̃j‖ 6 η
‖x̃j − x̄j‖ 6 ‖x̃j − xj‖+ ‖xj − x̄j‖ 6 2η 6 min(η1, η0)

‖x̄j‖ 6 ‖xj‖+ ‖xj − x̄j‖ 6
3R

2
+ η 6 2R

we may thus apply (6.11) at x̃j and x̄j (instead of x̃ and x) and then at x̄j and xj. In this
way, we get v̄j ∈ co F(x̄j) and vj ∈ co F(xj) both satisfying (6.11)

‖ṽj − v̄j‖ 6 ε/4 ‖vj − v̄j‖ 6 ε/4

and the second (resp. first) line of (6.9) at x̃j and x̄j (resp. at x̃j and xj)

x̄j + [0, ε](ṽj + εB) ⊂ C∩K xj + [0, ε](ṽj + εB) ⊂ K

which implies that

x̄j + [0, ε](vj + ε/2B) ⊂ C∩K xj + [0, ε](vj + ε/2B) ⊂ K.
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Using that (xj − x̄j) ∈ NC∩K(x̄j)\{0}, relation (6.3) gives
〈
vj, xj − x̄j

〉
6 −‖xj − x̄j‖ε/2.

Hence we have shown the two following formulas relating xj and vj:〈
vj, xj − x̄j

〉
6 −‖xj − x̄j‖ε/2 xj + [0, ε](vj + ε/2B) ⊂ K (6.15)

Let us now design a trajectory starting at xj. Define the duration tj > 0 as follows

tj :=
ε

16M2
d(xj) (6.16)

By Aubin and Frankowska, 1990, Theorem 9.5.3, there exists a cF-Lipschitz selection
f from the set-valued map co F defined on 2RB, satisfying vj = f(xj). Let y̌j(·) be
the unique solution of the differential equation x ′(t) = f(x(t)) on [0, tj] with initial
condition x(0) = xj. Let wj(·) := f(y̌j(·)) on [0, tj]. Then

y̌j(t) = xj +

∫ t
0
wj(s)ds (6.17)

Furthermore we have ‖wj(s) − vj‖ 6 cF‖y̌j(s) − xj‖, and

‖y̌j(t) − xj‖ 6 ‖tvj‖+
∫ t
0
‖wj(s) − vj‖ 6Mtj + cF

∫ t
0
‖y̌j(s) − xj‖

We apply Gronwall’s lemma as y̌j(t) is continuous and we take into account (6.10),
recalling that δ 6 1

‖y̌j(t) − xj‖ 6MtjecFtj 6
εδ

16M
eεδcF/(16M

2) 6 R/2 (6.18)

Therefore y̌j(t) ∈ 2RB, which implies that wj(t) ∈MB. Thus (6.17) gives ‖y̌j(s)−xj‖ 6
Mtj. As M > 1 and ε 6 1:

‖y̌j(t) − xj − tvj‖ 6
∫ t
0
‖wj(s) − vj‖ 6 cF

∫ t
0
‖y̌j(s) − xj‖ 6 cFMtj · t

6 cFM
εδ

16M2
· t 6 cFM

ε

16M2

ε

8cFM
· t 6 ε

2
· t
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Thanks to (6.15), this ensures that y̌j(t) ∈
(
xj + t(vj + ε/2B)

)
⊂ K. We have so far

designed a feasible co F-trajectory. Applying (6.15), we obtain furthermore for any
t ∈ [0, tj]:

1

2

d

dt
‖y̌j(t) − x̄j‖2 =

〈
wj(t), y̌j(t) − x̄j

〉
=
〈
vj, xj − x̄j

〉
+
〈
wj(t), y̌j(t) − xj

〉
+
〈
wj(t) − vj, xj − x̄j

〉
6 −

ε

2
‖xj − x̄j‖+M‖y̌j(t) − xj‖+ cF‖y̌j(t) − xj‖‖xj − x̄j‖

6 −
ε

2
d(xj) + (M+ cFd(xj))Mt

6
(
−
ε

2
+ cFMtj

)
d(xj) +M

2tj

=

(
−
ε

2
+
cFδ

M

ε

16
+
ε

16

)
d(xj) 6 −

3ε

8
d(xj) 6 −

ε

32
d(xj) = −

M2tj

2

Consequently, by integration:

d2(y̌j(tj)) 6 ‖y̌j(tj) − x̄j‖2 6 d2(xj) −M2t2j =

(
1−M2

( ε

16M2

)2)
d2(xj) = γ

2d2(xj)

However we cannot set y̌j(tj) as the next xj+1, as it is only a co F-trajectory for the
time being. In order to apply the relaxation theorem, we need a globally Lipschitz
continuous set-valued map. Fix any εj > 0. Let F̃ be defined in any x ∈ Rn as
F̃(x) := F(Π(2R+εj)B(x)) where Π(2R+εj)B(x) is the unique projection of x into (2R+ εj)B.
Since the projection on a ball is Lipschitz, we deduce that F̃ is globally Lipschitz. As
y̌j([0, tj]) ⊂ 2RB, y̌j(·) is also an F̃-trajectory. Thanks to the relaxation theorem, we may
thus build an F̃-trajectory ŷj(·) starting from xj and enjoying the following property:

‖ŷj − y̌j‖L∞([0,tj]) 6 εj

As y̌j([0, tj]) ⊂ 2RB, ŷj([0, tj]) ⊂ (2R+ εj)B, on which F̃ and F coincide. Hence ŷj(·) is
an F-trajectory.

If ŷj([0, tj]) ⊂ K, then we keep it as our feasible F-trajectory. Otherwise, if it leaves K
even during a short time, we correct it into an F-feasible trajectory yj(·) staying in IntK,
through Bettiol et al., 2012, Theorem 2.3 which we apply on 2RB and time interval
[0, tj] ⊂ [0, tmax] with tmax = εδ/(16M2) > tj. This implies the existence of a constant
L > 1 (depending only on R and F) with the following property (as y̌j([0, tj]) ⊂ K):

‖yj − ŷj‖L∞([0,tj]) 6 L‖dK(ŷj(·))‖L∞([0,tj]) 6 L‖ŷj − y̌j‖L∞([0,tj]) 6 Lεj

d(yj(tj)) 6 d(ŷj(tj)) + ‖yj(tj) − ŷj(tj)‖ 6 γd(xj) + Lεj
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The above relations remain true even if ŷj([0, tj]) ⊂ K. We set εj :=
1−γ
2L d(xj) 6 δ and

xj+1 := yj(tj), thus:

d(xj+1) 6 (γ+
1− γ

2
)d(xj) = γ̃d(xj)

Moreover we derive from (6.14) and (6.16):

‖xj+1 − x0‖ 6 ‖xj − x0‖+ ‖xj+1 − xj‖ 6
ε

16M

j−1∑
k=0

γ̃kd(x0) +Mtj 6
ε

16M

j∑
k=0

γ̃kd(x0)

If xj+1 ∈ (∆+ ηB)\C, then we remain in Case 1. Otherwise, if xj+1 ∈ C̃δ\C, we move
to Case 2.

Case 2: Suppose that xj ∈ C̃δ\C. The trajectory construction is similar to Case 1 and
even simpler as we do not have to consider the point x̃j. As η > δ, we can still select
v̄j ∈ co F(x̄j) and vj ∈ co F(xj) satisfying (6.8) and ‖vj− v̄j‖ 6 ε/4. We define tj and y̌j(·)
as in (6.16), and apply (6.18). This leads to the same computations for d

dt‖y̌j(t) − x̄j‖
2

and for d(y̌j(tj)). We define again through relaxation an F-trajectory ŷj(·) with the
same εj and we set xj+1 = ŷj(tj) ∈ Cδ, which satisfies (6.14). Then repeating the above
steps, we build a sequence (xm)m>j+1 ∈ Cδ connected by trajectories ŷm(·).

We no longer have to check the feasibility of such ŷm(·). As a matter of fact, recall
that owing to Claim 6.1, as C̃δ 6= ∅, ρ̃ is finite. Let m > j+ 1. Using that γ 6 γ̃ 6 1,
k 6 k0 and d(xj) 6 δ 6 ρ̃/(4+ 16k0M), we deduce

d∂K(ŷm(t)) > d∂K(xj) − ‖ŷm(t) − xj‖
> ρ̃δ − ‖ŷm(t) − y̌m(t)‖− ‖y̌m(t) − x̄m‖− ‖x̄m − xm‖− ‖xm − xj‖

> ρ̃− δ− Lεm − 2d(xm) −
ε

16M(1− γ̃)
d(xj)

> ρ̃− δ−
1− γ

2
d(xm) − 2γ̃

m−jd(xj) − 16kMd(xj)

> ρ̃− δ−
1

2
γ̃m−jd(xj) − 2d(xj) − 16kMd(xj)

> ρ̃− (
7

2
+ 16k0M)δ > 0

The above computation ensures that whenever an xj is both close enough to C and far
enough from ∂K, we can focus only on reaching C.

To conclude, we have built a bounded sequence (xj)j>0 connected by feasible F-
trajectories yj(·), satisfying both (6.14) and:

lim
j→+∞d(xj) = 0
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Using (6.12), define τ as follows:

τ :=

∞∑
j=0

tj =
ε

16M2

∞∑
j=0

d(xj) 6
ε

16M2

1

1− γ̃
d(x0) = 16kd(x0)

Concatenating all the feasible F-trajectories yj(·), we get a feasible F-trajectory y(·)
starting at x0, defined on [0, τ] and reaching C ∩ K at time τ. Hence assertion (6.4)
follows:

τmin(x0) 6 τ 6 16kd(x0)

which concludes the proof, replacing 16k by k to recover (6.4).

�

Proof of Theorem 6.2: Let x0 ∈ CaptF(K,C)\C and ξ > 0 such that B(x0, ξ)∩C = ∅.
Let y0(·) be a feasible F-trajectory starting at x0 and reaching C at x̄0 at some time τ0
where τmin(x0) 6 τ0 6 2τmin(x0). Let x1 ∈ K∩B(x0, ξ). Define

R := (‖x̄0‖+ 1) eM(2τmin(x0)+1) where M := sup
z∈B,t∈[0,τ0]

sup
v∈F(y0(t)+z)

‖v‖

Let kF be as in Assumption 6.2 for this value of R. Let F̃ be defined in any x ∈ Rn

as F̃(x) := F(ΠRB(x)). Since the projection on a ball is Lipschitz with constant 1, we
deduce that F̃ is globally Lipschitz with constant kF. As y0([0, τ0]) ⊂ RB, y0(·) is also an
F̃-trajectory. We may then apply the Filippov’s existence theorem (see e.g. Aubin and
Frankowska, 1990, Theorem 10.4.1), to design an F̃-trajectory ŷ1(·) on [0, τ0] starting
from x1 such that:

‖y0 − ŷ1‖L∞([0,τ0]) 6 ‖x0 − x1‖e
kFτ0 6 c · ξ where c := ekF(2τmin(x0)+1)

Take from now on ξ 6 1/c. Therefore, for any t ∈ [0, τ0], ŷ1(t) ∈ (y0(t) + B) and in
particular ŷ1(τ0) ∈ (x̄0 + B)), from which we derive that ŷ1([0, τ0]) ⊂ RB, on which F̃
and F coincide. We thus conclude that ŷ1(·) is an F-trajectory. If it stays within K, we
keep it. Otherwise we apply Bettiol et al., 2012, Theorem 2.3 to retrieve an F-trajectory
y1(·) on [0, τ0] starting from x1 and staying in K, satisfying in both cases for an L > 0
(depending only on R and F):

‖y0 − y1‖L∞([0,τ0]) 6 ‖y0 − ŷ1‖L∞([0,τ0]) + ‖ŷ1 − y1‖L∞([0,τ0])

6 (1+ L)‖y0 − ŷ1‖L∞([0,τ0]) 6 c(1+ L)ξ
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Let δ > 0, k > 0 and d(·) be as in (6.4). We choose ξ such that c(1+L)ξ 6 min(1/k, δ, 1).
As y1(τ0) ∈ (C+ δB)∩K∩ RB, we deduce from the dynamic programming principle
that:

τmin(x1) 6 τ0 + τmin(y1(τ0)) 6 τ0 + kd(y1(τ0))

6 2τmin(x0) + ck(1+ L)ξ 6 2τmin(x0) + 1

We have thus shown that x1 ∈ CaptF(K,C). Since x1 is an arbitrary point in K in a
neighborhood of x0, CaptF(K,C) is open in K.

We now repeat the above strategy for x1, x2 ∈ B(x0, ξ/2) ∩K. Let ε1 > 0. Let y1(·)
be a feasible F-trajectory starting at x1 and reaching C at x̄1 at time τ1 6 τmin(x1) + ε1.
Then design a feasible F-trajectory y2(·) on [0, τ1] starting from x2. With the same
arguments as above, y2(τ1) ∈ RB and:

d(y2(τ1)) 6 ‖y2(τ1) − x̄1‖ 6 c(1+ L)‖x2 − x1‖ 6 c(1+ L)ξ 6 δ
τmin(x2) 6 τ1 + τmin(y2(τ1)) 6 τmin(x1) + ε1 + c(1+ L)k‖x2 − x1‖.

As the roles of x1 and x2 can be permuted and ε1 is arbitrary, τmin(·) is Lipschitz
continuous on B(x0, ξ/2)∩K.

�

Proof of Proposition 6.1: This constructive proof is largely similar to that of Theorem
6.1, we thus focus only on the few differences as here K = Rn and d(x) = ‖x− x̄‖.

Let R = ‖x̄‖ + 1 and define the constants kF, cF and M accordingly. Fix ε > 0

satisfying both εB ⊂ co F(x̄) and (6.10), then define the other constants η1, k0, k, γ and
γ̃ as in the proof of Theorem 6.1. Set δ as follows

δ := min
(
1,
η1
6
,
R

6
,
ε

8cFM
,

R

32kM

)
.

Let x0 ∈ (x̄+ δB), j ∈ N and suppose that (6.14) is satisfied at xj. Let v̄j = −ε(xj −

x̄)/‖xj − x̄‖. As v̄j ∈ co F(x̄), through (6.11), we can fix a vj ∈ co F(xj) such that
‖vj − v̄j‖ 6 ε/4. Hence〈

vj, xj − x̄
〉
6
〈
v̄j, xj − x̄

〉
+ ‖xj − x̄‖‖vj − v̄j‖ 6 −

ε

2
‖xj − x̄‖

and we recover (6.15). Let tj as in (6.16), and construct similarly ŷj(·) through (6.17) and
relaxation. This defines the next point xj+1 = ŷj(tj) for the induction. In conclusion,
the bounded sequence (xj)j>0 converges to x̄, which is reached in time less than
16k‖x0 − x̄‖ by an F-trajectory starting at x0.

�
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7
D ATA - D R I V E N S E T A P P R O X I M AT I O N F O R D E T E C T I O N O F
T R A N S P O RTAT I O N M O D E S

This chapter was published as a joint work with Nicolas Petit in the Proceeding
of the European Control Conference 2020, under the title Data-driven approximation of
differential inclusions and application to detection of transportation modes (Aubin-Frankowski
& Petit, 2020).

Abstract This chapter applies the Support Vector Data Description (SVDD) algo-
rithm to approximate the graph of differential inclusions. It is proven that Gaussian
SVDD can recover any compact graph if a large enough dataset is available. This
data-driven approach can be used to identify discrete-valued parameters of nonlinear
dynamical systems with unknown input signal. For illustration, the presented method
is applied here both on real and synthetic data for detection of transportation modes
based on linear velocity measurements.

Résumé Ce chapitre applique l’algorithme de description des données par vecteurs
supports (SVDD) pour approcher le graphe d’inclusions différentielles. Nous prouvons
que le SVDD gaussien permet d’approcher tout graphe compact si un ensemble
de données suffisamment important est disponible. Cette approche fondée sur des
mesures empiriques peut être utilisée pour identifier des paramètres à valeur discrète
de systèmes dynamiques non linéaires dont le signal d’entrée est inconnu. À titre
d’illustration, la méthode présentée est appliquée ici à la fois sur des données réelles et
synthétiques pour la détection des modes de transport à partir de mesures de vitesse
linéaire.
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7.1 introduction

Numerous recent studies have envisioned extending Machine Learning (ML) tech-
niques to the automatic control domain (Khargonekar and Dahleh, 2018; Lamnabhi-
Lagarrigue et al., 2017). Profitable pairing has already been achieved for anomaly
detection Laouti et al., 2014 and system identification Bagge Carlson, 2018, among
others. This article follows this trend, and, for its part, relates one aspect of the vast
question of nonlinear dynamical system identification to a ML task in the framework
of set-valued analysis.

The studied problem is as follows. Consider N0 > 1 forced dynamical systems,
each denoted by (fj, Uj), for some index j = 1, ..., N0 that can be interpreted as a
discrete-valued parameter (or as a label in the ML terminology). The systems have as
governing equations

q ′(t) = fj(q(t), u(t))

where the state vector is q ∈ Rn, with the particularity that the input signal u(·) ∈ Uj
is unknown. Each set Uj is defined as the set of functions containing every input
signal that is possible given the value of j. For example, without further restriction,
the sets Uj can be subsets of some functional space (e.g. C0, L2) with bounded values
in Rm. As stated above, the forcing signal u(·) is unknown. Further, despite being
unambiguously defined, the sets Uj are unknown as well. To account for this lack of
information, the governing equations above are rewritten as differential inclusions:

q ′(t) ∈ Fj(q(t)) , {fj(q(t), u(t)) |u(·) ∈ Uj} (7.1)

Kj , {(q, q ′) |q ′ ∈ Fj(q)} ⊂ Rn ×Rn

where the set-valued map Fj is identified with its graph 1 Kj.
In this article, it is assumed that for each value of j, some properly labeled values

(samples) of (q(·), q ′(·)) are available, forming N0 datasets. We first build approxi-
mations of the graphs Kj from these data. Once these approximations are available,
they can be used for parameter estimation when presented with unlabeled recordings
of samples of (q(·), q ′(·)). This central question here boils down to determining the
possible values of j.

Classically (see e.g. Walter and Pronzato, 1997), most techniques in parameter
estimation assume a smooth and known dependence of the measurements on the
unknown i, and consider the data as (ordered) time series. In many cases, estimation is
treated as an extended-state reconstruction problem, using for instance Kalman filters
or state observers with unknown inputs. Numerous references develop techniques of

1. The graph is bounded whenever the state and its derivatives are bounded for u(·) ∈ Uj.
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this type (see Besançon, 2007 and references therein), however we do not make these
assumptions. Consequently, the proposed approach is not to be mistaken up with
extensions of the Kalman perspective to set-valued mappings (Brogliato and Heemels,
2009; Doris et al., 2008).

The framework advocated here considers the data as labeled clouds of points (q, q ′) 2,
each cloud corresponding to an unknown subset of the unknown Uj. Graphically,
constructing an approximation of Kj amounts to delineating a subset of R2n based on
the data (learning step). Once the learning step is achieved, when (new) unlabeled data
become available, identifying j amounts to testing the membership of the new data to
the N0 learned subsets (testing step).

To define approximations of the sets (Kj)j, we apply the Support Vector Data Descrip-
tion (SVDD Tax and Duin, 2004) algorithm. SVDD is a kernel method that computes a
minimal enclosing ball around the data. The output of the algorithm is an indicator
function, the evaluation of which allows to readily test membership. In this article, it is
shown that the output function for the Gaussian kernel can estimate any compact set
of R2n (we refer to this property by “set-consistency”). Two indexes i0 and i1 can then
be distinguished if the approximations of their Kj differ (which depends on both fj and
Uj). For applications, both learning and testing have to be computationally tractable
and robust to noise. As highlighted in the article, SVDD satisfies both conditions.
To show the applicability and relevance of the method, we consider the problem
of detecting transportation modes. This topic has recently attracted much attention
(Bolbol et al., 2012,Martin et al., 2017), especially using smartphone inertial data, with
reference datasets such as Geolife Zheng et al., 2010.

The paper is organized as follows. In Section 7.2, the problem under consideration
is stated, the SVDD algorithm is presented, and illustrated on GPS-measured linear
velocity data for transportation mode detection. The main theoretical contribution
(Proposition 7.1 on the set-consistency of Gaussian SVDD) is to be found in Section 7.3.
Finally, a simulation is performed in Section 7.4 to discuss the numerical behavior of
the algorithm.

7.2 approximating discrete sets with svdd

2. If q ′ is not directly available from measurements, it can be estimated through filtering Levant,
1998; Luo et al., 2005, Kriging Vazquez and Walter, 2005, numerical differentiation Diop et al., 2000 or
high gains observers Dabroom and Khalil, 1999 among other possibilities, possibly with a non-negligible
level of noise.
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7.2.1 Notations

Let F be a closed set-valued map defining a differential inclusion (7.1). Its graph K
can be represented by an indicator function φ, taking non-positive values only in K.
We denote KN by an approximation of K based on a labeled dataset XN , {(qi, q

′
i)}i6N

composed of N couples xi = (qi, q
′
i) ∈ Rd with d = 2n.

7.2.2 Theoretical framework of the SVDD algorithm

The graph estimation problem for K can be tackled through the SVDD algorithm,
which is a nonlinear version of the minimal enclosing ball problem (MEB Elzinga and
Hearn, 1972). The latter defines the ball of smallest volume of Rd containing the set
XN. The center of the MEB and its radius are the solutions of the following convex
optimization problem:

min
c∈Rd,R∈R

R2 s.t. ∀i 6 N, ‖xi − c‖Rd 6 R (7.2)

The SVDD algorithm offers the flexibility and nonlinearity required to fit general sets
(as shown later in Proposition 7.1). Rather than looking for a ball in Rd endowed with
its usual topology, Rd is here embedded in a reproducing kernel Hilbert space (RKHS)
Hk(R

d) where one seeks a minimal enclosing ball. For clarity, we first sketch RKHS
theory before describing further the SVDD problem and its solution.

Definition 7.1. An RKHS
(
Hk, (·, ·)Hk

)
defined on a set X is a Hilbert space of real-

valued functions on X such that there exists a reproducing kernel k : X×X→ R, i.e. a
function satisfying:

- ∀ x ∈ X, kx(·) ∈ Hk(X) where kx :

{
X→ R

y 7→ k(x, y)
- ∀ x ∈ X, ∀ f ∈ Hk(X), f(x) = (f, kx)Hk

The following summarized fundamental characterization allows for all the computa-
tions performed below.

Theorem 7.1 (Aronszajn, 1950). If a Hilbert space of functions on X is an RKHS Hk(X),
then k(·, ·) is a positive definite kernel, i.e. a kernel being both:
-positive: ∀m, ∀(ai, xi) ∈ (R×X)m ,

∑
aiajk(xi, xj) > 0

-and symmetrical: ∀ x, y ∈ X, k(x, y) = k(y, x)
Conversely a positive definite kernel k on X is reproducing for a unique Hk(X). Or,

equivalently, there exists a Hilbert space H of real-valued functions and an embedding Φk :
X→ H s.t. ∀ x, x ′ ∈ X, k(x, x ′) = (Φk(x), Φk(x

′))H.
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Choosing a positive definite kernel k on X, one can represent any point x ∈ X as
a function kx(·) ∈ Hk(X). Some classical examples of positive definite kernels on Rd

include the Gaussian, Laplacian and linear kernels:

kσ(x, y) = exp
(
−‖x− y‖2

Rd
/(2σ2)

)
for σ > 0, (7.3)

kλ(x, y) = exp(−λ‖x− y‖Rd) for λ > 0 (7.4)
klin(x, y) = (x, y)Rd (7.5)

7.2.3 The SVDD algorithm

The SVDD algorithm recasts the MEB problem (7.2) in an RKHS 3 and considers

min
f∈Hk,R∈R

R2 s.t. ∀ i 6 N, ‖k(xi, ·) − f(·)‖Hk 6 R (7.6)

As shown in Tax and Duin, 2004, the solution (fk, Rk) of (7.6) is of the form fk(·) ,∑N
i=1 αik(xi, ·), where (αi)i solves the dual problem of (7.6), which can be solved

through quadratic programming:

min
α∈RN+

αTGα−αTdiag(G) s.t.
N∑
i=1

αi = 1 (7.7)

where the matrix G is the Gram matrix of the (xi)i6N (i.e. G , (k(xi, xj))i,j6N) and
diag(G) is the diagonal matrix extracted from G. Based on fk, one can readily define a
membership function φk on Rd:

φk(x) , ‖kx(·) − fk(·)‖2Hk − R
2
k (7.8)

= k(x, x) − R2k +
∑
i,j6N

αiαjk(xi, xj) − 2
∑
i6N

αik(xi, x)

In turn, the function φk defines the sought-after closed set KN:

KN , {x ∈ Rd | φk(x) 6 0}

Interestingly, the complementarity slackness of the Karush–Kuhn–Tucker (KKT) con-
ditions of (7.7) ensure that for xi interior to KN, we have αi = 0. Thus, except for the
so-called support vectors xi on the boundary of KN, most coefficients are null in (7.8),
which leads to a sparse representation of the set KN by means of an indicator function
that is quick to evaluate. By construction, XN ⊂ KN.

3. The MEB in Rd corresponds to SVDD with the linear kernel klin.
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7.2.4 Extension of SVDD to noisy data

Because outliers can be present in the data 4, not all the points should be included
in the estimate KN. Following Tax and Duin, 2004, problem (7.6) can be adapted by
introducing some slack variables ξi > 0 :

min
f∈Hk, R∈R, ξ∈RN+

∀ i6N,‖k(xi,·)−f(·)‖2Hk6R
2+M+ξi

(
R2 +

1

νN

N∑
i=1

ξi

)
(7.9)

where the parameter ν ∈]0, 1] and the margin M ∈ R allow to adjust the level of
conservatism. The dual problem of (7.9) writes in a form similar to (7.7):

min
α∈RN

∀i6N, 1
νN>αi>0

αTGα−αT · diag(G) s.t.
N∑
i=1

αi = 1 (7.10)

The value of the parameter ν can be related to the quantiles and minimum volume
sets of the distribution of points. For 1 > νN, every point is considered as a true point.
Moreover the solution α is piecewise linear in ν as shown in Sjöstrand and Larsen,
2006, and ν is an upper bound on the proportion of outliers Schölkopf et al., 2001.
Some sparsity is necessarily lost as the set of support vectors is enlarged compared to
the noiseless case.

7.2.5 Discussion on application of SVDD and illustration on real data

Among the available set approximation procedures, SVDD has many pros making it
a suitable choice for the problem of identification of control systems, among which the
detection of transportation modes, further exposed in Section 7.4. The sparsity of the
solution, mentioned in § 7.2.3, holds for all support vector machines and allows for the
quick computation of the indicator functions (7.8), irrespective of the offline training
cost. SVDD is non-parametric (with the obvious exception of the choice of kernels) as
the model class is a Hilbert space of functions, so it can be applied to compare systems
with the same variables but vastly different governing equations.

However, SVDD has some classical pitfalls. Some of them have been circumscribed
as follows: limiting the effect of noise on the training step by taking out sheer outliers
through an L0-penalty El Azami et al., 2014; accelerating the computation for online

4. especially if the filtering employed to generate the q ′ samples are dealing with missing or
incorrectly time-stamped data
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training Laskov et al., 2006; performing interpretation of the output fk by converting
the membership scores to probabilities El Azami et al., 2017. Interestingly, none of
these problems occurs in our context. Although, the considered time-series are ridden
with noise, sheer anomalies can be smoothed out through continuity assumptions
bearing on the underlying dynamics. In contrast, the low-power additive noise, due to
sensors or to numerical differentiation, has little impact on the SVDD output. Below,
we used a Savistky-Golay filter to smooth the data q(·) and compute its derivative.
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Figure 7.1 – Graph approximations obtained on a reference dataset Martin et al., 2017. The
envelopes of various modes of transportation are computed through SVDD in
the (speed-acceleration) phase space (v, a) with parameter ν = 5% and various
Gaussian kernels of width σ ∈ [0.1, 0.5]

Moreover, the typical applications of travel mode detection are in low dimension,
and allow for offline computation of the boundaries, taking advantage of the online
efficiency. As an illustration, anticipating on further studies conducted in Section 7.4,
SVDD is applied to a dataset provided in Martin et al., 2017, where the GPS-measured
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linear velocity was recorded at 1Hz for a variety of transportation modes. The linear
acceleration was computed differentiating the velocity after smoothing the data (to
avoid problems related to accelerometer measurements). On Fig.7.1, the five modes
of transportation are represented by their SVDD envelopes in the (speed-acceleration)
phase space (v, a). The envelopes overlap, so it is only when a trajectory leaves a
set that it is made clear it does not belong to the corresponding class. To resolve
ambiguities, one can for instance assign a trajectory to the class of smallest volume in
Rd among the compatible ones, as it is the class that is easiest to leave. Developing
such ambiguity resolution techniques is left out of the discussion and is postponed to
future work.

In this example, SVDD was computed with Gaussian kernels kσ, which variances σ2

were adapted to each dynamic to get sharp estimates. However manipulating multiple
σ entails considering functions in several RKHSs, with different norms. Furthermore,
for every mode, the SVDD estimates are somewhat ill-behaved: when increasing σ,
the boundary does not expand monotonically (in the inclusion sense). This calls for
studies on comparison of multiple RKHSs and the increasingness property, which are
the topic of the next section.

7.3 theoretical guarantees on set estimation

Let XN , {xi}i6N be a finite set of distinct points of X, k be a positive definite kernel
on X and Hk(X) be its associated RKHS. In studies on RKHSs, the kernel is usually
kept fixed. However, we seek some robustness of the estimate KN with respect to the
kernel. This is the path we explore below considering multiple kernels.

Notations: We denote by BRd(x, R) the closed ball in Rd of center x and radius R
and by Bk(f, R) the closed ball in Hk(X). For any subset K, the set co(K) designates
its convex hull and ∂K stands for its boundary. We denote by BSVDDk , Bk(fk, Rk) the
minimal enclosing ball of {kxi}i = Φk(XN) in Hk(X). Let KSVDDk , Φ−1

k (BSVDDk ) ⊂ X.
We make two assumptions on the kernel k:

Assumption 7.1. 0 /∈ co({kxi(·)}i6N)

Assumption 7.2. ∃κk ∈ R, ∀ x ∈ X, k(x, x) = κk

Assumption 7.1 is verified for X = Rd by the Gaussian (7.3) and Laplacian ker-
nels (7.4), due to the positivity of the functions, but not by the linear kernel (7.5).

Assumption 7.2 is verified for X = Rd by all the translation-invariant continuous
positive definite kernels, which, owing to Bochner’s theorem Bochner, 1933, are of the
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form h(‖x− y‖Rd) with h being the Fourier transform of a finite positive measure on
Rd.

7.3.1 Main results

We first obtain the following result for noiseless SVDD.

Lemma 7.1 (SVDD as an orthogonal projection). Under Assumptions 7.1 and 7.2, the
center fk of BSVDDk is the orthogonal projection of 0 for the norm ‖ · ‖k onto co({kxi}i). The
solution (fk, Rk) of the noiseless SVDD problem (7.6) satisfies:

fk ,
N∑
i=1

αikxi = arg min
f∈co({kxi }i)

‖f‖2k ; Rk =
√
κk − ‖fk‖2k (7.11)

Furthermore:
∀ x ∈ X, x ∈ KSVDDk ⇔ ‖fk‖2k 6 fk(x) (7.12)

Proof. The Lagrangian L corresponding to (7.6) is

L(f, α, R) , R2 +
N∑
i=1

αi

(
‖kxi − f‖

2
k − R

2
)

(7.13)

The KKT conditions require the solution (f, R, α) to satisfy:

0 =
∂L

∂R
(f, R, α) = 2R

(
1−

N∑
i=1

αi

)

0 =
∂L

∂f
(f, R, α) = 2

(
f−

N∑
i=1

αikxi

)
0 6 αi and 0 6 R

0 = αi

(
‖kxi − f‖

2
k − R

2
)

Therefore, the solution f belongs to co({kxi}i) ⊂ Hk. For the p ∈ [[1,N]] points
(kxij )j6p ∈ ∂B(f, R) having a non-null coefficient α, we have:

∀j 6 p, ‖kxij − f‖
2
k = R

2
= κk + ‖f‖2k − 2(kxij , f)k (7.14)

Hence, the scalar product (kxij , f)k is constant w.r.t. j.

∀j 6 p, (kxij , f)k = (

p∑
j=1

αjkxij
, f)k = ‖f‖2k
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So R2 = κk − ‖f‖2k, and the constraints of (7.6) become:

‖kxi − f‖
2
k 6 κk − ‖f‖2k ⇔ 0 6 (kxi − f, f)k (7.15)

Owing to Assumption 7.1 and as f lies in co({kxi}i), we can apply the Best Approxima-
tion Theorem: the constraints require f to be the orthogonal projection of 0 for ‖ · ‖k
onto co({kxi}i). Conversely, f satisfies the constraints. Finally, (7.12) stems from the
same calculus as (7.15).

For the Gaussian kernel (7.3) we write for conciseness Hσ , Hkσ and KSVDDσ , KSVDDkσ
(same for Bσ and Φσ). We recall the result of Steinwart et al., 2006, Corollary 3.14; ∀σ2 > σ1 > 0, Hσ2(R

d) ⊂ Hσ1(R
d)

∀f ∈ Hσ2(R
d), ‖f‖σ1 6

(
σ2
σ1

)d/2
‖f‖σ2

(7.16)

from which we derive the following result.

Lemma 7.2 (Norm inequalities for Gaussian kernels). Let σ2 > σ1 > 0. The optimal fσ1 ,
fσ2 defined in Lemma 7.1 satisfy the inequality:(

σ2
σ1

)d
‖fσ1‖

2
σ1
> ‖fσ2‖

2
σ2
>
1

N
(7.17)

Proof. Let σ2 > σ1 > 0, and fσ2 =
∑N
j=1 αi,σ2kσ2,xi be as in (7.11). Define analogously

(αi,σ1)i. Below, we use the classical result that

1

N
= min

{αi>0 |
∑
i6N αi=1}

∑
i6N

α2i

and, as the Gaussian kernel has positive values and αi,σ2 > 0, we lower bound ‖fσ2‖2σ2
by the diagonal terms:

‖fσ2‖
2
σ2

=
∑
i,j6N

αi,σ2αj,σ2kσ2(xi, xj) >
∑
i6N

α2i,σ2 >
1

N

Set f̃σ1 =
∑N
j=1 αi,σ1kσ2,xi . Owing to Lemma 7.1, fσ2 is the element of smallest norm

‖ · ‖σ2 in co({kσ2,xi}i). Hence
‖f̃σ1‖

2
σ2
> ‖fσ2‖

2
σ2

Then, after some calculus, and after introducing the dual RKHS space which we omit
for brevity, one gets (

σ2
σ1

)d
‖fσ1‖

2
σ1
> ‖f̃σ1‖

2
σ2

This concludes the proof.
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Relation (7.16) states that the Gaussian RKHSs form an increasing sequence of
embeddings when σ decreases. This is a first step to compare the indicator functions
defined by (7.8). Furthermore the SVDD algorithm with the Gaussian kernel is "set-
consistent", in the sense that with enough data it can recover any compact set of
Rd:

Proposition 7.1 (Main result: Set-consistency of Gaussian SVDD). The estimate KSVDDσ

of XN by the SVDD algorithm for Gaussian kernels satisfies the following two properties

i) : ∀ ε > 0, ∃σ0 > 0, s.t.

∀ 0 < σ 6 σ0, KSVDDσ ⊂ XN +BRd(0, ε) (7.18)

ii) : ∃M > 0, ∀σ > 0, KSVDDσ ⊂ XN +BRd(0,M) (7.19)

Proof. Let ε > 0, σ > 0 and x ∈ KSVDDσ . We combine (7.12) and (7.17):

1

N
6 ‖fσ‖2σ 6 fσ(x) =

∑
i6N

αi,σe
−‖x−xi‖2

Rd
/(2σ2)

6 e−mini ‖x−xi‖2
Rd
/(2σ2)

Thus, mini ‖x− xi‖2Rd 6 2σ
2 lnN. Set σ0 , ε/

√
2 lnN. Therefore, for any σ ∈]0, σ0], we

have that KSVDDσ ⊂ XN +BRd(0, ε). Fix M , supi,j6N ‖xi − xj‖Rd and fσ =
∑
i6N αikxi

as in (7.11). Let y ∈ Rd\ (XN +BRd(0,M)), then:

∀ i, j 6 N, kσ(y, xi) = e
−‖y−xi‖2

Rd
/(2σ2)

< e−M
2/(2σ2)

6 e−‖xi−xj‖
2
Rd
/(2σ2)

= kσ(xi, xj)

∀ i 6 N,
∑
i6N

αikσ(y, xi) = (
∑
j6N

αj)(
∑
i6N

αikσ(y, xi))

<
∑
i,j6N

αiαjkσ(xi, xj) = ‖fσ‖2σ

We conclude from (7.12) that y /∈ KSVDDσ . This yields KSVDDσ ⊂ XN +BRd(0,M).

Relations (7.18) and (7.19) show that the sequence (KSVDDσ )σ>0 is bounded and, for
σ small enough, lies in a neighborhood of XN for the norm of Rd. In the limit case,
when N tends to infinity, if X∞ is dense in a given compact K ⊂ Rd, then KSVDDσ is
dense as well and lies in a neighborhood of K.
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7.3.2 Further results

Numerical experiments confirm that the sequence (KSVDDσ )σ>0 of sets produced by
the SVDD algorithm for Gaussian kernels is not increasing with σ w.r.t the inclusion.
The increasingness property of a sequence of sets is akin to a "stability property" in the
sense that the predictions drawn for a "large" kernel should contain the predictions
obtained for "narrower" kernels.

As an extension, for a given kernel kσ, we may look for a modified ball Bσ(f̃σ, R̃σ),
that should at least contain the set {kxi}i. We may also wish for the modified ball to
include Φk(KSVDDσ ), i.e. the set of all the kx that are in the minimal enclosing ball
of {kxi}i in Hσ. One possibility is to keep the center fixed and to expand the radius
accordingly. We first state a proposition for general kernels.

Proposition 7.2. Let k1 and k2 be two positive definite kernels on X, satisfying Assumptions
7.1 and 7.2, and such that for some γ > 0 the kernel γ2k1 − k2 is positive definite (or equiv-
alently that Hk2(X) ⊂ Hk1(X)). Then: co({k2(xi, ·)}i) ⊂ Bk2(fk2 , Rk2) ⊂ Bk1(fk2 , γRk2) ⊂
Hk1(X).

Proof. From Saitoh and Sawano, 2016, Th 2.17, we deduce that the existence of γ > 0
s.t. the kernel γ2k1 − k2 is positive definite is equivalent to the inclusion Hk2(X) ⊂
Hk1(X), the identity being continuous, of norm smaller than γ. Therefore we have
Bk2(fk2 , Rk2) ⊂ Bk1(fk2 , γRk2) ⊂ Hk1(X) and, by definition of the minimal enclosing
ball coupled with the triangular inequality, we obtain co({k2(xi, ·)}i) ⊂ Bk2(fk2 , Rk2).
This completes the proof.

Corollary 7.1 (Increasingness of σ-concentric SVDD). Let σ0 > 0, then the sequence
(Φ−1

σ (Bσ(fσ0 , (σ/σ0)
d/2Rσ0)))σ>σ0 is increasing w.r.t. the inclusion when σ increases.

Proof. Inequality (7.17) implies that the Gaussian kernel satisfies the assumptions
of Proposition 7.2 with γ2 = (σ/σ0)

d. This proof requires as well introducing dual
RKHSs.

7.4 application to detection of transportation mode on simulated

data

In this section, we illustrate the practicability of SVDD for approximation of dif-
ferential inclusions. We consider a general model (7.20) representing two types of
vehicles: cars and bikes. In this model, the input exerted onto the vehicles is such that
it produces asymptotic tracking of a reference velocity signal vreq(·) stemming from an
urban-part of the NEDC cycle (New European Driving Cycle) generating a small set
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(N ≈ 500) and a large set (N ≈ 15000) of points. The chosen parameters are listed in
Table 7.1 along with the magnitude of the speed.

mv̇(t) = −kv2(t) + u(t) (7.20)

where u(t) ,


−Fmax if kp(vreq(t) − v(t)) < −Fmax

Fmax if kp(vreq(t) − v(t)) > Fmax
kp(vreq(t) − v(t)) otherwise

m k kp Fmax max(vreq)

Car 1 T 0.27 20 2 kN 80 km/h

Bike 100 kg 0.5 20 30 N 30 km/h

Table 7.1 – List of parameters of the NEDC simulation

We apply the SVDD algorithm to the pairs (v, a) , (v, v̇) with a Gaussian kernel
with a diagonal co-variance matrix σv = 1.8, σa = 0.185. There are between 10 and
30 support vectors in all cases, the learning step computation time ranging from
0.5 sec. to 25 sec. Fig.7.2a and 7.2b show the tightness of our estimate for noiseless
data. As soon as enough points have been treated (Fig.7.2b), the SVDD outputs
approximate well the theoretical boundaries, i.e. the graph of the differential inclusion
(7.1) (which can be derived from (7.20) using a very general vreq). Furthermore the
estimate is robust to 10 % outliers drawn in a uniform fashion (which results in a
relatively strongly corrupted dataset compared to the typical noise present in velocity
measurements and the subsequent filtered derivatives), by setting ν = 10 % in (7.9)
(Fig.7.2d) according to the guidelines recalled in §7.2.4. As shown in Corollary 7.1,
the σ-concentric SVDD balls generate an increasing sequence that rapidly expands
(Fig.7.2e). To test the membership of a trajectory to either class (Fig.7.2c), one can check
the signs of the functions (7.8). When a function takes a positive value, the trajectory
has violated the empirical boundary and thus does not belong to the corresponding
class (Fig.7.2f). Using a representative test trajectory, the car can be easily identified
after approximately 1-2 min of measurement.

7.5 conclusion and perspectives

The example of detection of transportation modes highlights the relevance for
parameter estimation of a set-valued framework involving SVDD, a kernel method.
Our investigation has shown the consistency of the algorithm for Gaussian kernels,
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as it allows to recover any set-valued map with bounded graph. The dependence of
SVDD on its parameters was also discussed. Future work will concern identification of
continuous parameters, such as mass estimation as is considered in weigh-in-motion
applications, a key technology for improving ground transportation safety Jacob and
Feypell-de La Beaumelle, 2010. This problem is more complex that the one treated
here. We believe it may require to incorporate the sequentiality of time series into the
above framework, which would speed up mode detection as well.
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Figure 7.2 – Estimate sets KSVDDσ of theoretical dynamical limits (filled areas) by the SVDD
algorithm on simulation data. (a): noiseless case with a small number of data
(∼500 pts). (b): noiseless case with a large number of data (∼15k pts) (c): a test
trajectory is compared to the SVDD boundaries. (d): case with noise on the
small data and 10% uniformly distributed outliers. The boundaries are mildly
altered. (e): applying σ-concentric SVDD on the noiseless small data with varying
σ (100%,102%,104% of the previous σ).(f): the indicator functions show that the
test trajectory of (c) is a car as the car values are negative while some bike values
are positive.
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RÉSUMÉ

Les contraintes ponctuelles d’état et de forme en théorie du contrôle et en estimation non-paramétrique sont difficiles
à traiter car elles impliquent souvent un problème d’optimisation convexe en dimension infinie avec un nombre infini de
contraintes d’inégalité. La satisfaction de ces contraintes est essentielle dans de nombreuses applications, telles que
la planification de trajectoires ou la régression quantile jointe. Or, les noyaux reproduisants sont un choix propice aux
évaluations ponctuelles. Cependant les théorèmes de représentation qui en sous-tendent les applications numériques
ne peuvent pas être appliqués à un nombre infini d’évaluations. Par des arguments algébriques et géométriques con-
structifs, nous prouvons qu’un nombre infini de contraintes affines à valeur réelle sur les dérivées des fonctions peut
être surcontraint par un nombre fini de contraintes coniques du second ordre si l’on considère des espaces de Hilbert
à noyau reproduisant de fonctions à valeurs vectorielles. Nous montrons que le contrôle optimal linéaire-quadratique
(LQ) sous contraintes d’état est une régression sous contraintes de forme sur l’espace de Hilbert de trajectoires con-
trôlées linéairement. Cet espace est défini par un noyau LQ explicite lié à la matrice de Riccati. L’efficacité de notre
approche est illustrée par divers exemples issus de la théorie du contrôle linéaire et de l’estimation non-paramétrique.
Enfin, nous énonçons des résultats pour des inclusions différentielles générales dans des problèmes de temps minimal
et d’identification du graphe de la correspondance. Surtout nous faisons ressortir un lien nouveau entre méthodes à
noyaux et contrôle optimal en identifiant le noyau hilbertien des espaces de trajectoires contrôlées linéairement.

ABSTRACT

Pointwise state and shape constraints in control theory and nonparametric estimation are difficult to handle as they often
involve convex optimization problem with an infinite number of inequality constraints. Satisfaction of these constraints
is critical in many applications, such as path-planning or joint quantile regression. Reproducing kernels are propitious
for pointwise evaluations. However representer theorems, which ensure the numerical applicability of kernels, cannot be
applied for an infinite number of evaluations. Through constructive algebraic and geometric arguments, we prove that
an infinite number of affine real-valued constraints over derivatives of the model can be tightened into a finite number
of second-order cone constraints when looking for functions in vector-valued reproducing kernel Hilbert spaces. We
show that state-constrained Linear-Quadratic (LQ) optimal control is a shape-constrained regression over the Hilbert
space of linearly-controlled trajectories defined by an explicit LQ kernel related to the Riccati matrix. The efficiency of
the developed approach is illustrated on various examples from both linear control theory and nonparametric estimation.
Finally, we provide some results for general differential inclusions in minimal time problems and identification of the graph
of the set-valued map. Most of all we bring to light a novel connection between reproducing kernels and optimal control
theory, identifying the Hilbertian kernel of linearly controlled trajectories.
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Kernel methods, Optimal control theory, Shape constraints, State constraints, Vehicle dynamics inference.
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