Kernel representation of non-negative functions with applications in non-convex optimization and beyond

Pierre-Cyril Aubin-Frankowski and Alessandro Rudi
DI, Ecole normale supérieure, Université PSL, CNRS, INRIA SIERRA, Paris, France

EURO-ESPOO 2022
6th of July, 2022

Examples of constraints in function optimization - 1

Optimal control

State constraints

- "avoid the wall" $x(t) \in\left[x_{\text {low }}, x_{\text {high }}\right]$
- "abide by the speed limit" $x^{\prime}(t) \in\left[v_{\text {low }}, v_{\text {high }}\right]$
- "do not stress the pilot" $x^{\prime \prime}(t) \in\left[a_{\text {low }}, a_{\text {high }}\right]$

Physical constraints
\hookrightarrow provides feasible trajectories in path-planning

This consists in an infinite number of pointwise constraints!

Examples of constraints in function optimization - 2

Nonparametric estimation

Shape constraints

- nonnegativity

$$
f(x) \geq 0
$$

- directional monotonicity

$$
\partial_{i} f(x) \geq 0
$$

- directional convexity

$$
\partial_{i, i}^{2} f(x) \geq 0
$$

Side information/Requirements

\hookrightarrow compensates small number of samples or excessive noise

Applied in many fields: Biology, Chemistry, Statistics, Economics,... With many techniques: Isotonic regression, density estimation with splines,...

Examples of constraints in function optimization - 3

- Global optimization of smooth (nonconvex) g :

$$
\max _{c \in \mathbb{R}} c \quad\left(=\min _{x \in X} g(x)\right)
$$

- Density estimation with relative entropy:

$$
\min _{\substack{f \in \mathcal{C}(x, \mathbb{R}), \int_{x} f(x) \mathrm{d} x=1 \\ f(x) \geq 0, \forall x \in X}}-\int_{x} \log (f(x)) \mathrm{d} \mu(x) \quad\left(=\mathrm{KL}\left(\mu, \mu_{f}\right)+\mathrm{cst}\right)
$$

- Optimal transport in its dual formulation:

$$
\max _{\substack{u, v \in C(X, \mathbb{R}) \\ u(x)+v(y) \leq c(x, y), \forall x, y \in X \times x}} \int_{X} u(x) \mathrm{d} \mu(x)+\int_{X} v(y) \mathrm{d} \nu(y) \quad\left(=\mathrm{OT}_{c}(\mu, \nu)\right)
$$

Other problems/extensions: Joint Quantile Regression (JQR), handling constrained derivatives, vector or SDP-valued functions, . . . methods presented in this talk used in [Aubin-Frankowski and Sz Marteau-Ferey et al., 2020a, Vacher et al., 2021, Rudi et al., 2020, Muzellec et al., 2021]

Dealing with an infinite number of constraints: an overview

$$
\bar{f} \in \operatorname{argmin}_{f \in \mathcal{H}_{k}} \mathcal{L}(f) \text { s.t. " } 0 \leq f(x), \forall x \in \mathcal{K}^{\prime \prime}, \mathcal{K} \subset \mathbb{R}^{d} \text { non-finite (compact) }
$$

Relaxing

- Discretize constraint at "virtual" samples $\left\{\tilde{x}_{m}\right\}_{m \in[M]} \subset \mathcal{K}$, \hookrightarrow no guarantees out-of-samples [Agrell, 2019, Takeuchi et al., 2006]
- Add constraint-inducing penalty, $R_{\text {cons }}(f)=-\lambda \int_{\mathcal{K}} \min (0, f(x)) \mathrm{d} x$ \hookrightarrow no guarantees, changes the problem objective [Brault et al., 2019]
- Replace inequality by equality to nonnegative function $\Phi(x)^{\top} A \Phi(x)$ then discretize \hookrightarrow generic: bounded amount of violation, extra SDP variable A [Muzellec et al., 2021]

Tightening

- Replace inequality by equality to nonnegative function $\Phi(x)^{\top} A \Phi(x)$ and optimize over A \hookrightarrow non-generic: only specific classes of functions [Marteau-Ferey et al., 2020b];
- Discretize but replace 0 by $\eta_{m}\|f\|$ [Aubin-Frankowski and Szabó, 2020a] \hookrightarrow generic: no violation, second-order cone constraints, but extra tightening

Table of Contents

(1) Introduction to constrained problems
(2) Kernel methods for problem approximation
(3) Deriving bounds on the optimization error

Our battle horse: the Reproducing kernel Hilbert space (RKHS)

A RKHS $\left(\mathcal{H}_{k},\langle\cdot, \cdot\rangle_{\mathcal{H}_{k}}\right)$ is a Hilbert space of real-valued functions over a set \mathcal{X} if one of the following equivalent conditions is satisfied [Aronszajn, 1950]
$\exists k: X \times X \rightarrow \mathbb{R}$ s.t. $k_{x}(\cdot)=k(x, \cdot) \in \mathcal{H}_{k}$ and $f(x)=\left\langle f(\cdot), k_{x}(\cdot)\right\rangle_{\mathcal{H}_{k}}$ for all $x \in \mathcal{X}$ and $f \in \mathcal{H}_{k}$ (reproducing property)

$$
\left|f(x)-f_{n}(x)\right|=\left|\left\langle f-f_{n}, k_{x}\right\rangle_{k}\right| \leq\left\|f-f_{n}\right\|_{k}\left\|k_{x}\right\|_{k}=\left\|f-f_{n}\right\|_{k} \sqrt{k(x, x)}
$$

k is s.t. $\exists \Phi_{k}: \mathcal{X} \rightarrow \mathcal{H}_{k}$ s.t. $k(x, y)=\left\langle\Phi_{k}(x), \Phi_{k}(y)\right\rangle_{\mathcal{H}_{k}}, \Phi_{k}(x)=k_{x}(\cdot)$
k is s.t. $\mathbf{G}=\left[k\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n} \succcurlyeq 0$ and $\mathcal{H}_{k}:=\overline{\operatorname{span}\left(\left\{k_{x}(\cdot)\right\}_{x \in x}\right)}$, i.e. the completion for the pre-scalar product $\left\langle k_{x}(\cdot), k_{y}(\cdot)\right\rangle_{k, 0}=k(x, y)$

Two essential tools for computations

Representer Theorem (e.g. [Schölkopf et al., 2001a])

Let $L: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{\infty\}$, strictly increasing $\Omega: \mathbb{R}_{+} \rightarrow \mathbb{R}$, and

$$
\bar{f} \in \underset{f \in \mathcal{H}_{k}}{\operatorname{argmin}} L\left(\left(f\left(x_{n}\right)\right)_{n \in[N]}\right)+\Omega\left(\|f\|_{k}\right)
$$

Then $\exists\left(a_{n}\right)_{n \in[N]} \in \mathbb{R}^{N}$ s.t. $\bar{f}(\cdot)=\sum_{n \in[N]} a_{n} k\left(\cdot, x_{n}\right)$
\hookrightarrow Optimal solutions lie in a finite dimensional subspace of \mathcal{H}_{k}.
Finite number of evaluations \Longrightarrow finite number of coefficients

Kernel trick

$$
\left\langle\sum_{n \in[N]} a_{n} k\left(\cdot, x_{n}\right), \sum_{m \in[M]} b_{m} k\left(\cdot, y_{m}\right)\right\rangle_{\mathscr{H}_{k}}=\sum_{n \in[N]} \sum_{m \in[M]} a_{n} b_{m} k\left(x_{n}, y_{m}\right)
$$

\hookrightarrow On this finite dimensional subspace, no need to know $\left(\mathcal{H}_{k},\langle\cdot, \cdot\rangle_{\mathcal{H}_{k}}\right)$.

A nice class of nonnegative functions: kernel Sum-of-Squares/PSD models

How to build a nonnegative function given a kernel $\Phi_{k}(x)=k(\cdot, x)$? Square it!

$$
f: x \mapsto\left\langle\Phi_{k}(x), \Phi_{k}(x)\right\rangle_{\mathcal{H}_{k}}=k(x, x) \geq 0
$$

More generally take a positive semidefinite operator $A \in S^{+}\left(\mathcal{H}_{k}\right)$,

$$
\begin{gathered}
f_{A}: x \mapsto\left\langle\Phi_{k}(x), A \Phi_{k}(x)\right\rangle_{\mathcal{H}_{k}} \geq 0 \\
(\text { PSD model }) A=\sum_{i, j=1}^{N} a_{i j} \Phi_{k}\left(x_{i}\right) \otimes \Phi_{k}\left(x_{j}\right) \Longrightarrow f_{A}(x)=\sum_{i, j=1}^{N} a_{i j} k\left(x, x_{i}\right) k\left(x, x_{j}\right) \\
\text { (kernel SoS) }\left[a_{i j}\right]_{i, j}=\sum_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}(\text { SVD }) \Longrightarrow f_{A}(x)=\sum_{i=1}^{N}\left(\sum_{j=1}^{N} u_{i, j} k\left(x, x_{j}\right)\right)^{2}
\end{gathered}
$$

Note that in general $f_{A} \notin \mathcal{H}_{k}$ but $f_{A} \in \mathcal{H}_{k} \odot \mathcal{H}_{k}$ (Hadamard product). If $\operatorname{span}\left(\left\{k_{x}(\cdot)\right\}_{x \in X}\right)$ is dense in continuous functions, so are the $\left\{f_{A}\right\}_{A \in S^{+}\left(\mathcal{H}_{k}\right)}$ in nonnegative functions

What I am looking for: an approximation framework

Example: optimizing over vector fields $\mathbf{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{P}$ constrained over compact set \mathcal{K} to belong to a set $\mathbf{F}(x)$

Optimization over $\mathcal{F} \stackrel{e . g}{=} \mathcal{C}(X, \mathbb{R})$ or $L(\mu)$

$$
\begin{aligned}
& \min _{\mathbf{f}=}^{\left[f_{1} ; \ldots ; f_{P}\right] \in \mathcal{F}^{P} \quad \int I(x, \mathbf{f}(x)) \mathrm{d} \mu(x)} \begin{array}{l}
\text { s.t. } \\
\mathbf{f}(x) \in \mathbf{F}(x), \forall x \in \mathcal{K}
\end{array}
\end{aligned}
$$

What I am looking for: an approximation framework

Example: optimizing over vector fields $\mathbf{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{P}$ constrained over compact set \mathcal{K} to belong to a convex set $\mathbf{F}(x)$

Optimization over $\mathcal{F} \stackrel{e, g}{=} \mathcal{C}(X, \mathbb{R})$ or $L(\mu)$

$$
\min _{\mathbf{f}=\left[f_{1} ; \ldots ; f_{P}\right] \in \mathcal{F}^{P}} \int I(x, \mathbf{f}(x)) \mathrm{d} \mu(x)
$$

s.t.
$\mathbf{c}_{i}(x)^{\top} \mathbf{f}(x)+d_{i}(x) \geq 0, \forall i \in[I], \forall x \in \mathcal{K}$

Infinite number of affine constraints!

What I am looking for: an approximation framework

Example: optimizing over vector fields $\mathbf{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{P}$ constrained over compact set \mathcal{K} to belong to a convex set $\mathbf{F}(x)$

Optimization over $\mathcal{F} \stackrel{\text { e.g }}{=} \mathcal{C}(X, \mathbb{R})$ or $L(\mu)$
$\min _{\mathbf{f}=\left[f_{1} ; \ldots ; f_{P}\right] \in \mathcal{F}^{P}} \int I(x, \mathbf{f}(x)) \mathrm{d} \mu(x)$
s.t.
$\mathbf{c}_{i}(x)^{\top} \mathbf{f}(x)+d_{i}(x) \geq 0, \forall i \in[I], \forall x \in \mathcal{K}$

Empirical approx. through RKHS \mathcal{H}_{k}

$$
\begin{aligned}
& \min _{\mathbf{f} \in \mathcal{H}_{k}^{P}} \sum_{n \in[N]} I\left(x_{n}, \mathbf{f}\left(x_{n}\right)\right)+\lambda\|\mathbf{f}\|_{\mathcal{H}_{k}^{P}}^{2} \\
& \quad \text { s.t. } \\
& \mathbf{c}_{i}\left(x_{m}\right)^{\top} \mathbf{f}\left(x_{m}\right)+d_{i}\left(x_{m}\right) \underset{=}{=} ?, \forall i \in[I], \forall m \in[M]
\end{aligned}
$$

What I am looking for: an approximation framework

Example: optimizing over vector fields $\mathbf{f}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{P}$ constrained over compact set \mathcal{K} to belong to a convex set $\mathbf{F}(x)$

Optimization over $\mathcal{F} \stackrel{\text { e.g }}{=} \mathcal{C}(X, \mathbb{R})$ or $L(\mu)$

$$
\begin{aligned}
& \min _{\mathbf{f}=\left[f_{1} ; \ldots ; f_{P}\right] \in \mathcal{F}^{P}} \int I(x, \mathbf{f}(x)) \mathrm{d} \mu(x) \\
& \text { s.t. } \\
& \mathbf{c}_{i}(x)^{\top} \mathbf{f}(x)+d_{i}(x) \geq 0, \forall i \in[I], \forall x \in \mathcal{K}
\end{aligned}
$$

Empirical approx. through RKHS \mathcal{H}_{k}

$$
\begin{aligned}
& \min _{\mathbf{f} \in \mathcal{H}_{k}^{P}} \sum_{n \in[N]} I\left(x_{n}, \mathbf{f}\left(x_{n}\right)\right)+\lambda\|\mathbf{f}\|_{\mathscr{H}_{k}^{P}}^{2} \\
& \quad \text { s.t. } \\
& \mathbf{c}_{i}\left(x_{m}\right)^{\top} \mathbf{f}\left(x_{m}\right)+d_{i}\left(x_{m}\right) \underset{=}{=} ?, \forall i \in[I], \forall m \in[M]
\end{aligned}
$$

Statement of simpler problem

Given points $\left(x_{n}\right)_{n \in[N]} \in X^{N}$, a loss $L: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{\infty\}$, a regularizer $R: \mathbb{R}_{+} \rightarrow \mathbb{R}$, a RKHS \mathcal{H}_{k} of smooth functions from \mathcal{X} to \mathbb{R} and a compact set $\mathcal{K} \subset \mathcal{X}$.

$$
\begin{aligned}
\bar{f}^{0} \in \underset{f \in \mathcal{H}_{k}}{\arg \min } & \mathcal{L}(f)=L\left(\left(f\left(x_{n}\right)\right)_{n \in[\mathcal{N}]}\right)+R\left(\|f\|_{\mathcal{H}_{k}}\right) \\
& \text { s.t. }
\end{aligned} \quad 0 \leq f(x), \quad \forall x \in \mathcal{K} . \quad .
$$

Idea to overcome non-finiteness: Discretize constraint at "virtual" samples $\left\{\tilde{x}_{m}\right\}_{m \in[M]} \subset \mathcal{K}$, use the fill distance: $h_{M}=\sup _{x \in \mathcal{K}} d\left(x,\left\{\tilde{x}_{m}\right\}_{m \in[M]}\right)$ to bound $\left|L\left(\overline{\mathbf{f}}^{\text {approx }}\right)-L\left(\overline{\mathbf{f}}^{0}\right)\right|$

Statement of simpler problem

Given points $\left(x_{n}\right)_{n \in[N]} \in X^{N}$, a loss $L: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{\infty\}$, a regularizer $R: \mathbb{R}_{+} \rightarrow \mathbb{R}$, a RKHS \mathcal{H}_{k} of smooth functions from \mathcal{X} to \mathbb{R} and a compact set $\mathcal{K} \subset \mathcal{X}$.

$$
\begin{aligned}
& \bar{f}^{0} \in \underset{f \in \mathcal{H}_{k}}{\arg \min } \mathcal{L}(f)=L\left(\left(f\left(x_{n}\right)\right)_{n \in[N]}\right)+R\left(\|f\|_{\mathcal{H}_{k}}\right) \\
& \text { s.t. } 0 \leq f(x), \quad \forall x \in \mathcal{K} \text {. }
\end{aligned}
$$

Idea to overcome non-finiteness: Discretize constraint at "virtual" samples $\left\{\tilde{x}_{m}\right\}_{m \in[M]} \subset \mathcal{K}$, use the fill distance: $h_{M}=\sup _{x \in \mathcal{K}} d\left(x,\left\{\tilde{x}_{m}\right\}_{m \in[M]}\right)$ to bound $\left|L\left(\overline{\mathbf{f}}^{\text {approx }}\right)-L\left(\overline{\mathbf{f}}^{0}\right)\right|$

Second-order cone (SOC) tightening
[Aubin-Frankowski and Szabó, 2020a]

$$
\eta_{M}\|f\| \leq f\left(\tilde{x}_{m}\right)
$$

e.g. for $k(x, y)=\psi(x-y)$
$\eta_{M}:=\sqrt{\psi(0)-\psi\left(h_{M}\right)} \propto h_{M} \ll 1$
Tighten constraint by at most $C\|f\| \cdot h_{M}$

Semi-positive definite (SDP) relaxation [Rudi et al., 2020]

$$
\left\langle\Phi\left(\tilde{x}_{m}\right), A \Phi\left(\tilde{x}_{m}\right)\right\rangle_{k}=f\left(\tilde{x}_{m}\right)
$$

with extra variable $A \in S^{+}\left(\mathcal{H}_{k}\right)$
Relax by at most $C(\|f\|+\operatorname{Tr}(A)) \cdot\left(h_{M}\right)^{s}$ for s-smooth Sobolev spaces

Deriving SOC constraints through continuity moduli

Take $\delta \geq 0$ and x s.t. $\left\|x-\tilde{x}_{m}\right\| \leq \delta$

$$
\begin{aligned}
\left|f(x)-f\left(\tilde{x}_{m}\right)\right| & =\left|\left\langle f(\cdot), k(x, \cdot)-k\left(\tilde{x}_{m}, \cdot\right)\right\rangle_{k}\right| \\
& \leq\|f(\cdot)\|_{k} \underbrace{\sup _{\left\{x \mid\left\|x-\tilde{x}_{m}\right\| \leq \delta\right\}}\left\|k(x, \cdot)-k\left(\tilde{x}_{m}, \cdot\right)\right\|_{k}}_{\eta_{m}(\delta)} \\
\omega_{m}(f, \delta) & :=\sup _{\left\{x \mid\left\|x-\tilde{x}_{m}\right\| \leq \delta\right\}}\left|f(x)-f\left(\tilde{x}_{m}\right)\right| \leq \eta_{m}(\delta)\|f(\cdot)\|_{k}
\end{aligned}
$$

For a covering $\mathcal{K}=\bigcup_{m \in[M]} \mathbb{B}_{X}\left(\tilde{x}_{m}, \delta_{m}\right)$

$$
" 0 \leq f(x), \forall x \in \mathcal{K}^{\prime \prime} \Leftarrow " \omega_{m}(f, \delta) \leq f\left(\tilde{x}_{m}\right), \forall m \in[M] "
$$

Deriving SOC constraints through continuity moduli

Take $\delta \geq 0$ and x s.t. $\left\|x-\tilde{x}_{m}\right\| \leq \delta$

$$
\begin{aligned}
\left|f(x)-f\left(\tilde{x}_{m}\right)\right| & =\left|\left\langle f(\cdot), k(x, \cdot)-k\left(\tilde{x}_{m}, \cdot\right)\right\rangle_{k}\right| \\
& \leq\|f(\cdot)\|_{k} \underbrace{\eta_{m}(\delta)}_{\sup _{\left\{x \mid\left\|x-\tilde{x}_{m}\right\| \leq \delta\right\}}\left\|k(x, \cdot)-k\left(\tilde{x}_{m}, \cdot\right)\right\|_{k}} \\
\omega_{m}(f, \delta) & :=\sup _{\left\{x \mid\left\|x-\tilde{x}_{m}\right\| \leq \delta\right\}}\left|f(x)-f\left(\tilde{x}_{m}\right)\right| \leq \eta_{m}(\delta)\|f(\cdot)\|_{k}
\end{aligned}
$$

For a covering $\mathcal{K} \subset \bigcup_{m \in[M]} \mathbb{B}_{X}\left(\tilde{x}_{m}, \delta_{m}\right)$

$$
\begin{aligned}
" 0 \leq f(x), \forall x \in \mathcal{K}^{\prime \prime} & \Leftarrow " \omega_{m}(f, \delta) \leq f\left(\tilde{x}_{m}\right), \forall m \in[M] " \\
& \Leftarrow " \eta_{m}(\delta)\|f(\cdot)\| \leq f\left(\tilde{x}_{m}\right), \forall m \in[M]
\end{aligned}
$$

Since the kernel is smooth, $\delta \rightarrow 0$ gives $\eta_{m}(\delta) \rightarrow 0$.
There is also a geometrical interpretation for this choice of η_{m}.

Support Vector Machine (SVM) is about separating red and green points by blue hyperplane.

Using the nonlinear embedding $\Phi: x \mapsto D_{x} k(x, \cdot)$, the idea is the same. With only the green points, it is a one-class SVM [Schölkopf et al., 2001b]

The green points are now samples of a compact set \mathcal{K}.

The image $\Phi(\mathcal{K})$ is not convex...

The image $\Phi(\mathcal{K})$ is not convex, can we cover it by balls of radius η ?

First cover $\mathcal{K} \subset \bigcup\left\{\tilde{x}_{m}+\delta \mathbb{B}\right\}$, and then look at the images $\Phi\left(\left\{\tilde{x}_{m}+\delta \mathbb{B}\right\}\right)$

Cover the $\Phi\left(\left\{\tilde{x}_{m}+\delta \mathbb{B}\right\}\right)$ with tiny balls! This is how SOC was defined.

For SDP relaxation (a.k.a. kernel Sum-Of-Squares), it is rather like inflating an ellipsis...

For SDP relaxation (a.k.a. kernel Sum-Of-Squares), it is rather like inflating an ellipsis until it reaches all the points to interpolate

Second-order-cone (SOC) tightening Ball covering in the RKHS

Protecting the points from all sides, thus
"slower" convergence

Semi-positive definite (SDP) relaxation Kernel Sum-Of-Squares (kSOS)

Leverages smooth interpolation and relaxing, thus "faster" convergence

In both cases, SOC or SDP constraints instead of affine \Longrightarrow extra computational price

Nested constraint sets

Fill distance: $\quad h_{M}=\sup _{x \in \mathcal{K}} d\left(x,\left\{\tilde{x}_{m}\right\}_{m \in[M]}\right)$

$$
\begin{aligned}
\mathcal{V}_{-\epsilon} & :=\left\{f \in \mathcal{H}_{k} \mid f(x) \geq-\epsilon, \forall x \in \mathcal{K}\right\} \\
\mathcal{V}_{S D P} & :=\left\{f \in \mathcal{H}_{k} \mid \exists A \in S^{+}\left(\mathcal{H}_{k}\right), f\left(\tilde{x}_{m}\right)=\left\langle\Phi\left(\tilde{x}_{m}\right), A \Phi\left(\tilde{x}_{m}\right)\right\rangle_{k}, \forall m \in[M]\right\}, \\
\mathcal{V}_{0} & :=\left\{f \in \mathcal{H}_{k} \mid f(x) \geq 0, \forall x \in \mathcal{K}\right\}, \\
\mathcal{V}_{\text {SOC }} & :=\left\{f \in \mathcal{H}_{k} \mid f\left(\tilde{x}_{m}\right) \geq \eta_{M}\|f\|_{K}, \forall m \in[M]\right\}, \\
\mathcal{V}_{\epsilon} & :=\left\{f \in \mathcal{H}_{k} \mid f(x) \geq \epsilon, \forall x \in \mathcal{K}\right\} .
\end{aligned}
$$

Nested constraint sets

Fill distance: $\quad h_{M}=\sup _{x \in \mathcal{K}} d\left(x,\left\{\tilde{x}_{m}\right\}_{m \in[M]}\right)$

$$
\begin{aligned}
\mathcal{V}_{-\epsilon} & :=\left\{f \in \mathcal{H}_{k} \mid f(x) \geq-\epsilon, \forall x \in \mathcal{K}\right\} \\
\mathcal{V}_{S D P} & :=\left\{f \in \mathcal{H}_{k} \mid \exists A \in S^{+}\left(\mathcal{H}_{k}\right), f\left(\tilde{x}_{m}\right)=\left\langle\Phi\left(\tilde{x}_{m}\right), A \Phi\left(\tilde{x}_{m}\right)\right\rangle_{k}, \forall m \in[M]\right\}, \\
\mathcal{V}_{0} & :=\left\{f \in \mathcal{H}_{k} \mid f(x) \geq 0, \forall x \in \mathcal{K}\right\}, \\
\mathcal{V}_{S O C} & :=\left\{f \in \mathcal{H}_{k} \mid f\left(\tilde{x}_{m}\right) \geq \eta_{M}\|f\|_{K}, \forall m \in[M]\right\}, \\
\mathcal{V}_{\epsilon} & :=\left\{f \in \mathcal{H}_{k} \mid f(x) \geq \epsilon, \forall x \in \mathcal{K}\right\} .
\end{aligned}
$$

Proposition (Informal nestedness)

Under some assumptions on the kernel (e.g. Sobolev), there exists explicit constants CsOC and $C_{S D P}$, such that for $h_{M}=\sup _{x \in \mathcal{K}} d\left(x,\left\{\tilde{x}_{m}\right\}_{m \in[M]}\right)$ and any $R \geq 0$

$$
\begin{aligned}
\epsilon \geq C_{S O C} \cdot R \cdot h_{M} & \Longrightarrow\left(\mathcal{V}_{\epsilon} \cap R \mathbb{B}_{k}\right) \subset \mathcal{V}_{S O C} \subset \mathcal{V}_{0} \\
\epsilon \geq C_{S D P} \cdot R \cdot\left(h_{M}\right)^{s} & \Longrightarrow\left(R \mathbb{B}_{k} \cap \mathcal{V}_{0}\right) \subset\left(R \mathbb{B}_{k} \cap \mathcal{V}_{S D P}\right) \subset \mathcal{V}_{-\epsilon}
\end{aligned}
$$

If \mathcal{L} is β-Lipschitz, then $\left|\mathcal{L}\left(\bar{f}^{0}\right)-\mathcal{L}\left(\bar{f}{ }^{S O C}\right)\right| \leq \beta C_{S O C} \cdot R \cdot h_{M}$. If \bar{f}^{0} has a quadratic expression, then $\left|\mathcal{L}\left(\bar{f}^{0}\right)-\mathcal{L}\left(\bar{f}^{S D P}\right)\right| \leq \beta C_{S D P} \cdot R \cdot\left(h_{M}\right)^{s}$

Nested constraint sets - decreasing optima sequence

$$
\begin{aligned}
\mathcal{V}_{-\epsilon} & :=\left\{f \in \mathcal{H}_{k} \mid f(x) \geq-\epsilon, \forall x \in \mathcal{K}\right\} \\
\mathcal{V}_{S D P} & :=\left\{f \in \mathcal{H}_{k} \mid \exists A \in S^{+}\left(\mathcal{H}_{k}\right),\right. \\
& \left.f\left(\tilde{x}_{m}\right)=\left\langle\Phi\left(\tilde{x}_{m}\right), A \Phi\left(\tilde{x}_{m}\right)\right\rangle_{k}, \forall m \in[M]\right\}, \\
\mathcal{V}_{0} & :=\left\{f \in \mathcal{H}_{k} \mid f(x) \geq 0, \forall x \in \mathcal{K}\right\}, \\
\mathcal{V}_{S O C} & :=\left\{f \in \mathcal{H}_{k} \mid f\left(\tilde{x}_{m}\right) \geq \eta_{M}\|f\|_{K}, \forall m \in[M]\right\}, \\
\mathcal{V}_{\epsilon} & :=\left\{f \in \mathcal{H}_{k} \mid f(x) \geq \epsilon, \forall x \in \mathcal{K}\right\} .
\end{aligned}
$$

For $R \geq\left\|\bar{f}^{0}\right\|_{k}$, we have

$$
\mathcal{L}\left(\bar{f}^{-\epsilon}\right) \leq \mathcal{L}\left(\bar{f}_{R}^{S D P}\right) \leq \mathcal{L}\left(\bar{f}^{0}\right) \leq \mathcal{L}\left(\bar{f}^{S O C}\right) \leq \mathcal{L}\left(\bar{f}^{\epsilon}\right)
$$

Nested constraint sets - decreasing optima sequence

$$
\mathcal{L}\left(\bar{f}^{-\epsilon}\right) \leq \mathcal{L}\left(\bar{f}_{R}^{S D P}\right) \leq \mathcal{L}\left(\bar{f}^{0}\right) \leq \mathcal{L}\left(\bar{f}^{S O C}\right) \leq \mathcal{L}\left(\bar{f}^{\epsilon}\right)
$$

Idea: find a $g_{\epsilon} \in \mathcal{H}_{k}$ such that $\left\|g_{\epsilon}\right\|_{k} \leq \omega(\epsilon)$ where $\omega: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \nearrow$, and such that $\bar{f}^{-\epsilon}+g_{\epsilon} \in \mathcal{V}_{0}$, thus under some β-Lipschitz assumption on \mathcal{L},

$$
\begin{aligned}
& \mathcal{L}\left(\bar{f}^{-\epsilon}\right) \leq \mathcal{L}\left(\bar{f}_{R}^{S D P}\right) \\
& \leq \mathcal{L}\left(\bar{f}^{0}\right) \\
& \leq \mathcal{L}\left(\bar{f}^{-\epsilon}+g_{\epsilon}\right) \\
& \leq \mathcal{L}\left(\bar{f}^{-\epsilon}\right)+\beta \omega(\epsilon) \\
& \text { SOC: } \epsilon \geq C_{S O C} \cdot R \cdot h_{M} \\
& \text { SDP } / \mathrm{kSoS}: \epsilon \approx C_{S D P} \cdot R \cdot\left(h_{M}\right)^{s}
\end{aligned}
$$

SOC: $\epsilon \geq C_{S O C} \cdot R \cdot h_{M}$

Example 1: solving LQ control with state constraints through KRR

Original control problem

$$
\begin{aligned}
& \min _{z(\cdot) \in W^{2,2}, u(\cdot) \in L^{2}} \quad \int_{0}^{1}|u(t)|^{2} \mathrm{~d} t \\
& \text { s.t. } \\
& z(0)=0, \quad \dot{z}(0)=0, \\
& \ddot{z}(t)=-\dot{z}(t)+u(t), \forall t \in[0,1] \\
& z(t) \in\left[z_{\text {low }}(t), z_{\text {up }}(t)\right], \forall t \in[0,1] .
\end{aligned}
$$

Example 2: Estimation of monotone/convex production functions

Only 25 points selected out of 543 , checking generalization properties for various constraints (used as side information)

(a) NoCons

(b) SOC Monot.

Example 2: Estimation of monotone/convex production functions

Only 25 points selected out of 543 , checking generalization properties for various constraints (used as side information)

Example 2: Estimation of monotone/convex production functions

Only 25 points selected out of 543 , checking generalization properties for various constraints (used as side information)

Figure: MSE as a function of incorporating shape constraints with the proposed SOC technique. NoCons: no constraint. SOC Monot.: two monotonicity constraints. SOC Conv.: one convexity constraint. SOC Conv.+Monot.: one convexity and two monotonicity constraints.
"Finite coverings in RKHSs can be used to turn an infinite number of pointwise affine constraints over a compact set into finitely many SOC inequality/SDP equality constraints."
"Bounding the constraint perturbation made by discretizing allows to easily assess rates of convergence."

To go beyond

- Handle state constraint in LQ control through the LQ kernel
\hookrightarrow PCAF, Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel methods, SIAM Journal on Control and Optimization, 2021
- Tackle SDP and derivative constraints with SOC constraints
\hookrightarrow PCAF and Zoltán Szabó, Handling Hard Affine Shape Constraints in RKHSs, under review, 2021
- Use kernels for learning vector fields and nonlinear systems
\hookrightarrow Coming in soon!
More to be found on https://pcaubin.github.io/

To go beyond

- Handle state constraint in LQ control through the LQ kernel
\hookrightarrow PCAF, Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel methods, SIAM Journal on Control and Optimization, 2021
- Tackle SDP and derivative constraints with SOC constraints
\hookrightarrow PCAF and Zoltán Szabó, Handling Hard Affine Shape Constraints in RKHSs, under review, 2021
- Use kernels for learning vector fields and nonlinear systems
\hookrightarrow Coming in soon!
More to be found on https://pcaubin.github.io/

Example 3: Joint Quantile Regression (JQR)

$f_{\tau}(x)$ conditional quantile over (X, Y) : $\left.P\left(Y \leq f_{\tau}(x) \mid X=x\right)=\tau \in\right] 0,1[$.

Estimation through convex optimization over "pinball loss" $I_{\tau}(\cdot)$ (i.e. tilted absolute value [Koenker, 2005]).

Known fact: quantile functions can cross when estimated independently.

Joint quantile regression with non-crossing constraints

$$
\min _{\left(f_{q}\right)_{q \in\left[Q \in \in \mathcal{H}_{k}^{Q}\right.}} \mathcal{L}\left(f_{1}, \ldots, f_{Q}\right)=\frac{1}{N} \sum_{q \in[Q]} \sum_{n \in[N]} I_{\tau_{q}}\left(y_{n}-f_{q}\left(\mathbf{x}_{n}\right)\right)+\lambda_{f} \sum_{q \in[Q]}\left\|f_{q}\right\|_{k}^{2}
$$

Pairing non-crossing quantiles with other shape constraints

Engel's law (1857): "As income rises, the proportion of income spent on food falls, but absolute expenditure on food rises."

Pairing non-crossing quantiles with other shape constraints

Engel's law (1857): "As income rises, the proportion of income spent on food falls, but absolute expenditure on food rises."

Pairing non-crossing quantiles with other shape constraints

Engel's law (1857): "As income rises, the proportion of income spent on food falls, but absolute expenditure on food rises."

Pairing non-crossing quantiles with other shape constraints

Engel's law (1857): "As income rises, the proportion of income spent on food falls, but absolute expenditure on food rises."

Time-varying state-constrained LQ optimal control

$$
\begin{array}{ll}
\min _{\mathbf{x}(\cdot), \mathbf{u}(\cdot)} & \chi_{\mathbf{x}_{0}}\left(\mathbf{x}\left(t_{0}\right)\right)+g(\mathbf{x}(T)) \\
+\mathbf{x}\left(t_{r e f}\right)^{\top} \mathbf{J}_{r e f} \mathbf{x}\left(t_{r e f}\right)+\int_{t_{0}}^{T}\left[\mathbf{x}(t)^{\top} \mathbf{Q}(t) \mathbf{x}(t)+\mathbf{u}(t)^{\top} \mathbf{R}(t) \mathbf{u}(t)\right] \mathrm{d} t \\
\text { s.t. } & \mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t), \text { a.e. in }\left[t_{0}, T\right], \\
& \mathbf{c}_{i}(t)^{\top} \mathbf{x}(t) \leq d_{i}(t), \forall t \in \mathcal{T}_{c}, \forall i \in[\mathcal{I}]=\llbracket 1, \mathcal{I} \rrbracket,
\end{array}
$$

- state $\mathbf{x}(t) \in \mathbb{R}^{Q}$, control $\mathbf{u}(t) \in \mathbb{R}^{P}$,
- reference time $t_{r e f} \in\left[t_{0}, T\right]$, set of constraint times $\mathcal{T}_{c} \subset\left[t_{0}, T\right]$,
- $\mathbf{x}(\cdot):\left[t_{0}, T\right] \rightarrow \mathbb{R}^{Q}$ absolutely continuous, $\mathbf{R}(\cdot)^{1 / 2} \mathbf{u}(\cdot) \in L^{2}\left(\left[t_{0}, T\right]\right)$

Time-varying state-constrained $L Q$ optimal control

$$
\begin{array}{cll}
\min _{\mathbf{x}(\cdot), \mathbf{u}(\cdot)} & \chi_{\mathbf{x}_{0}}\left(\mathbf{x}\left(t_{0}\right)\right)+g(\mathbf{x}(T)) & \rightarrow L\left(\mathbf{x}\left(t_{j}\right)_{j \in[J]}\right) \\
+\mathbf{x}\left(t_{r e f}\right)^{\top} \mathbf{J}_{r e f} \mathbf{x}\left(t_{r e f}\right)+\int_{t_{0}}^{T}\left[\mathbf{x}(t)^{\top} \mathbf{Q}(t) \mathbf{x}(t)+\mathbf{u}(t)^{\top} \mathbf{R}(t) \mathbf{u}(t)\right] \mathrm{d} t & \rightarrow\|\mathbf{x}(\cdot)\|_{\mathcal{S}}^{2} \\
\text { s.t. } & \mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t), \text { a.e. in }\left[t_{0}, T\right] \\
& \mathbf{c}_{i}(t)^{\top} \mathbf{x}(t) \leq d_{i}(t), \forall t \in \mathcal{T}_{c}, \forall i \in[\mathcal{I}]=\llbracket 1, \mathcal{I} \rrbracket
\end{array}
$$

- state $\mathbf{x}(t) \in \mathbb{R}^{Q}$, control $\mathbf{u}(t) \in \mathbb{R}^{P}$,
- reference time $t_{r e f} \in\left[t_{0}, T\right]$, set of constraint times $\mathcal{T}_{c} \subset\left[t_{0}, T\right]$,
- $\mathbf{x}(\cdot):\left[t_{0}, T\right] \rightarrow \mathbb{R}^{Q}$ absolutely continuous, $\mathbf{R}(\cdot)^{1 / 2} \mathbf{u}(\cdot) \in L^{2}\left(\left[t_{0}, T\right]\right)$

$$
\mathcal{S}:=\left\{\mathbf{x}:\left[t_{0}, T\right] \rightarrow \mathbb{R}^{Q} \mid \exists \mathbf{R}(\cdot)^{1 / 2} \mathbf{u}(\cdot) \in L^{2}\left(t_{0}, T\right) \text { s.t. } \mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \text { a.e. }\right\}
$$

Given $\mathbf{x}(\cdot) \in \mathcal{S}$, for the pseudoinverse $\mathbf{B}(t)^{\ominus}$ for $\|\cdot\|_{\mathbf{R}}$, set $\mathbf{u}(t) \stackrel{\text { a.e. }}{=} \mathbf{B}(t)^{\ominus}\left[\mathbf{x}^{\prime}(t)-\mathbf{A}(t) \mathbf{x}(t)\right]$. $\left(\mathcal{S},\langle\cdot, \cdot\rangle_{\mathcal{S}}\right)$ is a (vector-valued) RKHS with an explicit kernel [Aubin-Frankowski, 2021]!

Optimal control: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

$$
\begin{gathered}
\underbrace{x(0)=0.5, \quad \dot{x}(0)=0, \quad w(0)=0, \quad x(T / 3)=0.5, \quad x(T)=0}_{\min _{x(\cdot), w(\cdot), u(\cdot)}-\dot{x}(T)+\lambda\|u(\cdot)\|_{L^{2}(0, T)}^{2} \quad \lambda \ll 1} \\
\underbrace{}_{\substack{\ddot{x}(t)=-10 x(t)+w(t), \quad \dot{w}(t)=u(t), \text { a.e. in }[0, T] \\
\dot{x}(t) \in[-3,+\infty[, \quad w(t) \in[-10,10], \forall t \in[0, T]}}
\end{gathered}
$$

Optimal control: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

$$
\begin{gathered}
\min _{\substack{x(\cdot), w(\cdot), u(\cdot)}}-\dot{x}(T)+\lambda\|u(\cdot)\|_{L^{2}(0, T)}^{2} \quad \lambda \ll 1 \\
x(0)=0.5, \quad \dot{x}(0)=0, \quad w(0)=0, \quad x(T / 3)=0.5, \quad x(T)=0 \\
\dot{\ddot{x}(t)=-10 x(t)+w(t), \quad \dot{w}(t)=u(t), \text { a.e. in }[0, T]} \\
\dot{x}(t) \in[-3,+\infty[, \quad w(t) \in[-10,10], \forall t \in[0, T]
\end{gathered}
$$

Converting affine state constraints to SOC constraints, applying rep. thm

$$
\begin{aligned}
\eta_{\dot{x}}\|\mathbf{x}(\cdot)\|_{K}-\dot{x}\left(t_{m}\right) & \leq 3 \\
\eta_{w}\|\mathbf{x}(\cdot)\|_{K}+w\left(t_{m}\right) & \leq 10 \\
\eta_{w}\|\mathbf{x}(\cdot)\|_{K}-w\left(t_{m}\right) & \leq 10
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathbf{x}}(\cdot)=K(\cdot, 0) \mathbf{p}_{0}+K(\cdot, T / 3) \mathbf{p}_{T / 3} \\
& \quad+K(\cdot, T) \mathbf{p}_{T}+\sum_{m=1}^{M} K\left(\cdot, t_{m}\right) \mathbf{p}_{m}
\end{aligned}
$$

Most of computational cost is related to the "controllability Gramians" $K_{1}(s, t)=\int_{0}^{\min (s, t)} \mathbf{e}^{(s-\tau) \mathbf{A}} \mathbf{B} \mathbf{B}^{\top} \mathbf{e}^{(t-\tau) \mathbf{A}^{\top}} \mathrm{d} \tau$ which we have to approximate.

Optimal control: constrained pendulum - illustration

Optimal solutions of the constrained pendulum "path-planning" problem. Red circles: equality constraints. Grayed areas: constraints over [0, T]., Angle $x(\cdot) \quad$ Velocity $\dot{x}(\cdot) \quad$ Couple $w(\cdot)$

Optimal control: constrained pendulum - illustration

Optimal solutions of the constrained pendulum "path-planning" problem. Red circles: equality constraints. Grayed areas: constraints over [0, T]. Angle $x(\cdot) \quad$ Velocity $\dot{x}(\cdot) \quad$ Couple $w(\cdot)$

Optimal control: constrained pendulum - illustration

Optimal solutions of the constrained pendulum "path-planning" problem. Red circles: equality constraints. Grayed areas: constraints over [0, T], Angle $x(\cdot) \quad$ Velocity $\dot{x}(\cdot) \quad$ Couple $w(\cdot)$

Optimal control: constrained pendulum - illustration

Optimal solutions of the constrained pendulum "path-planning" problem.
Red circles: equality constraints. Grayed areas: constraints over [0, T].,
Angle $x(\cdot) \quad$ Velocity $\dot{x}(\cdot) \quad$ Couple $w(\cdot)$

References I

國 Agrell，C．（2019）．
Gaussian processes with linear operator inequality constraints．
Journal of Machine Learning Research，20：1－36．

Aronszajn，N．（1950）．
Theory of reproducing kernels．
Transactions of the American Mathematical Society，68：337－404．
Aubin－Frankowski，P．－C．（2021）．
Linearly constrained linear quadratic regulator from the viewpoint of kernel methods．
SIAM Journal on Control and Optimization，59（4）：2693－2716．

圊
Aubin－Frankowski，P．－C．and Szabó，Z．（2020a）．
Handling hard affine SDP shape constraints in RKHSs．
Technical report．
（https：／／arxiv．org／abs／2101．01519）．

References II

R Aubin-Frankowski, P.-C. and Szabó, Z. (2020b).
Hard shape-constrained kernel machines.
In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages 384-395. (http://arxiv.org/abs/2005.12636).

Brault, R., Lambert, A., Szabó, Z., Sangnier, M., and d'Alché Buc, F. (2019). Infinite-task learning with RKHSs.
In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 1294-1302.
Koenker, R. (2005).
Quantile Regression.
Cambridge University Press.

Marteau-Ferey, U., Bach, F., and Rudi, A. (2020a).
Non-parametric models for non-negative functions.
In Advances in Neural Information Processing Systems, volume 33, pages 12816-12826. Curran Associates, Inc.

References III

Marteau－Ferey，U．，Bach，F．，and Rudi，A．（2020b）．Non－parametric models for non－negative functions．
In Advances in Neural Information Processing Systems（NeurIPS），pages 12816－12826．
Muzellec，B．，Bach，F．，and Rudi，A．（2021）．
Learning psd－valued functions using kernel sums－of－squares．
Rudi，A．，Marteau－Ferey，U．，and Bach，F．（2020）．
Finding global minima via kernel approximations．
國 Schölkopf，B．，Herbrich，R．，and Smola，A．J．（2001a）．
A generalized representer theorem．
In Computational Learning Theory（CoLT），pages 416－426．

Schölkopf，B．，Platt，J．C．，Shawe－Taylor，J．，Smola，A．J．，and Williamson，R．C．（2001b）．
Estimating the support of a high－dimensional distribution．
Neural Computation，13（7）：1443－1471．

References IV

Takeuchi, I., Le, Q., Sears, T., and Smola, A. (2006).
Nonparametric quantile estimation.
Journal of Machine Learning Research, 7:1231-1264.
國 Vacher, A., Muzellec, B., Rudi, A., Bach, F. R., and Vialard, F. (2021).
A dimension-free computational upper-bound for smooth optimal transport estimation.
In Conference on Learning Theory, COLT 2021, volume 134 of Proceedings of Machine Learning Research, pages 4143-4173. PMLR.

