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Motivation for max-plus functional analysis: non-vector optimization

Max-plus analysis can be summarized as the field studying what happens when the operations
(+,×) are replaced by (max,+).

This is important for convex analysis since convex functions are stable by (max,+) and not
stable by taking the negative i.e. NO VECTOR SPACES HERE!

The prototypical problem is

min
f ∈F

L((f (xm))m∈I) e.g.
∑

|f (xm) − ym)|2

Can we still do some analysis when F is not a vector space, but the set of convex functions?
(as in PEP at SIERRA: Adrien Taylor, Céline Moucer,...)

If F was a RKHS Hk , then we would have representer theorems. Can we do the same if the set
Fb depends on a kernel b?
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Further motivation for max-plus: limit of quantum mechanics
Max-plus analysis is related to the passage from quantum to classical mechanics. Taken from
[Litvinov, 2005]:

More precisely, set u ⊕λ v := λ ln(e u
λ + e v

λ ) −−−→
λ→0

max(u, v).

As in Laplace approximation of log-concave, h(λ, x∗) ln
∫

e
u(x)

λ f (x)dx −−−→
λ→0

u(x∗) + ln f (x∗)
where u(x∗) = min u(x)
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Further motivation for max-plus functional analysis

Given a Lagrangian function L : R × Rd × Rd → R ∪ {+∞}, the action J ((t0, r0), (t1, r1), r(·))
along an absolutely continuous trajectory r(·) : [t0, t1] → Rd going from (t0, r0) to (t1, r1) is
defined as follows:

J ((t0, r0), (t1, r1), r(·)) :=
∫ t1

t0
L(s, r(s), ṙ(s))ds with r(t0) = r0, r(t1) = r1.

Given a set of absolutely continuous trajectories Straj ⊂ C0(R,Rd) and a terminal cost, define
the value function

V̄ (t0, r0) = inf
rT ∈Rd

inf
r(·)∈Straj

r(t0)=r0, r(T )=rT

∫ T

t0
L(s, r(s), ṙ(s))ds + ψT (rT ).

The term in red depending on (t0, r0), (T , rT ) is the fundamental solution of the HJB equation
[Dower and McEneaney, 2015]. Why? Because it is the analogue of a Green kernel.
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Reminder of linear PDEs

To solve Poisson’s equation ∆u = f on a domain Ω, one just has to find the Green kernel
k(·, x) s.t.

∆1k(·, x) = δx

then the solution is obtained through a kernel integral operator u = Kf , i.e.

u(y) =
∫

x
k(y , x)f (x)dx .

Indeed
∫

(∆1k(y , x))f (x)dx = f (y) (skipping boundary questions), so ∆u = f . On the other
hand we have

V̄ (t0, r0) = inf
t1,r1

b ((t0, r0), (t1, r1)) + ψt1(r1) + δT (t1).

This is a fundamental solution of a nonlinear PDE. Can we find properties of tropical kernels
that are analogue to Hilbertian kernels?
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Your entry point: Fenchel’s transform

Consider the inner product (x , y)2 over Rd . Given a function f : Rd → R ∪ {∞}, define its
Fenchel transform

f ∗(x) = sup
y∈Rd

(x , y)2 − f (y)

Then we know from Fenchel’s theorem that

f ∗∗ = (f ∗)∗ = f ⇔ f ∈ CVEX(Rd) := { sup
y∈Rd

(·, y)2 + ay | ay ∈ R ∪ {−∞}}

the space of lower-semicontinuous convex functions (Fenchel’s theorem).
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Your entry point: Fenchel’s transform

Consider a kernel b(x , y) over X×X. Given a function f : X → R∪ {∞}, define its B-transform

B̄f (x) = sup
y∈Rd

b(x , y) − f (y)

We will see later that

B̄B̄f = f ⇔ f ∈ Rg(B) := { sup
y∈Rd

b(·, y) + ay | ay ∈ R ∪ {−∞}}

Three examples of kernels (where d is some distance)

bc(x , y) = (x , y)2, bsc(x , y) = −∥x − y∥2
2, bL(x , y) = −d(x , y). (1)

Note: CVEX plays the role of L2 in max-plus analysis.
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What we are going to see in this talk

the characterization of tropical reproducing kernels is similar to the Hilbertian case

it is possible to do optimization over tropical function spaces

it is useful for value functions in control theory
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Technical problems of max-plus analysis: infinities and signs

WANTED! PUBLIC ENEMIES #1:
∞ and −∞.

Following J.-J. Moreau conventions, we have to introduce new operations: .+, .−,∔, .−. Very
simply:

(∞) .+ (−∞) = −∞, (∞) .− (∞) = ∞.

Then we have to decide which analogue of (+,×) we take:
linear, (sup,+) or (inf,+):

∫
k(x , y)f (y)dy → infy b(x , y) ∔ f (y)

sesquilinear, (sup,−) or (inf,−):
∫

k(x , y)f (y)dy → supy b(x , y) .− f (y)
In all the proofs, we will have to be super careful with the infinite values! Same problem as in
optimal transport theory (cf Villani, 2006, Chapters 5 and 10).
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Reminders on reproducing kernels
A RKHS (HK , ⟨·, ·⟩HK ) is a Hilbert space of real-valued functions over a set X if

∃ k : X×X → R s.t. kx (·) = k(·, x) ∈ HK and f (x) = ⟨f (·), kx (·)⟩HK for all x ∈ X and f ∈ HK
(reproducing property)

or equivalently (Riesz’s theorem for Hilbert spaces) if

the topology of (HK , ⟨·, ·⟩HK ) is stronger than pointwise convergence
i.e. δx : f ∈ HK 7→ F is continuous for all x ∈ X.

A kernel is feature-map factorizable if there exists a Hilbert space H s.t.

k is s.t. ∃ Φ : X → H s.t. k(t, s) = ⟨Φ(t),Φk(s)⟩H

A kernel is positive semi-definite if

k is s.t. G = [k (xi , xj)]ni ,j=1 ≽ 0.
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Aronszajn’s theorem

Theorem

Given a kernel k : X × X → R, the three following properties are equivalent:
i) k is a positive semidefinite kernel, i.e. a kernel being both:

- symmetric: ∀ x , y ∈ X , k(x , y) = k(y , x), and
- positive: ∀ M ∈ N∗, ∀ (am, xm) ∈ (R × X )M ,

∑M
n,m=1 anamk(xn, xm) ≥ 0;

ii) there exists a Hilbert space (H, (·, ·)H) and a feature map Φ : X → H such that
- ∀ x , y ∈ X , k(x , y) = (Φ(x),Φ(y))H;

iii) k is the reproducing kernel of the Hilbert space (RKHS) of functions Hk := Hk,0, the
completion for the pre-scalar product (k(·, x), k(·, y))k,0 = k(x , y) of the space
Hk,0 := span({k(·, x)}x∈X), in the sense that
- ∀ x ∈ X , k(·, x) ∈ Hk and ∀ f ∈ H, f (x) = (f , k(·, x))H.
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Main (informal) theorem: Aronszajn’s analogue

Theorem (Tropical analogue of Aronszajn theorem)

Given a kernel b : X × X → R ∪ {−∞}, the three following properties are equivalent

i) b is a tropically positive semidefinite kernel;

ii) there exists a factorization of b by a feature map ψ : X → RZ
max for some set Z;

iii) b is the sesquilinear reproducing kernel of a max-plus space of functions Rg(B), the
max-plus completion of {supn∈{1,...,N} an + b(·, xn) | N ∈ N∗, an ∈ R⊥, xn ∈ X}, and b
defines a tropical Cauchy-Schwarz inequality over RX.
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Defining properly the tropical concepts: (sesqui)linear continuous operator
The extended real line is denoted by R = [−∞,+∞], R⊤ = (−∞,+∞] and R⊥ = [−∞,+∞)
In all that follows, given a set X, a kernel b is a function from X × X to R. Given a kernel b,
we also consider the max-plus linear B and sesquilinear B̄ operators, defined over RX as

Bf (x) = sup
y∈X

b(x , y) .+ f (y), B̄f (x) = sup
y∈X

b(x , y) .− f (y), ∀ x ∈ X, f ∈ RX
. (2)

Definition

A map B : RX → RX is said to be
i) Rmax-linear if B(sup{fi}i∈I) = sup{Bfi}i∈I and B(f ∔ λ) = Bf ∔ λ (with +∞ absorbing on

both sides), for any finite index set I and λ ∈ R; B is continuous if I can be taken infinite.

ii) Rmax-sesquilinear if B(inf{fi}i∈I) = sup{Bfi}i∈I and B(f ∔ λ) = Bf .− λ (with +∞
absorbing on the l.h.s. and −∞ absorbing on the r.h.s.), for any finite index set I and
λ ∈ R; B is continuous if I can be taken infinite.
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Defining properly the tropical concepts: ranges and kernels
The range of B is Rg(B) := {g ∈ RX

max | ∃f ∈ RX
max, g = Bf }. The indicator functions

δ⊥
x (y) :=

{
0 if y = x ,
−∞ otherwise, δ⊤

x (y) :=
{

0 if y = x ,
+∞ otherwise. (3)

The Rmax-sesquilinear and continuous maps, a.k.a. (Fenchel-Moreau) conjugations, have been
characterized as the ones having a kernel as in (2):

Proposition (Theorem 3.1, [Singer, 1984])

A map B̄ : RX → RX is Rmax-sesquilinear and continuous if and only if there exists a kernel
b : X × X → R such that B̄f (x) = supy∈X b(x , y) .− f (y). Moreover in this case b is uniquely
determined by B̄ as b(·, x) = B̄δ⊤

x (same as Hilbertian k(·, x) = Kδx ).

We refer to [Akian et al., 2005, Theorem 2.1] for extensions of this tropical analogue of Riesz
representation theorem in Hilbert spaces [Martinez-Legaz and Singer, 1990].

Rg(B) = {supx∈X ax .+ b(·, x) | ax ∈ R⊥}. (4)
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Defining properly the tropical concepts: tropical duality

In the following, we also extensively use the following duality product over RX
min × RX

max,
denoting by ĝ the elements of RX

min,

⟨ĝ , f ⟩ := sup
x∈X

f (x) .− ĝ(x) ∀(ĝ , f ) ∈ RX
min × RX

max. (5)

This duality product allows to define the adjoint of an operator B : RX → RX.

Definition

If it exists, the adjoint map B̄′ of a Rmax-sesquilinear map B̄ : RX → RX is defined as the one
such that

⟨ĝ , B̄f̂ ⟩ = ⟨f̂ , B̄′ĝ⟩, ∀(ĝ , f̂ ) ∈ RX
min × RX

min

If B̄′ = B̄, then B̄ is said to be Rmax-hermitian. If B̄ is continuous with kernel b(x , y), then B̄′

exists and corresponds to b(y , x) [Singer, 1997, Theorem 8.4].
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Defining properly the tropical concepts: tpsd kernel

Definition

We say that a kernel b : X × X → R⊥ is a tropical positive semidefinite (tpsd) kernel if it is
i) symmetric: ∀x , y ∈ X, b(x , y) = b(y , x), and

ii) tropically positive: ∀x , y ∈ X, b(x , x) + b(y , y) ≥ b(x , y) + b(y , x).

Notice that all the three kernels

bc(x , y) = (x , y)2, bsc(x , y) = −∥x − y∥2
2, bL(x , y) = −d(x , y).

are tropically positive semidefinite and finite-valued. Moreover every Hilbertian (conditionally)
positive semidefinite kernel is tropically positive semidefinite.

Note: a submodular function over a discrete set defines a tpsd matrix.
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Full analogy between Hilbertian and tropical kernels

Dedicated to kernel lovers:
Concept Hilbertian kernel Tropical kernel Reference

symmetry k(x , y) = k(y , x) b(x , y) = b(y , x) Def. 5
positivity

∑
i,j ai aj k(xi , xj ) ≥ 0 b(x , x) + b(y , y) ≥ b(x , y) + b(y , x) Def. 5

feature map k(x , y) = (Φ(x),Φ(y))H b(x , y) = supz∈Z ψ(x , z) + ψ(y , z) Prop. 2
duality
bracket ⟨µ, f ⟩RX,∗×RX =

∫
X

f (y)dµ(y) ⟨ĝ , f ⟩ = supx∈X f (x) − ĝ(x) (5)

kernel
operator K(µ)(x) =

∫
X

k(x , y)dµ(y) B̄(f̂ )(x) = supy∈X b(x , y) .− f̂ (y) Prop. 1

monotone
operator ⟨µ,K(µ)⟩RX,∗×RX ≥ 0 ⟨f̂ , B̄f̂ ⟩ ∔ ⟨ĝ , B̄ĝ⟩ ≥ ⟨f̂ , B̄ĝ⟩ .+ ⟨ĝ , B̄f̂ ⟩ Prop. 3

function
space Hk = span({k(·, x)}x∈X) Rg(B) = {sup

x∈X

[ax + b(·, x)] | ax ∈ R⊥} Prop. 1+(4)

reproducing
property f (x) = (k(·, x), f (·))Hk ĝ(x) = ⟨B̄ĝ , B̄δ⊤

x ⟩ = (B̄B̄ĝ)(x) Def. 8
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Factorization of tropical kernels

Lemma

A kernel b : X × X → R⊥ is tpsd if and only if there exists a function ϕ : X → R⊥ and a
symmetric kernel b0 : X × X → R⊥, with b0(x , x) = 0 and b0(x , y) ≤ 0 for all x , y ∈ X, such
that

b(x , y) = ϕ(x) + b0(x , y) + ϕ(y). (6)

Moreover, given b(·, ·), we have that ϕ(x) = b(x , x)/2 and Rg(B) = ϕ+ Rg(B0).

Proposition

A kernel b : X × X → R⊥ is tpsd iff there exists a set Z and a function ψ : X × Z → R⊥

b(x , y) = sup
z∈Z

ψ(x , z) + ψ(y , z). (7)
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Proof of factorization
⇒. Take Z = X × X, and consider the function ψ such that, for all x , y ∈ X × X,

ψ(x , (x , y)) = b(x , x)/2 and ψ(x , (y , x)) = b(x , y) .− b(y , y)/2
ψ(x , (u, v)) = −∞ if x ̸∈ {u, v}

Thus ψ(x , z) and ψ(y , z) can be finite iff z ∈ {(x , y), (y , x)}. As b is symmetric, we obtain that
sup
z∈Z

ψ(x , z) .+ ψ(y , z) = max (ψ(x , (x , y)) .+ ψ(y , (x , y)), ψ(x , (y , x)) .+ ψ(y , (y , x)))

= max
(b(x , x)

2 + b(y , x) .−
b(x , x)

2 , b(x , y) .−
b(y , y)

2 + b(y , y)
2

)
= b(y , x),

the equality holding for b(x , x) = −∞ or b(y , y) = −∞, since b(y , x) < ∞ by assumption.

⇐. The kernel b(x , y) = supz∈Z ψ(x , z) + ψ(y , z) is symmetric and we assumed it takes its
values in R⊥.

2(ψ(x , z) + ψ(y , z)) ≤ 2 sup
z∈Z

ψ(x , z) + 2 sup
z∈Z

ψ(y , z) = b(x , x) + b(y , y),∀z ∈ Z.
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Examples of factorization

Examples of factorizations ψ(x , z) with Z = X:
i) For X = RN and bc(x , y) = (x , y)2, we can choose ψ(x , z) = 1

2∥x∥2
2 − ∥x − z∥2

2.

ii) For X = RN and bsc(x , y) = −∥x − y∥2
2, we can choose ψ(x , z) = −2∥x − z∥2

2.

iii) For (X, d) a metric space, b(x , y) = −d(x , y)p with p ∈ (0, 1], we can choose ψ = b as a
consequence of the subadditivity of t ∈ R+ 7→ tp.

However we cannot always take Z = X, even for finite sets (Barvinok rank problem, clique cover
number of bipartite graph), counter-example with #X = 5.

Note: for Hilbertian kernels, we always had the choice Φ(x) = k(·, x) for
k(x , y) = (Φ(x),Φ(y))Hk → we do not have the same here
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Proposition ((Cyclical) monotony)

Given a kernel b : X × X → R⊥, set B̄ as in (2). Then the following statements are equivalent:

i) the kernel b is tpsd, i.e. symmetric and b(x , x) + b(y , y) ≥ b(x , y) + b(y , x);

ii) for all M ∈ N∗, (xm)m∈[M] ∈ XM and permutations σ : [M] → [M], the Gram matrices
G := [b(xn, xm)]n,m∈[M] are symmetric and satisfy

∑M
m=1 b(xm, xm) ≥

∑M
m=1 b(xm, xσ(m))

iii) the operator B̄ is Rmax-hermitian and monotone for the duality pairing in the sense that

∀ f̂ , ĝ ∈ RX
, ⟨f̂ , B̄f̂ ⟩ ∔ ⟨ĝ , B̄ĝ⟩ ≥ ⟨f̂ , B̄ĝ⟩ .+ ⟨ĝ , B̄f̂ ⟩; (8)

iv) the operator B̄ is Rmax-hermitian and cyclic monotone for the duality pairing in the sense
that ∀ M ∈ N∗, ∀ (f̂m)m∈[M] ∈ RX,M with the convention fM+1 = f1,∑M

m=1
⟨f̂m, B̄f̂m⟩ ≥

∑M
m=1

⟨f̂m, B̄f̂m+1⟩; (Σ can be replaced with max) (9)
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Characterizing tropical spaces

Can we give any characterization of the spaces that are Rg(B)?

A set G is a complete submodule of RX
max if it is stable under arbitrary sups and addition of

constants.
Theorem

Let G be a complete submodule of RX
max. Then the following statements are equivalent:

i) there exists a symmetrical kernel b : X × X → R such that G = Rg(B);

ii) there exists a Rmax-sesquilinear map F̄ : G → G such that F̄ F̄ = IdG , i.e. F̄ is an
anti-involution over G.

If these properties hold, then F̄ can be taken as the restriction of B̄ to Rg(B).
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Defining tropical reproducing spaces
We now leverage the characterization, B̄B̄B̄f̂ = B̄f̂ , expressed for symmetric kernels in
Theorem 7, to define tropical sesquilinear reproducing kernel spaces. As shown before,

Rg(B) = {supx∈X ax .+ b(·, x) | ax ∈ R⊥},

so using spaces Rg(B) to define RKMSs provides a direct analogy with the fact that a RKHS
Hk is the completion for its norm ∥ · ∥k of span({k(·, x)}x∈X).

Definition

We call reproducing kernel Moreau spaces (RKMS) the complete submodules Rg(B) of RX
max

where B̄ is a Rmax-sesquilinear continuous and hermitian operator associated with the
symmetric kernel b. For all ĝ ∈ Rg(B) and x ∈ X, we say that they satisfy a sesquilinear
reproducing property

ĝ(x) = (B̄B̄ĝ)(x) = ⟨B̄ĝ , B̄δ⊤
x ⟩ = sup

z∈X

b(z , x) .− [sup
y∈X

b(z , y) .− ĝ(y)]. (10)
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Around the reproducing property

ĝ(x) = (B̄B̄ĝ)(x) = ⟨B̄ĝ , B̄δ⊤
x ⟩ = sup

z∈X

b(z , x) .− [sup
y∈X

b(z , y) .− ĝ(y)].

The sesquilinear reproducing property is not an empty statement. It characterizes the elements
of G = Rg(B) through an immediate lemma, proved again using the identity B̄B̄B̄ = B̄.

Lemma ([Singer, 1997] Corollary 8.5)

Let B̄ be a Rmax-sesquilinear and continuous operator. Then for any g ∈ RX, ĝ = B̄B̄ĝ holds if
and only if g ∈ Rg(B).

For b(x , y) = (x , y)2, B̄ is the Fenchel conjugate operator, whence (10) is equivalent to
Fenchel’s theorem stating that convex l.s.c. functions are the only fixed points of the Fenchel
biconjugate. Note that the difficult part in Fenchel’s theorem is to prove that all convex l.s.c.
functions are outputs of the Fenchel transform, i.e. hard to identify Rg(B).
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Examples of spaces

We choose to interpret ĝ = B̄B̄ĝ as a reproducing property, however B̄B̄ is not a
RX

max-(sesqui)linear operator. There is a more direct interpretation with a RX
min-linear operator.

Lemma

For all ĝ ∈ Rg(B) and x ∈ X, (10) is equivalent to

ĝ(x) = inf
y∈X

ĝ(y) ∔ sup
z∈X

[b(z , x) − b(z , y)] =: inf
y∈X

ĝ(y) ∔ c(x , y) =: (Cop ĝ)(x) (11)

where c(x , y) := supz∈X[b(z , x) .− b(z , y)] is the Funk distance between b(·, x) and b(·, y), and
Cop : RX

min → RX
min the related Rmin-linear operator.

Unfortunately c does not correspond to a unique b, nor to a unique Rg(B). More in the article
about this and the difference with max-plus linear operators
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Examples of spaces (cont.)

Examples of tpsd b(x , y), c(x , y) and Rg(B) [Singer, 1997]:
i) For X = RN , b(x , y) = (x , y)2 gives c(x , y) = δ⊤

x (y) whereas Rg(B) is the set of proper
convex l.s.c. functions adding the constant functions ±∞.

ii) For X = RN , b(x , y) = −∥x − y∥2 gives c(x , y) = δ⊤
x (y) whereas Rg(B) is the set of proper

1-semiconvex l.s.c. functions adding the constant functions ±∞, i.e. f + ∥ · ∥2 is convex.

iii) For any X and α ≥ 0, b(x , y) =
{

0 if y = x ,
−α otherwise, gives c(x , y) = −b(x , y) whereas

Rg(B) is the set of functions f which difference f (x) − f (y) is smaller than α. For
α = +∞, b(x , y) = δ⊥

x (y), Rg(B) corresponds to the whole RX.

iv) For (X, d) a metric space, b(x , y) = −d(x , y)p gives c(x , y) = d(x , y)p whereas Rg(B) is
the set of (1, p)-Hölder continuous functions w.r.t. the distance d (i.e.
|f (x) − f (y)| ≤ 1 · d(x , y)p), when adding the constant functions ±∞.
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Optimization on tropical function spaces

Dedicated to PEP people:

min
f ∈F

L((f (xm))m∈I) e.g.
∑

|f (xm) − ym)|2

Given two sets X and X′, a kernel b : X × X′ → R⊥, and a subset X̂ ⊂ X, define

Rg∂-X̂(B) :=
{

f ∈ Rg(B) | ∀ x ∈ X̂, ∃ px ∈ X′, f (x) = b(x , px ) .− B̄f (px ) = sup
p∈X′

b(x , p) .− B̄f (p)
}
.

This set can be understood as the subset of functions of Rg(B) for which there exists a
B-subdifferential at every point of X̂.

For instance, for bc(x , y) = (x , y)2 and X = X′ = RN , Rg∂-X(B) contains the continuous
convex functions, but it is strictly smaller than Rg(B) since convex l.s.c. functions may have an
empty subdifferential at points that do not lie in the relative interior of their domain.
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Optimization on tropical function spaces: interpolation theorem

Proposition (Tropical interpolation)

Let I be a nonempty index set, given (xm, ym)m∈I ∈ (X×R)I , setting X̂ = {xm}m∈I , the three
following statements are equivalent:

i) there exists f ∈ Rg∂-X̂(B) such that ym = f (xm) for all m ∈ I;

ii) there exists (pm)m∈I ∈ (X′)I such that ym = f 0(xm) for all m ∈ I, for

f 0(·) := B̄( inf
m∈I

[δ⊤
pm(·) ∔ b(xm, pm) − ym]) = max

m∈I
b(·, pm) .− b(xm, pm) + ym;

iii) there exists (pm)m∈I ∈ (X′)I such that yn − ym ≥ b(xn, pm) .− b(xm, pm) for all n,m ∈ I.
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Proof of interpolation theorem

i)⇒ii). Set pm for each xm s.t. f (xm) = b(xm, pm) .− B̄f (pm), then, for all n ∈ I,

yn = b(xn, pn) .− B̄f (pn) ≤ max
m∈I

b(xn, pm) .− (b(xm, pm) − ym)︸ ︷︷ ︸
=B̄f (pm)

= f 0(xn)

≤ sup
p∈X′

b(xn, p) .− B̄f (p) = B̄B̄f (xn) = f (xn) = yn,

so f 0(xn) = yn.

ii)⇒i). We directly have that f 0 ∈ Rg(B) and that pm is a subdifferential at each xm, whence
f 0 ∈ Rg∂-X̂(B).

ii)⇔iii). This follows from the definition of f 0.
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Optimization on tropical function spaces: representer theorem

Corollary (Representer theorem)

Given points (xm)m∈I ∈ XI and a function L : RI → R, fix X̂ = {xm}m∈I . Then, if the
problem

min
f ∈Rg(B)

L((f (xm))m∈I) (12)

has a solution f̄ ∈ Rg∂-X̂(B) with finite values (f (xm))m∈I ∈ RI , it also has a solution f 0 as in
Proposition 4-ii) which can be obtained solving

min
(pm,ym)m∈I∈(X′×R)M

L((ym))m∈I) (13)

s.t. yn − ym ≥ b(xn, pm) .− b(xm, pm), ∀ n,m ∈ I.

Conversely, if (13) has a solution, then it is also a solution in Rg∂-X̂(B) of (12).

WE DO NOT NEED ANY PROPERTY OF THE KERNEL b!
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Optimization on tropical function spaces: example of convex regression

When b is the standard scalar product and I is finite, each pm can be interpreted as a
subgradient at xm, and Theorem 11 recovers a well-known property in convex regression,
[Boyd and Vandenberghe, 2004][Section 6.5.5]

min
f ∈CVEX

∑
|f (xm) − ȳm)|2 ⇔ min

(pm,ym)m∈I∈(Rd ×R)M ,
yn−ym≥(xn,pm)2−(xm,pm)2

∑
|ym − ȳm|2.

We have thus shown that this result also holds for very general kernels and uncountable set I,
not even assuming symmetry or tropical positivity of b. Consequently Proposition 4 should be
related to interpolation theorems such as [Taylor et al., 2016, Theorem 4].

For instance for µ-strongly convex functions with L-bounded gradient (which corresponds to
X = Rd , X′ = {p ∈ Rd , ∥p∥2 ≤ L} and b(x , p) = (x , p)2 + µ∥x∥2

2).
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Fundamental spacetime solution of HJB
Take X ⊂ R × Rd the spacetime vector space, i.e. x = (t, r). Given a Lagrangian function
L : R × Rd × Rd → R⊤, the action J ((t0, r0), (t1, r1), r(·)) along an absolutely continuous
trajectory r(·) : [t0, t1] → Rd going from (t0, r0) to (t1, r1) is defined as follows:

J ((t0, r0), (t1, r1), r(·)) :=
∫ t1

t0
L(s, r(s), ṙ(s))ds with r(t0) = r0, r(t1) = r1. (14)

The optimal stopping time problem, where w(t1, r1) is a final cost obtained for choosing to
leave the game at (t1, r1) [Bensoussan and Lions, 1982, Barles and Perthame, 1987].

∀ x0 = (t0, r0) ∈ X, f (x0) = − inf
(t1,r1)∈X, t1≥t0,

r(·)∈Straj, r(t0)=r0
r(t1)=r1

∫ t1

t0
L(s, r(s), ṙ(s))ds ∔ w(t1, r1).

The player has then to determine, given w and starting from (t0, r0), the corresponding final
and optimal (t1, r1).
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Definition (Maupertuis kernel)

Given a set of absolutely continuous trajectories Straj ⊂ C0(R,Rd), we define the Maupertuis
kernel bMaup : X × X → R, and the asymmetrical basym

Maup, between x0 = (t0, r0) and x1 = (t1, r1)

bMaup(x0, x1) := − sign(t1 − t0) inf
r(·)∈Straj

r(t0)=r0,r(t1)=r1

∫ t1

t0
L(s, r(s), ṙ(s))ds, (15)

basym
Maup(x0, x1) := (1 + δ⊤

t1≥t0)bMaup(x0, x1), (16)

with δ⊤
t1≥t0 = 0 if t1 ≥ t0 and +∞ otherwise.

Lemma (Tropical positivity for nonnegative Lagrangian)

If L(·) ≥ 0, then bMaup is tpsd.
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Evaluating the Maupertuis kernel

The evaluation of a Maupertuis kernel amounts to solving an optimal control problem
[Kolokoltsov and Maslov, 1997, McEneaney, 2006]. In general, computing bMaup is as hard as
solving a HJB PDE.

However there are cases where the value of bMaup is known, for instance through Lax-Hopf
formulas [Cannarsa and Sinestrari, 2004][Theorem 1.3.1]. This corresponds to the case where
L(s, r , v) = L(v), L is convex, and Straj = W 1,1(R,Rd), in which case (15) writes simply as a
perspective function for t1 ̸= t0

bHopf
Maup(x0, x1) := −|t1 − t0|L

( r1 − r0
t1 − t0

)
(17)

and 0 if x0 = x1, −∞ if r1 ̸= r0 and t0 = t1.

Unlike the off-the-shelf Hilbertian kernels used typically in machine learning, the kernel bMaup is
canonically defined by the triplet (X,Straj, L).
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Identifying Rg(Basym
Maup)

For every function f ∈ Rg(basym
Maup), there exists w : X 7→ R⊤ such that

∀ x0 = (t0, r0) ∈ X, f (x0) = sup
x1∈X

basym
Maup(x0, x1) .− w(x1)

= − inf
(t1,r1)∈X, t1≥t0,

r(·)∈Straj, r(t0)=r0
r(t1)=r1

∫ t1

t0
L(s, r(s), ṙ(s))ds ∔ w(t1, r1). (18)

This is precisely the optimal stopping time problem!
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Fundamental spacetime solution of HJB: example 1
Inverse optimal control problem with stopping time
If the terminal cost w in the optimal stopping problem (18) is unknown, but the Lagrangian L
is known. How to infer w or the value function?
Assume we know ȳm ≃ f (xm), xm = (tm, rm) ∈ X. Cast this as an inverse problem by
considering a loss function

L((f (xm))m∈I) =
∑
m∈I

|ȳm − f (xm)|

Then, by Theorem 11, reconstructing the unknown stopping cost amounts to finding solutions
(pm, ym)m∈I ∈ (X × R)I minimizing L((ym)m∈I) under the constraints

∀ n,m ∈ I, yn − ym ≥ basym
Maup(xn, pm) .− basym

Maup(xm, pm).

Using that bMaup is idempotent, we have that basym
Maup(xn, pm) .− basym

Maup(xm, pm) ≥ basym
Maup(xn, xm),

achieved for pm = xm, whence the problem reduces to minimizing the function L over
(ym)m∈I ∈ RI such that ∀ n,m ∈ I, yn − ym ≥ basym

Maup(xn, xm). If (y∗
m)m∈I is an optimal

solution of the above problem, an admissible stopping cost is simply w = infm∈I [δ⊤
xm(·) − y∗

m].
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Fundamental spacetime solution of HJB: example 2

Space-restrictions of bMaup

With fixed t0, t1 ∈ R, one can also consider a kernel b[t0,t1]
Maup (r0, r1) := bMaup(x0, x1).

[Kolokoltsov and Maslov, 1997, McEneaney, 2006, Dower and Zhang, 2015]

Interpolation of the value function with a fixed final time
Assume t0 and T are fixed, and that the Lagrangian L is known. Our aim is to recover an
unknown terminal cost ψT , and thus, the value function V̄ everywhere, given measurements
(ȳm)m∈I ∈ RI at sample points. Consider the exact interpolation problem, with
ȳm = −V̄ (t0, rm) known at some point rm. By Proposition 4, the interpolation problem
corresponds to finding solutions (pm)m∈I ∈ (Rd)I of

∀ n,m ∈ I, ȳn − ȳm ≥ b[t0,T ]
Maup (rn, pm) .− b[t0,T ]

Maup (rm, pm).

Here each pm can be interpreted as a point to reach at time T starting from (t0, rm). Given
such pm, an admissible terminal cost is ψT (r) = infm∈I [δ⊤

pm(r) ∔ b(xm, pm) − ȳm].
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Conclusion
the characterization of tropical reproducing kernels is similar to the Hilbertian case

it is possible to do optimization over tropical function spaces

it is useful for value functions in control theory

Open problems:
link max-plus space with log-sum-exp applications in ML

link tpsd kernels with cyclic monotonicity in optimal transport

why is tpsd not necessary for optimization? Find something specific to tpsd

do some learning applications, e.g. apply the kernels to do systematic PEP

Thank you for your attention!
Future interests: majorization-minimization, backward SDEs, diffusion models
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