State-constrained Linear-Quadratic Optimal Control is a shape-constrained kernel regression

Pierre-Cyril Aubin-Frankowski
INRIA Paris - SIERRA
ORCOS VC, Vienna 2022

Where to use Machine Learning in control theory?
Many objects can be learnt depending on the available data

- Trajectory

$$
x: t \in\left[t_{0}, T\right] \mapsto \mathbb{R}^{Q}
$$

- Control

$$
u: t \in\left[t_{0}, T\right] \mapsto \mathbb{R}^{P}
$$

- Vector field
$f:(t, x, u) \mapsto \mathbb{R}^{Q}$
- Lagrangian
$L:(t, x, u) \mapsto \mathbb{R} \cup\{\infty\}$
- Value function

$$
V_{T, x_{T}}:\left(t_{0}, x_{0}\right) \mapsto \mathbb{R} \cup\{\infty\}
$$

Which one should we try to approximate?

What is the most principled/theoretically grounded application of kernel methods?

Where to use Machine Learning in control theory?
Many objects can be learnt depending on the available data

- Trajectory
$x: t \in\left[t_{0}, T\right] \mapsto \mathbb{R}^{Q}$
- Control
$u: t \in\left[t_{0}, T\right] \mapsto \mathbb{R}^{P}$
- Vector field
$f:(t, x, u) \mapsto \mathbb{R}^{Q}$
- Lagrangian
$L:(t, x, u) \mapsto \mathbb{R} \cup\{\infty\}$
- Value function
$V_{T, x_{T}}:\left(t_{0}, x_{0}\right) \mapsto \mathbb{R} \cup\{\infty\}$

Which one should we try to approximate?
What is the most principled/theoretically grounded application of kernel methods?

> Trajectories of linear systems belong to a reproducing kernel Hilbert space (RKHS)!
> State constraints are then easy to satisfy!

Table of Contents

(1) Finding the RKHS of LQ optimal control

(2) Dealing with an infinite number of constraints

This talk summarizes

- Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel methods, Aubin, SIAM J. on Control and Optimization, 2021
- Interpreting the dual Riccati equation through the $L Q$ reproducing kernel, Aubin, Comptes Rendus. Mathématique, 2021

The code is available at https://github.com/PCAubin. Follow-ups are on their way
Operator-valued Kernels and Control of Infinite dimensional Dynamic Systems, Aubin, Alain Bensoussan arxiv.org/abs/2206.09419

Time-varying state-constrained LQ optimal control

$$
\begin{array}{ll}
\min _{\mathbf{x}(\cdot), \mathbf{u}(\cdot)} & \chi_{\mathbf{x}_{0}}\left(\mathbf{x}\left(t_{0}\right)\right)+g(\mathbf{x}(T)) \\
+\mathbf{x}\left(t_{r e f}\right)^{\top} \mathbf{J}_{r e f} \mathbf{x}\left(t_{r e f}\right)+\int_{t_{0}}^{T}\left[\mathbf{x}(t)^{\top} \mathbf{Q}(t) \mathbf{x}(t)+\mathbf{u}(t)^{\top} \mathbf{R}(t) \mathbf{u}(t)\right] \mathrm{d} t \\
\text { s.t. } & \mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t), \text { a.e. in }\left[t_{0}, T\right], \\
& \mathbf{c}_{i}(t)^{\top} \mathbf{x}(t) \leq d_{i}(t), \forall t \in \mathcal{T}_{c}, \forall i \in[\mathcal{I}]=\llbracket 1, \mathcal{I} \rrbracket,
\end{array}
$$

- state $\mathbf{x}(t) \in \mathbb{R}^{Q}$, control $\mathbf{u}(t) \in \mathbb{R}^{P}$,
- reference time $t_{r e f} \in\left[t_{0}, T\right]$, set of constraint times $\mathcal{T}_{c} \subset\left[t_{0}, T\right]$,
- $\mathbf{A}(\cdot) \in L^{1}\left(t_{0}, T\right), \mathbf{B}(\cdot) \in L^{2}\left(t_{0}, T\right), \mathbf{Q}(\cdot) \in L^{1}\left(t_{0}, T\right), \mathbf{R}(\cdot) \in L^{2}\left(t_{0}, T\right)$,
- $\mathbf{Q}(t) \succcurlyeq 0$ and $\mathbf{R}(t) \succcurlyeq r \mathrm{ld}_{M}(r>0), \mathbf{c}_{i}(\cdot), d_{i}(\cdot) \in C^{0}\left(t_{0}, T\right), \mathbf{J}_{r e f} \succ \mathbf{0}$,
- lower-semicontinuous terminal cost $g: \mathbb{R}^{Q} \rightarrow R \cup\{\infty\}$, indicator function $\chi_{x_{0}}$,
- $\mathbf{x}(\cdot):\left[t_{0}, T\right] \rightarrow \mathbb{R}^{Q}$ absolutely continuous, $\mathbf{R}(\cdot)^{1 / 2} \mathbf{u}(\cdot) \in L^{2}\left(\left[t_{0}, T\right]\right)$

Time-varying state-constrained $L Q$ optimal control

$$
\begin{array}{lll}
\min _{\mathbf{x}(\cdot), \mathbf{u}(\cdot)} & \chi_{\mathbf{x}_{0}}\left(\mathbf{x}\left(t_{0}\right)\right)+g(\mathbf{x}(T)) & \rightarrow L\left(\mathbf{x}\left(t_{j}\right)_{j \in[J]}\right. \\
+\mathbf{x}\left(t_{r e f}\right)^{\top} \mathbf{J}_{r e f} \mathbf{x}\left(t_{r e f}\right)+\int_{t_{0}}^{T}\left[\mathbf{x}(t)^{\top} \mathbf{Q}(t) \mathbf{x}(t)+\mathbf{u}(t)^{\top} \mathbf{R}(t) \mathbf{u}(t)\right] \mathrm{d} t & \rightarrow\|\mathbf{x}(\cdot)\|_{\mathcal{S}}^{2} \\
\text { s.t. } & \mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t), \text { a.e. in }\left[t_{0}, T\right], & \\
& \mathbf{c}_{i}(t)^{\top} \mathbf{x}(t) \leq d_{i}(t), \forall t \in \mathcal{T}_{c}, \forall i \in[\mathcal{I}]=\llbracket 1, \mathcal{I} \rrbracket, &
\end{array}
$$

- state $\mathbf{x}(t) \in \mathbb{R}^{Q}$, control $\mathbf{u}(t) \in \mathbb{R}^{P}$,
- reference time $t_{r e f} \in\left[t_{0}, T\right]$, set of constraint times $\mathcal{T}_{c} \subset\left[t_{0}, T\right]$,
- $\mathbf{A}(\cdot) \in L^{1}\left(t_{0}, T\right), \mathbf{B}(\cdot) \in L^{2}\left(t_{0}, T\right), \mathbf{Q}(\cdot) \in L^{1}\left(t_{0}, T\right), \mathbf{R}(\cdot) \in L^{2}\left(t_{0}, T\right)$,
- $\mathbf{Q}(t) \succcurlyeq 0$ and $\mathbf{R}(t) \succcurlyeq \operatorname{rdd}_{M}(r>0), \mathbf{c}_{i}(\cdot), d_{i}(\cdot) \in C^{0}\left(t_{0}, T\right)$, $\mathbf{J}_{\text {ref }} \succ \mathbf{0}$,
- lower-semicontinuous terminal cost $g: \mathbb{R}^{Q} \rightarrow R \cup\{\infty\}$, indicator function $\chi_{\mathbf{x}_{0}}$, "loss function" $L:\left(\mathbb{R}^{Q}\right)^{J} \rightarrow \mathbb{R} \cup\{\infty\}$,
- $\mathbf{x}(\cdot):\left[t_{0}, T\right] \rightarrow \mathbb{R}^{Q}$ absolutely continuous, $\mathbf{R}(\cdot)^{1 / 2} \mathbf{u}(\cdot) \in L^{2}\left(\left[t_{0}, T\right]\right)$

Why are state constraints difficult to study?

- Theoretical obstacle: Pontryagine's Maximum Principle involves not only an adjoint vector $\mathbf{p}(t)$ but also measures/BV functions $\psi(t)$ supported at times where the constraints are saturated. You cannot just backpropagate the Hamiltonian system from the transversality condition.
- Numerical obstacle: Time discretization of constraints may fail e.g.

Speed cameras in traffic control

In between two cameras, drivers always break the speed limit.

Reproducing kernel Hilbert spaces (RKHS)

A RKHS $\left(\mathcal{F}_{k},\langle\cdot, \cdot\rangle_{\mathcal{F}_{k}}\right)$ is a Hilbert space of real-valued functions over a set \mathcal{T} if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

$$
\begin{aligned}
& \exists k: \mathcal{T} \times \mathcal{T} \rightarrow \mathbb{R} \text { s.t. } k_{t}(\cdot)=k(\cdot, t) \in \mathcal{F}_{k} \text { and } f(t)=\left\langle f(\cdot), k_{t}(\cdot)\right\rangle_{\mathcal{F}_{k}} \text { for all } t \in \mathcal{T} \text { and } f \in \mathcal{F}_{k} \\
& \text { (reproducing property) }
\end{aligned}
$$

the topology of $\left(\mathcal{F}_{k},\langle\cdot, \cdot\rangle_{\mathcal{F}_{k}}\right)$ is stronger than pointwise convergence i.e. $\delta_{t}: f \in \mathcal{F}_{k} \mapsto f(t)$ is continuous for all $t \in \mathcal{T}$.

$$
\left|f(t)-f_{n}(t)\right|=\left|\left\langle f-f_{n}, k_{t}\right\rangle_{\mathcal{F}_{k}}\right| \leq\left\|f-f_{n}\right\|_{\mathcal{F}_{k}}\left\|k_{t}\right\|_{\mathcal{F}_{k}}=\left\|f-f_{n}\right\|_{\mathcal{F}_{k}} \sqrt{k(t, t)}
$$

For $\mathcal{T} \subset \mathbb{R}^{d}$, Sobolev spaces $\mathcal{H}^{s}(\mathcal{T}, \mathbb{R})$ satisfying $s>d / 2$ are RKHSs.

$$
\left\{\begin{array}{l}
H_{0}^{1}=\left\{f \mid f(0)=0, \exists f^{\prime} \in L^{2}(0, \infty)\right\} \\
\langle f, g\rangle_{H_{0}^{1}}=\int_{0}^{\infty} f^{\prime} g^{\prime} \mathrm{d} t
\end{array} \longleftrightarrow k(t, s)=\min (t, s)\right.
$$

Other classical kernels

$$
k_{G a u s s}(t, s)=\exp \left(-\|t-s\|_{\mathbb{R}^{d}}^{2} /\left(2 \sigma^{2}\right)\right) \quad k_{\text {poly }}(t, s)=\left(1+\langle t, s\rangle_{\mathbb{R}^{d}}\right)^{2}
$$

Two essential tools for computations

Representer Theorem (e.g. [Schölkopf et al., 2001])

Let $L: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{\infty\}$, strictly increasing $\Omega: \mathbb{R}_{+} \rightarrow \mathbb{R}$, and

$$
\bar{f} \in \underset{f \in \mathcal{F}_{k}}{\arg \min } L\left(\left(f\left(t_{n}\right)\right)_{n \in[N]}\right)+\Omega\left(\|f\|_{k}\right)
$$

Then $\exists\left(a_{n}\right)_{n \in[N]} \in \mathbb{R}^{N}$ s.t. $\bar{f}(\cdot)=\sum_{n \in[N]} a_{n} k\left(\cdot, t_{n}\right)$
\hookrightarrow Optimal solutions lie in a finite dimensional subspace of \mathcal{F}_{k}.
Finite number of evaluations \Longrightarrow finite number of coefficients

Kernel trick

$$
\left\langle\sum_{n \in[N]} a_{n} k\left(\cdot, t_{n}\right), \sum_{m \in[M]} b_{m} k\left(\cdot, s_{m}\right)\right\rangle_{\mathcal{F}_{k}}=\sum_{n \in[N]} \sum_{m \in[M]} a_{n} b_{m} k\left(t_{n}, s_{m}\right)
$$

\hookrightarrow On this finite dimensional subspace, no need to know $\left(\mathcal{F}_{k},\langle\cdot, \cdot\rangle_{\mathcal{F}_{k}}\right)$.

Vector-valued reproducing kernel Hilbert space (vRKHS)

Definition (vRKHS)

Let \mathcal{T} be a non-empty set. A Hilbert space $\left(\mathcal{F}_{K},\langle\cdot, \cdot\rangle_{K}\right)$ of \mathbb{R}^{Q}-vector-valued functions defined on \mathcal{T} is a vRKHS if there exists a matrix-valued kernel $K: \mathcal{T} \times \mathcal{T} \rightarrow \mathbb{R}^{Q \times Q}$ such that the reproducing property holds:

$$
K(\cdot, t) \mathbf{p} \in \mathcal{F}_{K}, \quad \mathbf{p}^{\top} \mathbf{f}(t)=\langle\mathbf{f}, K(\cdot, t) \mathbf{p}\rangle_{K}, \quad \text { for } t \in \mathcal{T}, \mathbf{p} \in \mathbb{R}^{Q}, \mathbf{f} \in \mathcal{F}_{K}
$$

There is a one-to-one correspondence between K and ($\mathcal{F}_{K},\langle\cdot, \cdot\rangle_{K}$) [Micheli and Glaunès, 2014], so changing \mathfrak{T} or $\langle\cdot, \cdot\rangle_{K}$ changes K.

Representer theorem in vRKHSs

Theorem (Representer theorem with constraints, P.-C. Aubin, 2021)

Let $\left(\mathcal{F}_{K},\langle\cdot, \cdot\rangle_{K}\right)$ be a $v R K H S$ defined on a set \mathcal{T}. For a "loss" $L: \mathbb{R}^{N_{0}} \rightarrow \mathbb{R} \cup\{+\infty\}$, strictly increasing "regularizer" $\Omega: \mathbb{R}_{+} \rightarrow \mathbb{R}$, and constraints $d_{i}: \mathbb{R}^{N_{i}} \rightarrow \mathbb{R}$, consider the optimization problem

$$
\begin{aligned}
& \overline{\mathbf{f}} \in \underset{\mathbf{f} \in \mathcal{F}_{K}}{\arg \min } L\left(\mathbf{c}_{0,1}^{\top} \mathbf{f}\left(t_{0,1}\right), \ldots, \mathbf{c}_{0, N_{0}}^{\top} \mathbf{f}\left(t_{0, N_{0}}\right)\right)+\Omega\left(\|\mathbf{f}\|_{K}\right) \\
& \quad \lambda_{i}\|\mathbf{f}\|_{K} \leq d_{i}\left(\mathbf{c}_{i, 1}^{\top} \mathbf{f}\left(t_{i, 1}\right), \ldots, \mathbf{c}_{i, N_{i}}^{\top} \mathbf{f}\left(t_{i, N_{i}}\right)\right), \forall i \in \llbracket 1, P \rrbracket .
\end{aligned}
$$

Then there exists $\left\{\mathbf{p}_{i, m}\right\}_{m \in\left[1, N_{i}\right]} \subset \mathbb{R}^{Q}$ and $\alpha_{i, m} \in \mathbb{R}$ such that

$$
\overline{\mathbf{f}}=\sum_{i=0}^{P} \sum_{m=1}^{N_{i}} K\left(\cdot, t_{i, m}\right) \mathbf{p}_{i, m} \text { with } \mathbf{p}_{i, m}=\alpha_{i, m} \mathbf{c}_{i, m} .
$$

Objective: Turn the state-constrained LQR into "KRR"

We have a vector space \mathcal{S} of controlled trajectories $\mathbf{x}(\cdot):\left[t_{0}, T\right] \rightarrow \mathbb{R}^{Q}$

$$
\mathcal{S}_{\left[t_{0}, T\right]}:=\left\{\mathbf{x}(\cdot) \mid \exists \mathbf{u}(\cdot) \in L^{2}\left(t_{0}, T\right) \text { s.t. } \mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \text { a.e. }\right\}
$$

Given $\mathbf{x}(\cdot) \in \mathcal{S}_{\left[t_{0}, T\right]}$, for the pseudoinverse $\mathbf{B}(t)^{\ominus}$ of $\mathbf{B}(t)$, set

$$
\begin{aligned}
\mathbf{u}(t) & :=\mathbf{B}(t)^{\ominus}\left[\mathbf{x}^{\prime}(t)-\mathbf{A}(t) \mathbf{x}(t)\right] \text { a.e. in }\left[t_{0}, T\right] . \\
\left\langle\mathbf{x}_{1}(\cdot), \mathbf{x}_{2}(\cdot)\right\rangle_{\mathcal{S}} & :=\mathbf{x}_{1}\left(t_{r e f}\right)^{\top} \mathbf{J}_{r e f} \mathbf{x}_{2}\left(t_{r e f}\right) \\
& +\int_{t_{0}}^{T}\left[\mathbf{x}_{1}(t)^{\top} \mathbf{Q}(t) \mathbf{x}_{2}(t)+\mathbf{u}_{1}(t)^{\top} \mathbf{R}(t) \mathbf{u}_{2}(t)\right] \mathrm{d} t
\end{aligned}
$$

$L Q R$ for $\mathbf{Q} \equiv \mathbf{0}, \mathbf{R} \equiv \mathrm{Id}$

$$
\min _{\substack{\mathbf{x}(\cdot) \in \mathcal{S} \\ \mathbf{u}(\cdot) \in L^{2}}} L\left(\mathbf{x}\left(t_{j}\right)_{j \in[J]}\right)+\|\mathbf{u}(\cdot)\|_{L^{2}\left(t_{0}, T\right)}^{2}
$$

$$
\mathbf{c}_{i}(t)^{\top} \mathbf{x}(t) \leq d_{i}(t), t \in \mathcal{T}_{c}, i \in[\mathcal{I}]
$$

"KRR" (Kernel Ridge Regression)

$$
\min _{\mathbf{x}(\cdot) \in \mathcal{S}} L\left(\mathbf{x}\left(t_{j}\right)_{j \in[J]}\right)+\|\mathbf{x}(\cdot)\|_{\mathcal{S}}^{2}
$$

$\mathbf{c}_{i}(t)^{\top} \mathbf{x}(t) \leq d_{i}(t), t \in \mathcal{T}_{c}, i \in[\mathcal{I}]$

Objective: Turn the state-constrained LQR into "KRR"

We have a vector space \mathcal{S} of controlled trajectories $\mathbf{x}(\cdot):\left[t_{0}, T\right] \rightarrow \mathbb{R}^{Q}$

$$
\mathcal{S}_{\left[t_{0}, T\right]}:=\left\{\mathbf{x}(\cdot) \mid \exists \mathbf{u}(\cdot) \in L^{2}\left(t_{0}, T\right) \text { s.t. } \mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \text { a.e. }\right\}
$$

Given $\mathbf{x}(\cdot) \in \mathcal{S}_{\left[t_{0}, T\right]}$, for the pseudoinverse $\mathbf{B}(t)^{\ominus}$ of $\mathbf{B}(t)$, set

$$
\begin{aligned}
\mathbf{u}(t) & :=\mathbf{B}(t)^{\ominus}\left[\mathbf{x}^{\prime}(t)-\mathbf{A}(t) \mathbf{x}(t)\right] \text { a.e. in }\left[t_{0}, T\right] . \\
\left\langle\mathbf{x}_{1}(\cdot), \mathbf{x}_{2}(\cdot)\right\rangle_{\mathcal{S}} & :=\mathbf{x}_{1}\left(t_{r e f}\right)^{\top} \mathbf{J}_{r e f} \mathbf{x}_{2}\left(t_{r e f}\right) \\
& +\int_{t_{0}}^{T}\left[\mathbf{x}_{1}(t)^{\top} \mathbf{Q}(t) \mathbf{x}_{2}(t)+\mathbf{u}_{1}(t)^{\top} \mathbf{R}(t) \mathbf{u}_{2}(t)\right] \mathrm{d} t
\end{aligned}
$$

Lemma (P.-C. Aubin, SICON 2021)

$\left(\mathcal{S}_{\left[t_{0}, T\right]},\langle\cdot, \cdot\rangle_{\mathcal{S}}\right)$ is a vRKHS over $\left[t_{0}, T\right]$ with uniformly continuous $K\left(\cdot, \cdot ;\left[t_{0}, T\right]\right)$.

Splitting $\mathcal{S}_{\left[t_{0}, T\right]}$ into subspaces and identifying their kernels
It is hard to identify K, but take $\mathbf{Q} \equiv \mathbf{0}, \mathbf{R} \equiv \mathrm{Id}, t_{r e f}=t_{0}, \mathbf{J}_{r e f}=\mathrm{ld}$

$$
\begin{aligned}
& \left\langle\mathbf{x}_{1}(\cdot), \mathbf{x}_{2}(\cdot)\right\rangle_{\mathcal{S}}:=\mathbf{x}_{1}\left(t_{0}\right)^{\top} \mathbf{x}_{2}\left(t_{0}\right)+\int_{t_{0}}^{T} \mathbf{u}_{1}(t)^{\top} \mathbf{u}_{2}(t) \mathrm{d} t . \\
\mathcal{S}_{0} & :=\left\{\mathbf{x}(\cdot) \mid \mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t), \text { a.e. in }\left[t_{0}, T\right]\right\} \quad\|\mathbf{x}(\cdot)\|_{K_{0}}^{2}=\left\|\mathbf{x}\left(t_{0}\right)\right\|^{2} \\
\mathcal{S}_{u} & :=\left\{\mathbf{x}(\cdot) \mid \mathbf{x}(\cdot) \in \mathcal{S} \text { and } \mathbf{x}\left(t_{0}\right)=0\right\} \quad\|\mathbf{x}(\cdot)\|_{K_{1}}^{2}=\|\mathbf{u}(\cdot)\|_{L^{2}\left(t_{0}, T\right)}^{2} .
\end{aligned}
$$

As $\mathcal{S}=\mathcal{S}_{0} \oplus \mathcal{S}_{u}, K=K_{0}+K_{1}$.

Splitting $\mathcal{S}_{[t, T]}$ into subspaces and identifying their kernels

It is hard to identify K, but take $\mathbf{Q} \equiv \mathbf{0}, \mathbf{R} \equiv \mathrm{Id}, t_{\text {ref }}=t_{0}, \mathbf{J}_{\text {ref }}=\mathrm{Id}$

$$
\begin{aligned}
& \left\langle\mathbf{x}_{1}(\cdot), \mathbf{x}_{2}(\cdot)\right\rangle_{\mathcal{S}}:=\mathbf{x}_{1}\left(t_{0}\right)^{\top} \mathbf{x}_{2}\left(t_{0}\right)+\int_{t_{0}}^{T} \mathbf{u}_{1}(t)^{\top} \mathbf{u}_{2}(t) \mathrm{d} t . \\
\mathcal{S}_{0} & :=\left\{\mathbf{x}(\cdot) \mid \mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t), \text { a.e. in }\left[t_{0}, T\right]\right\} \quad\|\mathbf{x}(\cdot)\|_{K_{0}}^{2}=\left\|\mathbf{x}\left(t_{0}\right)\right\|^{2} \\
\mathcal{S}_{u} & :=\left\{\mathbf{x}(\cdot) \mid \mathbf{x}(\cdot) \in \mathcal{S} \text { and } \mathbf{x}\left(t_{0}\right)=0\right\} \quad\|\mathbf{x}(\cdot)\|_{\mathcal{K}_{1}}^{2}=\|\mathbf{u}(\cdot)\|_{L^{2}\left(t_{0}, T\right)}^{2} .
\end{aligned}
$$

As $\mathcal{S}=\mathcal{S}_{0} \oplus \mathcal{S}_{u}, K=K_{0}+K_{1}$. Since $\operatorname{dim}\left(\mathcal{S}_{0}\right)=Q$, for $\boldsymbol{\Phi}_{\mathbf{A}}(t, s) \in \mathbb{R}^{Q \times Q}$ the state-transition matrix $s \rightarrow t$ of $\mathbf{x}^{\prime}(\tau)=\mathbf{A}(\tau) \mathbf{x}(\tau)$

$$
\mathcal{K}_{0}(s, t)=\boldsymbol{\Phi}_{\mathbf{A}}\left(s, t_{0}\right) \boldsymbol{\Phi}_{\mathbf{A}}\left(t, t_{0}\right)^{\top} .
$$

Splitting $\mathcal{S}_{\left[t_{0}, T\right]}$ into subspaces and identifying their kernels

It is hard to identify K, but take $\mathbf{Q} \equiv \mathbf{0}, \mathbf{R} \equiv \mathrm{Id}, t_{r e f}=t_{0}, \mathbf{J}_{\text {ref }}=\mathrm{Id}$

$$
\begin{aligned}
& \left\langle\mathbf{x}_{1}(\cdot), \mathbf{x}_{2}(\cdot)\right\rangle_{\mathcal{S}}:=\mathbf{x}_{1}\left(t_{0}\right)^{\top} \mathbf{x}_{2}\left(t_{0}\right)+\int_{t_{0}}^{T} \mathbf{u}_{1}(t)^{\top} \mathbf{u}_{2}(t) \mathrm{d} t . \\
\mathcal{S}_{0} & :=\left\{\mathbf{x}(\cdot) \mid \mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t), \text { a.e. in }\left[t_{0}, T\right]\right\} \quad\|\mathbf{x}(\cdot)\|_{K_{0}}^{2}=\left\|\mathbf{x}\left(t_{0}\right)\right\|^{2} \\
\mathcal{S}_{u} & :=\left\{\mathbf{x}(\cdot) \mid \mathbf{x}(\cdot) \in \mathcal{S} \text { and } \mathbf{x}\left(t_{0}\right)=0\right\} \quad\|\mathbf{x}(\cdot)\|_{K_{1}}^{2}=\|\mathbf{u}(\cdot)\|_{L^{2}\left(t_{0}, T\right)}^{2} .
\end{aligned}
$$

As $\mathcal{S}=\mathcal{S}_{0} \oplus \mathcal{S}_{u}, K=K_{0}+K_{1}$. Since $\operatorname{dim}\left(\mathcal{S}_{0}\right)=Q$, for $\boldsymbol{\Phi}_{\mathbf{A}}(t, s) \in \mathbb{R}^{Q \times Q}$ the state-transition matrix $s \rightarrow t$ of $\mathbf{x}^{\prime}(\tau)=\mathbf{A}(\tau) \mathbf{x}(\tau)$

$$
K_{0}(s, t)=\boldsymbol{\Phi}_{\mathbf{A}}\left(s, t_{0}\right) \boldsymbol{\Phi}_{\mathbf{A}}\left(t, t_{0}\right)^{\top} .
$$

K_{1} obtained using only the reproducing property and variation of constants

$$
K_{1}(s, t)=\int_{t_{0}}^{\min (s, t)} \boldsymbol{\Phi}_{\mathbf{A}}(s, \tau) \mathbf{B}(\tau) \mathbf{B}(\tau)^{\top} \boldsymbol{\Phi}_{\mathbf{A}}(t, \tau)^{\top} \mathrm{d} \tau
$$

Examples: controllability Gramian/transversality condition

Steer a point from $(0, \mathbf{0})$ to $\left(T, \mathbf{x}_{T}\right)$, with e.g. $g(\mathbf{x}(T))=\left\|\mathbf{x}_{T}-\mathbf{x}(T)\right\|_{N}^{2}$

Exact planning $\left(\mathbf{x}(T)=\mathbf{x}_{T}\right)$

$$
\min _{\substack{\mathbf{x}(\cdot) \cdot \mathcal{S} \in \mathcal{S} \\ \mathbf{x}(0)=\mathbf{0}}} \chi_{\mathbf{x}_{T}}(\mathbf{x}(T))+\frac{1}{2}\|\mathbf{u}(\cdot)\|_{L^{2}\left(t_{0}, T\right)}^{2}
$$

Relaxed planning ($\mathrm{g} \in \mathcal{C}^{1}$ convex)

$$
\min _{\substack{x(\cdot) \cdot \mathcal{S} \\ \times(0)=0}} g(\mathbf{x}(T))+\frac{1}{2}\|\mathbf{u}(\cdot)\|_{L^{2}\left(t_{0}, T\right)}^{2}
$$

$\mathbf{x}(0)=\mathbf{0} \Leftrightarrow \mathbf{x}(\cdot) \in \mathcal{S}_{u}$. Representer theorem: $\exists \mathbf{p}_{T}, \overline{\mathbf{x}}(\cdot)=K_{1}(\cdot, T) \mathbf{p}_{T}$

Controllability Gramian

$$
\begin{gathered}
K_{1}(T, T)=\int_{0}^{T} \Phi_{\mathbf{A}(T, \tau) \mathbf{B}(\tau) \mathbf{B}(\tau)^{\top} \Phi_{\mathbf{A}}(T, \tau)^{\top} \mathrm{d} \tau} \\
\overline{\mathbf{x}}(T)=\mathbf{x}_{T} \Leftrightarrow \mathbf{x}_{T} \in \operatorname{Im}\left(K_{1}(T, T)\right)
\end{gathered}
$$

Transversality Condition

$$
\begin{aligned}
\mathbf{0} & =\nabla\left(\mathbf{p} \mapsto g\left(K_{1}(T, T) \mathbf{p}\right)+\frac{1}{2} \mathbf{p}^{\top} K_{1}(T, T) \mathbf{p}\right)\left(\mathbf{p}_{T}\right) \\
& =K_{1}(T, T)\left(\nabla g\left(K_{1}(T, T) \mathbf{p}_{T}\right)+\mathbf{p}_{T}\right) .
\end{aligned}
$$

Sufficient to take $\mathbf{p}_{T}=-\nabla g(\overline{\mathbf{x}}(T))$

Relation with the differential Riccati equation

Take $t_{\text {ref }}=T, \mathbf{J}_{\text {ref }}=\mathbf{J}_{T} \succ \mathbf{0}$. Let $J(t, T)$ be the solution of

$$
\begin{aligned}
-\partial_{1} \mathbf{J}(t, T)= & \mathbf{A}(t)^{\top} \mathbf{J}(t, T)+\mathbf{J}(t, T) \mathbf{A}(t) \\
& -\mathbf{J}(t, T) \mathbf{B}(t) \mathbf{R}(t)^{-1} \mathbf{B}(t)^{\top} \mathbf{J}(t, T)+\mathbf{Q}(t), \\
\mathbf{J}(T, T)= & \mathbf{J}_{T},
\end{aligned}
$$

Theorem (P.-C. Aubin, 2021)

Let $\left.\left.K_{\text {diag }}: t_{0} \in\right]-\infty, T\right] \mapsto K\left(t_{0}, t_{0} ;\left[t_{0}, T\right]\right)$. Then $K_{\text {diag }}\left(t_{0}\right)=\mathbf{J}\left(t_{0}, T\right)^{-1}$. More generally, $K\left(\cdot, t ;\left[t_{0}, T\right]\right)$ is given by a matrix Hamiltonian system for all $t \in\left[t_{0}, T\right]$

$$
\begin{aligned}
& \partial_{1} K(s, t)=\mathbf{A}(s) K(s, t)+\mathbf{B}(s) \mathbf{R}(s)^{-1} \mathbf{B}(s)^{\top}\left\{\begin{array}{c}
\boldsymbol{\Pi}(s, t)+\boldsymbol{\Phi}_{\mathbf{A}}\left(t_{0}, s\right)^{\top}-\boldsymbol{\Phi}_{\mathbf{A}}(t, s)^{\top}, s \geq t, \\
\boldsymbol{\Pi}(s, t)+\boldsymbol{\Phi}_{\mathbf{A}}\left(t_{0}, s\right)^{\top}, s<t .
\end{array}\right. \\
& \partial_{1} \boldsymbol{\Pi}(s, t)=-\mathbf{A}(s)^{\top} \boldsymbol{\Pi}(s, t)+\mathbf{Q}(s) K(s, t), \\
& \Pi\left(t_{0}, t\right)=-I d_{N} \text {, } \\
& K(t, T)=-\mathbf{J}_{T}^{-1}\left(\boldsymbol{\Pi}(T, t)^{\top}+\boldsymbol{\Phi}_{\mathbf{A}}(t, T)-\boldsymbol{\Phi}_{\mathbf{A}}\left(t_{0}, T\right)\right) .
\end{aligned}
$$

Relation with the differential Riccati equation

$$
\overline{\mathbf{x}}(\cdot):=\underset{\mathbf{x}(\cdot) \in \mathcal{S}_{\left[t_{0}, T\right]}}{\arg \min } \underbrace{\mathbf{x}(T)^{\top} \mathbf{J}_{T} \mathbf{x}(T)+\int_{t_{0}}^{T}\left[\mathbf{x}(t)^{\top} \mathbf{Q}(t) \mathbf{x}(t)+\mathbf{u}(t)^{\top} \mathbf{R}(t) \mathbf{u}(t)\right] \mathrm{d} t}_{\|\mathbf{x}(\cdot)\|_{\mathcal{S}}^{2}}
$$

s.t.
$\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$,

Pontryagine's Maximum Principle (PMP)

$\mathbf{p}(t)=-\mathbf{J}(t, T) \overline{\mathbf{x}}(t)$ and $\overline{\mathbf{u}}(t)=\mathbf{R}(t)^{-1} \mathbf{B}(t)^{\top} \mathbf{p}(t)=-\mathbf{R}(t)^{-1} \mathbf{B}(t)^{\top} \mathbf{J}(t, T) \overline{\mathbf{x}}(t)=: \mathbf{G}(t) \overline{\mathbf{x}}(t)$
\hookrightarrow online and differential approach

Representer theorem from kernel methods

$\overline{\mathbf{x}}(t)=K\left(t, t_{0} ;\left[t_{0}, T\right]\right) \mathbf{p}_{0}$, with $\mathbf{p}_{0}=K\left(t_{0}, t_{0} ;\left[t_{0}, T\right]\right)^{-1} \mathbf{x}_{0} \in \mathbb{R}^{Q}$
\hookrightarrow offline and integral approach (\sim Green kernel in PDEs)

Numerical example: submarine in a cavern

Original control problem

$$
\begin{aligned}
& \min _{z(\cdot) \in W^{2,2,}, u(\cdot) \in L^{2}} \int_{0}^{1}|u(t)|^{2} \mathrm{~d} t \\
& \text { s.t. } \\
& z(0)=0, \quad \dot{z}(0)=0, \\
& \dot{z}(t)=-\dot{z}(t)+u(t), \forall t \in[0,1], \\
& z(t) \in\left[z_{\text {low }}(t), z_{\text {up }}(t)\right], \forall t \in[0,1] .
\end{aligned}
$$

Numerical example: submarine in a cavern

Original control problem

Rewriting in standard form

$$
\begin{aligned}
& \min _{z(\cdot) \in W^{2,2}, u(\cdot) \in L^{2}} \quad \int_{0}^{1}|u(t)|^{2} \mathrm{~d} t \\
& \text { s.t. } \\
& z(0)=0, \quad \dot{z}(0)=0, \\
& \ddot{z}(t)=-\dot{z}(t)+u(t), \forall t \in[0,1], \\
& z(t) \in\left[z_{\text {low }}(t), z_{\mathrm{up}}(t)\right], \forall t \in[0,1] . \\
& \mathbf{x}=\binom{z}{\dot{z}}, \mathbf{A}=\left(\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right), \mathbf{B}=\binom{0}{1}
\end{aligned}
$$

$$
\begin{aligned}
& \quad \min _{x(\cdot) \in W^{1,2}, u(\cdot) \in L^{2}} \int_{0}^{1}|u(t)|^{2} \mathrm{~d} t \\
& \quad \text { s.t. } \\
& \mathbf{x}(0)=0 \\
& \mathbf{x}^{\prime}(t) \stackrel{\text { a.e. }}{=} \mathbf{A} \mathbf{x}(t)+\mathbf{B} u(t), \\
& z_{1}(t) \in\left[z_{\text {low }}(t), z_{\text {up }}(t)\right], \forall t \in[0,1]
\end{aligned}
$$

Numerical example: submarine in a cavern

RKHS regression

Rewriting in standard form

$$
\begin{aligned}
& \min _{\mathbf{x}(\cdot) \in \mathcal{S}_{u}}\|\mathbf{x}(\cdot)\|_{K_{1}}^{2} \\
& \text { s.t. } \\
& z_{1}(t) \in\left[z_{\text {low }}(t), z_{\mathrm{up}}(t)\right], \forall t \in[0,1] \\
& \mathcal{S}_{u}:=\{\mathbf{x}(\cdot) \mid \mathbf{x}(\cdot) \in \mathcal{S} \text { and } \mathbf{x}(0)=0\} \\
& \|\mathbf{x}(\cdot)\|_{K_{1}}^{2}=\|\mathbf{u}(\cdot)\|_{L^{2}(0,1)}^{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \quad \min _{\mathbf{x}(\cdot) \in W^{1,2}, u(\cdot) \in L^{2}} \int_{0}^{1}|u(t)|^{2} \mathrm{~d} t \\
& \quad \text { s.t. } \\
& \mathbf{x}(0)=0, \\
& \mathbf{x}^{\prime}(t) \stackrel{\text { a.e. }}{=} \mathbf{A x}(t)+\mathbf{B} u(t), \\
& z_{1}(t) \in\left[z_{\text {low }}(t), z_{\text {up }}(t)\right], \forall t \in[0,1]
\end{aligned}
$$

Numerical example: submarine in a cavern

RKHS regression

$$
\min _{\mathbf{x}(\cdot) \in \mathcal{S}_{u}}\|\mathbf{x}(\cdot)\|_{K_{1}}^{2}
$$

$$
z_{1}(t) \in\left[z_{\mathrm{low}}(t), z_{\mathrm{up}}(t)\right], \forall t \in[0,1]
$$

$$
\begin{aligned}
\mathcal{S}_{u} & :=\{\mathbf{x}(\cdot) \mid \mathbf{x}(\cdot) \in \mathcal{S} \text { and } \mathbf{x}(0)=0\} \\
\|\mathbf{x}(\cdot)\|_{K_{1}}^{2} & =\|\mathbf{u}(\cdot)\|_{L^{2}(0,1)}^{2} .
\end{aligned}
$$

$$
K_{1}(s, t)=\int_{0}^{\min (s, t)} \mathbf{e}^{(s-\tau) \mathbf{A}} \mathbf{B} \mathbf{B}^{\top} \mathbf{e}^{(t-\tau) \mathbf{A}^{\top}} \mathrm{d} \tau
$$

Numerical example: submarine in a cavern

RKHS regression

$$
\begin{aligned}
& \min _{\mathbf{x}(\cdot) \in \mathcal{S}_{u}}\|\mathbf{x}(\cdot)\|_{K_{1}}^{2} \\
& \quad \text { s.t. } \\
& z_{1}(t) \in\left[z_{\text {low }, m}, z_{\mathrm{up}, m}\right] \\
& \forall t \in\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right], \forall m \in[M]
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{S}_{u} & :=\{\mathbf{x}(\cdot) \mid \mathbf{x}(\cdot) \in \mathcal{S} \text { and } \mathbf{x}(0)=0\} \\
\|\mathbf{x}(\cdot)\|_{K_{1}}^{2} & =\|\mathbf{u}(\cdot)\|_{L^{2}(0,1)}^{2}
\end{aligned}
$$

$K_{1}(s, t)=\int^{\min (s, t)} \mathbf{e}^{(s-\tau) \mathbf{A}} \mathbf{B} \mathbf{B}^{\top} \mathbf{e}^{(t-\tau) \mathbf{A}^{\top}} \mathrm{d} \tau$

Numerical example: submarine in a cavern

RKHS regression

$$
\left.\begin{array}{l}
\min _{\mathbf{x}(\cdot) \in \mathcal{S}_{u}}\|\mathbf{x}(\cdot)\|_{K_{1}}^{2} \\
\quad \text { s.t. } \\
z_{1}\left(t_{m}\right) \in\left[z_{\mathrm{low}, m}, z_{\mathrm{up}, m}\right], \\
\forall t \in\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right]
\end{array}\right], \forall m \in[M] \text {. }
$$

$$
\overline{\mathbf{x}}(\cdot)=\sum_{m=1}^{M} K_{1}\left(\cdot, t_{m}\right) \mathbf{p}_{m}=\sum_{m=1}^{M} \alpha_{m} K_{1}\left(\cdot, t_{m}\right) e_{m}
$$

$$
K_{1}(s, t)=\int_{0}^{\min (s, t)} \mathbf{e}^{(s-\tau) \mathbf{A}} \mathbf{B} \mathbf{B}^{\top} \mathbf{e}^{(t-\tau) \mathbf{A}^{\top}} \mathrm{d} \tau
$$

Numerical example: submarine in a cavern

RKHS regression

$$
\begin{aligned}
& \min _{\mathbf{x}(\cdot) \in \mathcal{S}_{u}}\|\mathbf{x}(\cdot)\|_{K_{1}}^{2} \\
& \quad \text { s.t. } \\
& z_{1}\left(t_{m}\right) \in\left[z_{\text {low }, m}, z_{\mathrm{up}, m}\right], \\
& \forall t \in\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right], \forall m \in[M]
\end{aligned}
$$

$$
\overline{\mathbf{x}}(\cdot)=\sum_{m=1}^{M} K_{1}\left(\cdot, t_{m}\right) \mathbf{p}_{m}=\sum_{m=1}^{M} \alpha_{m} K_{1}\left(\cdot, t_{m}\right) e_{m}
$$

$$
K_{1}(s, t)=\int_{0}^{\min (s, t)} \mathbf{e}^{(s-\tau) \mathbf{A}} \mathbf{B} \mathbf{B}^{\top} \mathbf{e}^{(t-\tau) \mathbf{A}^{\top}} \mathrm{d} \tau
$$

Numerical example: submarine in a cavern

RKHS regression

$$
\begin{aligned}
& \min _{\mathbf{x}(\cdot) \in \mathcal{S}_{u}}\|\mathbf{x}(\cdot)\|_{K_{1}}^{2} \\
& \quad \text { s.t. } \\
& z_{1}\left(t_{m}\right) \in\left[z_{\text {low }, m}, z_{\text {up }, m}\right] \pm \eta_{m}\|\mathbf{x}(\cdot)\|_{K_{1}}, \\
& \forall t \in\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right], \forall m \in[M]
\end{aligned}
$$

$$
\overline{\mathbf{x}}(\cdot)=\sum_{m=1}^{M} K_{1}\left(\cdot, t_{m}\right) \mathbf{p}_{m}=\sum_{m=1}^{M} \alpha_{m} K_{1}\left(\cdot, t_{m}\right) e_{m}
$$

$$
K_{1}(s, t)=\int_{0}^{\min (s, t)} \mathbf{e}^{(s-\tau) \mathbf{A}} \mathbf{B} \mathbf{B}^{\top} \mathbf{e}^{(t-\tau) \mathbf{A}^{\top}} \mathrm{d} \tau
$$

Van Loan's trick for time-invariant Gramians

Use matrix exponentials as in [Van Loan, 1978]

$$
\exp \left(\left(\begin{array}{cc}
\mathbf{A} & \mathbf{Q}_{c} \\
0 & -\mathbf{A}^{\top}
\end{array}\right) \Delta\right)=\left(\begin{array}{cc}
\mathbf{F}_{2}(\Delta) & \mathbf{G}_{2}(\Delta) \\
0 & \mathbf{F}_{3}(\Delta)
\end{array}\right)
$$

$$
\begin{aligned}
\hat{\mathbf{F}}_{2}(t) & =e^{\mathbf{A} t} \\
\hat{\mathbf{F}}_{3}(t) & =e^{-\mathbf{A}^{\top} t} \\
\hat{\mathbf{G}}_{2}(t) & =\int_{0}^{t} e^{(t-\tau) \mathbf{A}} \mathbf{Q}_{c} e^{-\tau \mathbf{A}^{\top}} \mathrm{d} \tau
\end{aligned}
$$

$$
K_{1}(s, t)=\int_{0}^{\min (s, t)} e^{(s-\tau) \mathbf{A}} \mathbf{B} \mathbf{B}^{\top} e^{(t-\tau) \mathbf{A}^{\top}} \mathrm{d} \tau
$$

$$
\text { Set } \mathbf{Q}_{C}=\mathbf{B R}^{-1} \mathbf{B}^{\top}
$$

For $s \leq t, K_{1}(s, t)=\hat{\mathbf{G}}_{2}(s) \hat{\mathbf{F}}_{2}(t)^{\top}$
For $t \leq s, K_{1}(s, t)=\hat{\mathbf{F}}_{2}(s) \hat{\mathbf{G}}_{2}(t)^{\top}$

Dealing with an infinite number of constraints

No representer theorem for: $c(t)^{\top} x(t) \leq d, \forall t \in[0, T]$
Discretize on $\left\{t_{m}\right\}_{m \in[M]} \subset[0, T]$?

$$
c\left(t_{m}\right)^{\top} x\left(t_{m}\right) \leq d, \forall m \in \llbracket 1, M \rrbracket
$$

No guarantees!

Dealing with an infinite number of constraints

No representer theorem for: $c(t)^{\top} x(t) \leq d, \forall t \in[0, T]$
Discretize on $\left\{t_{m}\right\}_{m \in[M]} \subset[0, T]$?

$$
\eta_{m}\|x(\cdot)\|_{\kappa}+c\left(t_{m}\right)^{\top} x\left(t_{m}\right) \leq d, \forall m \in \llbracket 1, M \rrbracket
$$

Second-Order Cone (SOC) constraints: $\left\{f \mid\|A f+b\|_{K} \leq c^{\top} f+d\right\}$
SOC comes from adding a buffer, $\eta_{m}>0$, to a discretization, $\left\{t_{m}\right\}_{m \in[M]}$.

$$
\mathrm{LP} \subset \mathrm{QP} \subset \mathrm{SOCP} \subset \mathrm{SDP}
$$

Dealing with an infinite number of constraints

No representer theorem for: $c(t)^{\top} x(t) \leq d, \forall t \in[0, T]$
Discretize on $\left\{t_{m}\right\}_{m \in[M]} \subset[0, T]$?

$$
\eta_{m}\|x(\cdot)\|_{\kappa}+c\left(t_{m}\right)^{\top} x\left(t_{m}\right) \leq d, \forall m \in \llbracket 1, M \rrbracket
$$

Second-Order Cone (SOC) constraints: $\left\{f \mid\|A f+b\|_{K} \leq c^{\top} f+d\right\}$
SOC comes from adding a buffer, $\eta_{m}>0$, to a discretization, $\left\{t_{m}\right\}_{m \in[M]}$.
How to choose η_{m} ? The choice $\eta_{m}\|x(\cdot)\|_{\kappa}$ is related to continuity moduli:

Deriving SOC constraints through continuity moduli

Take $\delta \geq 0$ and t s.t. $\left|t-t_{m}\right| \leq \delta$

$$
\begin{aligned}
& \left|c(t)^{\top} x(t)-c\left(t_{m}\right)^{\top} x\left(t_{m}\right)\right|=\left|\left\langle x(\cdot), K(\cdot, t) c(t)-K\left(\cdot, t_{m}\right) c\left(t_{m}\right)\right\rangle_{K}\right| \\
& \leq\|x(\cdot)\|_{K}^{\sup _{\substack{ \\
\left\{t| | t-t_{m} \mid \leq \delta\right\}}}\left\|K(\cdot, t) c(t)-K\left(\cdot, t_{m}\right) c\left(t_{m}\right)\right\|_{K}} \\
& \omega_{m}(x, \delta):=\sup _{\left\{t| | t-t_{m} \mid \leq \delta\right\}}\left|c(t)^{\top} x(t)-c\left(t_{m}\right)^{\top} x\left(t_{m}\right)\right| \leq \eta_{m}(\delta)\|x(\cdot)\|_{K}
\end{aligned}
$$

For a covering $[0, T]=\bigcup_{m \in[M]}\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right]$

$$
" c(t)^{\top} x(t) \leq d, \forall t \in[0, T] " \Leftarrow " c\left(t_{m}\right)^{\top} x\left(t_{m}\right)+\omega_{m}(x, \delta) \leq d, \forall m \in[M]
$$

Deriving SOC constraints through continuity moduli

Take $\delta \geq 0$ and t s.t. $\left|t-t_{m}\right| \leq \delta$

$$
\begin{gathered}
\left|c(t)^{\top} x(t)-c\left(t_{m}\right)^{\top} x\left(t_{m}\right)\right|=\left|\left\langle x(\cdot), K(\cdot, t) c(t)-K\left(\cdot, t_{m}\right) c\left(t_{m}\right)\right\rangle_{K}\right| \\
\leq\|x(\cdot)\|_{K} \underbrace{\sup _{\left\{t| | t-t_{m} \mid \leq \delta\right\}}\left\|K(\cdot, t) c(t)-K\left(\cdot, t_{m}\right) c\left(t_{m}\right)\right\|_{K}}_{\eta_{m}(\delta)} \\
\omega_{m}(x, \delta):=\sup _{\left\{t| | t-t_{m} \mid \leq \delta\right\}}\left|c(t)^{\top} x(t)-c\left(t_{m}\right)^{\top} x\left(t_{m}\right)\right| \leq \eta_{m}(\delta)\|x(\cdot)\|_{K}
\end{gathered}
$$

For a covering $[0, T]=\bigcup_{m \in[M]}\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right]$

$$
\begin{gathered}
" c(t)^{\top} x(t) \leq d \quad, \forall t \in[0, T] " \Leftarrow " c\left(t_{m}\right)^{\top} x\left(t_{m}\right)+\eta_{m}\|x(\cdot)\| \leq d \quad, \forall m \in[M]^{"} \\
\left\|K(\cdot, t) c(t)-K\left(\cdot, t_{m}\right) c\left(t_{m}\right)\right\|_{K}^{2}:=c(t)^{\top} K(t, t) c(t)+c\left(t_{m}\right)^{\top} K\left(t_{m}, t_{m}\right) c\left(t_{m}\right) \\
-2 c\left(t_{m}\right)^{\top} K\left(t_{m}, t\right) c(t)
\end{gathered}
$$

Since the kernel is smooth, for $c(\cdot) \in \mathcal{C}^{0}, \delta \rightarrow 0$ gives $\eta_{m}(\delta) \rightarrow 0$.

Deriving SOC constraints through continuity moduli

Take $\delta \geq 0$ and t s.t. $\left|t-t_{m}\right| \leq \delta$

$$
\begin{gathered}
\left|c(t)^{\top} x(t)-c\left(t_{m}\right)^{\top} x\left(t_{m}\right)\right|=\left|\left\langle x(\cdot), K(\cdot, t) c(t)-K\left(\cdot, t_{m}\right) c\left(t_{m}\right)\right\rangle_{K}\right| \\
\leq\|x(\cdot)\|_{K} \underbrace{\sup _{\left\{t| | t-t_{m} \mid \leq \delta\right\}}\left\|K(\cdot, t) c(t)-K\left(\cdot, t_{m}\right) c\left(t_{m}\right)\right\|_{K}}_{\eta_{m}(\delta)} \\
\omega_{m}(x, \delta):=\sup _{\left\{t| | t-t_{m} \mid \leq \delta\right\}}\left|c(t)^{\top} x(t)-c\left(t_{m}\right)^{\top} x\left(t_{m}\right)\right| \leq \eta_{m}(\delta)\|x(\cdot)\|_{K}
\end{gathered}
$$

For a covering $[0, T] \subset \bigcup_{m \in[M]}\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right]$

$$
" c(t)^{\top} x(t) \leq d(t), \forall t \in[0, T] " \Leftarrow " c\left(t_{m}\right)^{\top} x\left(t_{m}\right)+\eta_{m}\|x(\cdot)\| \leq d_{m}, \forall m \in[M]
$$

with $d_{m}:=\inf _{t \in\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right]} d(t)$.

From affine state constraints to SOC constraints

Take $\left(t_{m}, \delta_{m}\right)$ such that $[0, T] \subset \cup_{m \in \llbracket 1, N_{P} \rrbracket}\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right]$, define

$$
\begin{aligned}
\eta_{i}\left(\delta_{m}, t_{m}\right) & :=\sup _{t \in\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right] \cap[0, T]}\left\|K\left(\cdot, t_{m}\right) \mathbf{c}_{i}\left(t_{m}\right)-K(\cdot, t) \mathbf{c}_{i}(t)\right\|_{K}, \\
d_{i}\left(\delta_{m}, t_{m}\right) & :=\inf _{t \in\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right] \cap[0, T]} d_{i}(t) .
\end{aligned}
$$

We have strengthened SOC constraints that enable a representer theorem

$$
\begin{aligned}
\eta_{i}\left(\delta_{m}, t_{m}\right)\|\mathbf{x}(\cdot)\|_{k}+\mathbf{c}_{i}\left(t_{m}\right)^{\top} \mathbf{x}\left(t_{m}\right) \leq & d_{i}\left(\delta_{m}, t_{m}\right), \forall m \in \llbracket 1, N_{P} \rrbracket, \forall i \in \llbracket 1, P \rrbracket \\
& \Downarrow \\
\mathbf{c}_{i}(t)^{\top} \mathbf{x}(t) \leq & d_{i}(t), \forall t \in[0, T], \forall i \in \llbracket 1, P \rrbracket
\end{aligned}
$$

Lemma (Uniform continuity of tightened constraints)

As $K(\cdot, \cdot)$ is $U C$, if $\mathbf{c}_{i}(\cdot)$ and $\mathbf{d}_{i}(\cdot)$ are \mathcal{C}^{0}-continuous, when $\delta \rightarrow 0^{+}, \eta_{i}(\cdot, t)$ converges to 0 and $d_{i}(\cdot, t)$ converges to $d_{i}(t)$, uniformly w.r.t. t.

SOC tightening of state-constrained LQ optimal control

Problem of time-varying linear quadratic optimal control with finite horizon and affine inequality state constraints

$$
\begin{array}{cc}
\min _{\mathbf{x}(\cdot) \in \mathcal{S}_{\left[t_{0}, T\right]}} & \chi_{\mathbf{x}_{0}}\left(\mathbf{x}\left(t_{0}\right)\right)+g(\mathbf{x}(T))+\|\mathbf{x}(\cdot)\|_{K}^{2} \\
\text { s.t. } & \\
& \mathbf{c}_{i}(t)^{\top} \mathbf{x}(t) \leq d_{i}(t), \forall t \in\left[t_{0}, T\right], \forall i \in[\mathcal{I}],
\end{array}
$$

SOC tightening of state-constrained LQ optimal control

Problem of time-varying linear quadratic optimal control with finite horizon and affine inequality state constraints with SOC tightening

$$
\begin{aligned}
& \quad \min _{\mathbf{x}(\cdot) \in \mathcal{S}_{\left[t_{0}, T\right]}} \chi_{\mathbf{x}_{0}}\left(\mathbf{x}\left(t_{0}\right)\right)+g(\mathbf{x}(T))+\|\mathbf{x}(\cdot)\|_{K}^{2} \\
& \quad \text { s.t. } \\
& \eta_{i}\left(\delta_{m}, t_{m}\right)\|\mathbf{x}(\cdot)\|_{K}+\mathbf{c}_{i}\left(t_{i, m}\right)^{\top} \mathbf{x}\left(t_{i, m}\right) \leq d_{i, m}, \forall m \in\left[M_{i}\right], \forall i \in[\mathcal{I}],
\end{aligned}
$$

with $\left[t_{0}, T\right] \subset \bigcup_{m \in[M]}\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right]$, and two values defined at each t_{m}

$$
\begin{aligned}
\eta_{i}\left(\delta_{m}, t_{m}\right) & :=\sup _{t \in\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right] \cap[0, T]}\left\|K\left(\cdot, t_{m}\right) \mathbf{c}_{i}\left(t_{m}\right)-K(\cdot, t) \mathbf{c}_{i}(t)\right\|_{K}, \\
d_{i, m} & :=\inf _{t \in\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right] \cap\left[t_{0}, T\right]} d_{i}(t) .
\end{aligned}
$$

Actually also works for ball constraints $\|\mathbf{x}(t)\|_{p} \leq 1$ and variations!

Main theoretical result in P.-C. Aubin, SICON, 2021
(H-gen) $\mathbf{A}(\cdot), \mathbf{Q}(\cdot) \in L^{1}$ and $\mathbf{B}(\cdot), \mathbf{R}(\cdot) \in L^{2}, \mathbf{c}_{i}(\cdot)$ and $d_{i}(\cdot) \in \mathcal{C}^{0}$.
(H-sol) $\mathbf{c}_{i}\left(t_{0}\right)^{\top} \mathbf{x}_{0}<d_{i}\left(t_{0}\right)$ and there exists a trajectory $\mathbf{x}^{\epsilon}(\cdot) \in \mathcal{S}$ satisfying strictly the affine constraints, as well as the initial condition. ${ }^{1}$
(H-obj) $g(\cdot)$ is convex and continuous.

Theorem (\exists /Approximation by SOC constraints, P.-C. Aubin, 2021)

Both the original problem and its strengthening have unique optimal solutions. For any $\rho>0$, there exists $\bar{\delta}>0$ such that for all $\left(\delta_{m}\right)_{m \in \llbracket 1, N_{0} \rrbracket}$, with $\left[t_{0}, T\right] \subset \cup_{m \in \llbracket 1, N_{0} \rrbracket}\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right]$ satisfying $\bar{\delta} \geq \max _{m \in \llbracket 1, N_{0} \rrbracket} \delta_{m}$,

$$
\frac{1}{\gamma_{K}} \sup _{t \in\left[t_{0}, T\right]}\left\|\overline{\mathbf{x}}_{\eta}(t)-\overline{\mathbf{x}}(t)\right\| \leq\left\|\overline{\mathbf{x}}_{\eta}(\cdot)-\overline{\mathbf{x}}(\cdot)\right\|_{K} \leq \rho
$$

with $\gamma_{K}:=\sup _{t \in[0, T], \mathbf{p} \in \mathbb{B}_{N}} \sqrt{\mathbf{p}^{\top} K(t, t) \mathbf{p}}$.

Main practical result in P.-C. Aubin, SICON, 2021

Problem of time-varying linear quadratic optimal control with finite horizon and affine inequality state constraints with SOC tightening

$$
\begin{aligned}
& \quad \min _{\mathbf{x}(\cdot) \in \mathcal{S}_{\left[t_{0}, T\right]}} \chi_{\mathbf{x}_{0}}\left(\mathbf{x}\left(t_{0}\right)\right)+g(\mathbf{x}(T))+\|\mathbf{x}(\cdot)\|_{K}^{2} \\
& \quad \text { s.t. } \\
& \eta_{i}\left(\delta_{m}, t_{m}\right)\|\mathbf{x}(\cdot)\|_{K}+\mathbf{c}_{i}\left(t_{i, m}\right)^{\top} \mathbf{x}\left(t_{i, m}\right) \leq d_{i, m}, \forall m \in\left[M_{i}\right], \forall i \in[\mathcal{I}] .
\end{aligned}
$$

By the representer theorem, the optimal solution has the form

$$
\overline{\mathbf{x}}(\cdot)=\sum_{j=0}^{P} \sum_{m=1}^{N_{j}} K\left(\cdot, t_{j, m}\right) \overline{\mathbf{p}}_{j, m},
$$

where $t_{0,1}=t_{0}$ and $t_{0,2}=T$, and the coefficients
$\left(\overline{\mathbf{p}}_{j, m}\right)_{j, m}$ solve a finite dimensional second-order cone problem.

Main practical result in P.-C. Aubin, SICON, 2021

More precisely, setting $t_{0,1}=t_{0}$ and $t_{0,2}=T$, the coefficients of the optimal solution $\overline{\mathbf{x}}(\cdot)=\sum_{j=0}^{P} \sum_{m=1}^{N_{j}} K\left(\cdot, t_{j, m}\right) \overline{\mathbf{p}}_{j, m}$ solve

$$
\begin{array}{cc}
\min _{\substack{\gamma \in \mathbb{R}_{+}, \mathbf{p}_{j, m} \in \mathbb{R}^{N}, \alpha_{j, m} \in \mathbb{R}}} \chi_{\mathbf{x}_{0}}\left(\sum_{j=0}^{P} \sum_{m=1}^{N_{j}} K\left(t_{0}, t_{j, m}\right) \overline{\mathbf{p}}_{j, m}\right)+g\left(\sum_{j=0}^{P} \sum_{m=1}^{N_{j}} K\left(T, t_{j, m}\right) \overline{\mathbf{p}}_{j, m}\right)+\gamma^{2} \\
\text { s.t. } & \gamma^{2}=\sum_{i=0}^{P} \sum_{n=1}^{N_{i}} \sum_{j=0}^{P} \sum_{m=1}^{N_{j}} \mathbf{p}_{i, n}^{\top} K\left(t_{i, n}, t_{j, m}\right) \mathbf{p}_{j, m}, \\
& \mathbf{p}_{j, m}=\alpha_{j, m} \mathbf{c}_{j}\left(t_{m}\right), \quad \forall m \in \llbracket 1, N_{j} \rrbracket, \forall j \in \llbracket 1, P \rrbracket, \\
\eta_{i}\left(\delta_{i, m}, t_{i, m}\right) \gamma+\sum_{j=0}^{P} \sum_{m=1}^{N_{j}} \mathbf{c}_{i}\left(t_{i, m}\right)^{\top} K\left(t_{i, m}, t_{j, m}\right) \mathbf{p}_{j, m} & \forall m \in \llbracket 1, N_{i} \rrbracket, \\
\leq d_{i}\left(\delta_{i, m}, t_{i, m}\right), & \forall i \in \llbracket 1, P \rrbracket,
\end{array}
$$

which can be written equivalently as a finite dimensional second-order cone problem (SOCP).

Take-home messages

"State-constrained LQ Optimal Control is a shape-constrained kernel regression."

"Controlled trajectories have the adequate structure to use kernel methods, most of all for path-planning."
"In general, positive definite kernels are much too linear to tackle nonlinear control problems \rightarrow Linearize! "

Future work: Pushing RKHSs beyond/Revisiting LQR

For RKHSs

- Control constraints do not correspond to continuous evaluations \hookrightarrow limits of RKHS pointwise theory (e.g. $x^{\prime}=u \in L^{2}([0, T],[-1,1])$ a.e.)
- Successive linearizations of nonlinear system lead to changing kernels
\hookrightarrow a single kernel may not be sufficient (e.g. $x^{\prime}=f_{\left[x_{n}(\cdot)\right]} x+f_{\left[u_{n}(\cdot)\right]} u$ a.e.)
- Non-quadratic costs for linear systems do not lead to Hilbert spaces \hookrightarrow one may need Banach kernels (e.g. $\left.\|\mathbf{u}(\cdot)\|_{L^{2}(0, T)}^{2} \rightarrow\|\mathbf{u}(\cdot)\|_{L^{1}(0, T)}\right)$

Future work: Pushing RKHSs beyond/Revisiting LQR

For RKHSs

- Control constraints do not correspond to continuous evaluations \hookrightarrow limits of RKHS pointwise theory (e.g. $x^{\prime}=u \in L^{2}([0, T],[-1,1])$ a.e.)
- Successive linearizations of nonlinear system lead to changing kernels \hookrightarrow a single kernel may not be sufficient (e.g. $x^{\prime}=f_{\left[x_{n}(\cdot)\right]} x+f_{\left[u_{n}(\cdot)\right]} u$ a.e.)
- Non-quadratic costs for linear systems do not lead to Hilbert spaces \hookrightarrow one may need Banach kernels (e.g. $\left.\|\mathbf{u}(\cdot)\|_{L^{2}(0, T)}^{2} \rightarrow\|\mathbf{u}(\cdot)\|_{L^{1}(0, T)}\right)$

For control theory

- To each evaluation at time t corresponds a covector $p_{t} \in \mathbb{R}^{Q}$
\hookrightarrow Representer theorem well adapted for state constraints, but unsuitable for control constraints. Reverts the difficulty w.r.t. PMP approach.
- The Gramian of controllability generates trajectories \hookrightarrow This allows for close-form solutions in continuous-time.

Future work and open questions

- Extending results to linear PDE control->done
- Extending results to Gramian of observability \& Kalman filter->almost done

This talk summarizes

- Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel methods, Aubin, SIAM J. on Control and Optimization, 2021
- Interpreting the dual Riccati equation through the $L Q$ reproducing kernel, Aubin, Comptes Rendus. Mathématique, 2021

The code is available at https://github.com/PCAubin
More to be found at https://pcaubin.github.io/

> Thank you for your attention!

References I

Aronszajn, N. (1950).
Theory of reproducing kernels.
Transactions of the American Mathematical Society, 68:337-404.

Berlinet, A. and Thomas-Agnan, C. (2004).
Reproducing Kernel Hilbert Spaces in Probability and Statistics.
Kluwer.

Heckman, N. (2012).
The theory and application of penalized methods or reproducing kernel Hilbert spaces made easy. Statistics Surveys, 6(0):113-141.

Micheli, M. and Glaunès, J. A. (2014).
Matrix-valued kernels for shape deformation analysis.
Geometry, Imaging and Computing, 1(1):57-139.

References II

Saitoh, S. and Sawano, Y. (2016).
Theory of Reproducing Kernels and Applications.
Springer Singapore.
R Schölkopf, B., Herbrich, R., and Smola, A. J. (2001).
A generalized representer theorem.
In Computational Learning Theory (CoLT), pages 416-426.
國 Van Loan, C. (1978).
Computing integrals involving the matrix exponential.
IEEE Transactions on Automatic Control, 23(3):395-404.

Annex: Green kernels and RKHSs

Let D be a differential operator, D^{*} its formal adjoint. Define the Green function $G_{D^{*} D, x}(y): \Omega \rightarrow \mathbb{R}$ s.t. $D^{*} D G_{D^{*} D, x}(y)=\delta_{z}(y)$ then, if the integrals over the boundaries in Green's formula are null, for any $f \in \mathcal{F}_{k}$

$$
f(x)=\int_{\Omega} f(y) D^{*} D G_{D^{*} D, x}(y) d y=\int_{\Omega} D f(y) D G_{D^{*} D, x}(y)=:\left\langle f, G_{D^{*} D, x}\right\rangle_{\mathscr{F}_{k}},
$$

so $k(x, y)=G_{D^{*} D, x}(y)$ [Saitoh and Sawano, 2016, p61]. For vector-valued contexts, e.g. $\mathcal{F}_{K}=W^{s, 2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ and $D^{*} D=\left(1-\sigma^{2} \Delta\right)^{s}$ component-wise, see [Micheli and Glaunès, 2014, p9].

Alternatively, in 1D, $D G_{D, x}(y)=\delta_{z}(y)$, the kernel associated to the inner product $\int_{\Omega} D f(y) D g(y) d y$ for the space of f "null at the border" writes as

$$
k(x, y)=\int_{\Omega} G_{D, x}(z) G_{D, y}(z) d z
$$

see [Berlinet and Thomas-Agnan, 2004, p286] and [Heckman, 2012].

Annex: IPC gives strictly feasible trajectories

(H-sol) $\mathbf{C}(0) \mathbf{x}_{0}<\mathbf{d}(0)$ and there exists a trajectory $\mathbf{x}^{\epsilon}(\cdot) \in \mathcal{S}$ satisfying strictly the affine constraints, as well as the initial condition.
(H1) $\mathbf{A}(\cdot), \mathbf{B}(\cdot) \in \mathcal{C}^{0}, \mathbf{c}_{i}(\cdot), d_{i}(\cdot) \in \mathcal{C}^{1}$ and $\mathbf{C}(0) \mathbf{x}_{0}<\mathbf{d}(0)$.
(H2) There exists $M_{u}>0$ s.t. , for all $t \in\left[t_{0}, T\right]$ and $\mathbf{x} \in \mathbb{R}^{Q}$ satisfying $\mathbf{C}(t) \mathbf{x} \leq \mathbf{d}(t)$, and $\|\mathbf{x}\| \leq\left(1+\left\|\mathbf{x}_{0}\right\|\right) e^{T\|\mathbf{A}(\cdot)\|_{L \infty}\left(t_{0}, T\right)+T M_{u}\|\mathbf{B}(\cdot)\|_{L \infty}\left(t_{0}, T\right)}$, there exists $\mathbf{u}_{t, x} \in M_{u} \mathbb{B}_{M}$ such that

$$
\forall i \in\left\{j \mid \mathbf{c}_{j}(t)^{\top} \mathbf{x}=d_{j}(t)\right\}, \mathbf{c}_{i}^{\prime}(t)^{\top} \mathbf{x}-d_{i}^{\prime}(t)+\mathbf{c}_{i}(t)^{\top}\left(\mathbf{A}(t) \mathbf{x}+\mathbf{B}(t) \mathbf{u}_{t, x}\right)<0
$$

This is an inward-pointing condition (IPC) at the boundary.

Lemma (Existence of interior trajectories)

If (H1) and (H2) hold, then (H-sol) holds.

Annex: control proof main idea, nested property

$$
\begin{gathered}
\eta_{i}(\delta, t):=\sup \left\|K(\cdot, t) \mathbf{c}_{i}(t)-K(\cdot, s) \mathbf{c}_{i}(s)\right\|_{K}, \quad \omega_{i}(\delta, t):=\sup \left|d_{i}(t)-d_{i}(s)\right|, \\
d_{i}\left(\delta_{m}, t_{m}\right):=\inf d_{i}(s), \quad \text { over } s \in\left[t_{m}-\delta_{m}, t_{m}+\delta_{m}\right] \cap\left[t_{0}, T\right]
\end{gathered}
$$

For $\overrightarrow{\boldsymbol{\epsilon}} \in \mathbb{R}_{+}^{P}$, the constraints we shall consider are defined as follows

$$
\begin{aligned}
\mathcal{V}_{0} & :=\left\{\mathbf{x}(\cdot) \in \mathcal{S} \mid \mathbf{C}(t) \mathbf{x}(t) \leq \mathbf{d}(t), \forall t \in\left[t_{0}, T\right]\right\}, \\
\mathcal{V}_{\delta, \text { fin }} & :=\left\{\mathbf{x}(\cdot) \in \mathcal{S} \mid \overrightarrow{\boldsymbol{\eta}}\left(\delta_{m}, t_{m}\right)\|\mathbf{x}(\cdot)\|_{K}+\mathbf{C}\left(t_{m}\right) \mathbf{x}\left(t_{m}\right) \leq \mathbf{d}\left(\delta_{m}, t_{m}\right), \forall m \in \llbracket 1, M_{0} \rrbracket\right\}, \\
\mathcal{V}_{\delta, \text { inf }} & :=\left\{\mathbf{x}(\cdot) \in \mathcal{S} \mid \overrightarrow{\boldsymbol{\eta}}(\delta, t)\|\mathbf{x}(\cdot)\|_{K}+\vec{\omega}(\delta, t)+\mathbf{C}(t) \mathbf{x}(t) \leq \mathbf{d}(t), \forall t \in\left[t_{0}, T\right]\right\}, \\
\mathcal{V}_{\vec{\epsilon}} & :=\left\{\mathbf{x}(\cdot) \in \mathcal{S} \mid \vec{\epsilon}+\mathbf{C}(t) \mathbf{x}(t) \leq \mathbf{d}(t), \forall t \in\left[t_{0}, T\right]\right\} .
\end{aligned}
$$

Proposition (Nested sequence)

Let $\delta_{\text {max }}:=\max _{m \in \llbracket 1, M_{0} \rrbracket} \delta_{m}$. For any $\delta \geq \delta_{\text {max }}$, if, for a given $y_{0} \geq 0$, $\epsilon_{i} \geq \sup _{t \in\left[t_{0}, T\right]}\left[\eta_{i}(\delta, t) y_{0}+\omega_{i}(\delta, t)\right]$, then we have a nested sequence

$$
\left(\mathcal{V}_{\vec{\epsilon}} \cap y_{0} \mathbb{B}_{K}\right) \subset \mathcal{V}_{\delta, i n f} \subset \mathcal{V}_{\delta, \text { fin }} \subset \mathcal{V}_{0}
$$

Numerical example 2: constrained pendulum - definition
Constrained pendulum when controlling the third derivative of the angle

$$
\begin{gathered}
\underbrace{x(0)=0.5, \quad \dot{x}(0)=0, \quad w(0)=0, \quad x(T / 3)=0.5, \quad x(T)=0}_{\min _{x(\cdot), w(\cdot), u(\cdot)}-\dot{x}(T)+\lambda\|u(\cdot)\|_{L^{2}(0, T)}^{2} \quad \lambda \ll 1} \\
\underbrace{}_{\substack{\ddot{x}(t)=-10 x(t)+w(t), \quad \dot{w}(t)=u(t), \text { a.e. in }[0, T] \\
\dot{x}(t) \in[-3,+\infty[, \quad w(t) \in[-10,10], \forall t \in[0, T]}}
\end{gathered}
$$

Numerical example 2: constrained pendulum - definition
Constrained pendulum when controlling the third derivative of the angle

$$
\begin{gathered}
\min _{x(\cdot), w(\cdot), u(\cdot)}-\dot{x}(T)+\lambda\|u(\cdot)\|_{L^{2}(0, T)}^{2} \quad \lambda \ll 1 \\
x(0)=0.5, \quad \dot{x}(0)=0, \quad w(0)=0, \quad x(T / 3)=0.5, \quad x(T)=0 \\
\ddot{x}(t)=-10 x(t)+w(t), \quad \dot{w}(t)=u(t), \text { a.e. in }[0, T] \\
\dot{x}(t) \in[-3,+\infty[, \quad w(t) \in[-10,10], \forall t \in[0, T]
\end{gathered}
$$

Converting affine state constraints to SOC constraints, applying rep. thm

$$
\begin{aligned}
\eta_{\dot{x}}\|\mathbf{x}(\cdot)\|_{K}-\dot{x}\left(t_{m}\right) & \leq 3 \\
\eta_{w}\|\mathbf{x}(\cdot)\|_{K}+w\left(t_{m}\right) & \leq 10, \\
\eta_{w}\|\mathbf{x}(\cdot)\|_{K}-w\left(t_{m}\right) & \leq 10
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\mathbf{x}}(\cdot)=K(\cdot, 0) \mathbf{p}_{0}+K(\cdot, T / 3) \mathbf{p}_{T / 3} \\
& \quad+K(\cdot, T) \mathbf{p}_{T}+\sum_{m=1}^{M} K\left(\cdot, t_{m}\right) \mathbf{p}_{m}
\end{aligned}
$$

Most of computational cost is related to the "controllability Gramians" $K_{1}(s, t)=\int_{0}^{\min (s, t)} \mathbf{e}^{(s-\tau) \mathbf{A}} \mathbf{B} \mathbf{B}^{\top} \mathbf{e}^{(t-\tau) \mathbf{A}^{\top}} \mathrm{d} \tau$ which we have to approximate.

Numerical example 2: constrained pendulum - illustration

Optimal solutions of the constrained pendulum "path-planning" problem.
Red circles: equality constraints. Grayed areas: constraints over [0, T].
Angle $x(\cdot) \quad$ Velocity $\dot{x}(\cdot) \quad$ Couple $w(\cdot)$

Numerical example 2: constrained pendulum - illustration

Optimal solutions of the constrained pendulum "path-planning" problem. Red circles: equality constraints. Grayed areas: constraints over [0, T]. Angle $x(\cdot) \quad$ Velocity $\dot{x}(\cdot) \quad$ Couple $w(\cdot)$

Numerical example 2: constrained pendulum - illustration

Optimal solutions of the constrained pendulum "path-planning" problem.
Red circles: equality constraints. Grayed areas: constraints over [0, T].
Angle $x(\cdot) \quad$ Velocity $\dot{x}(\cdot) \quad$ Couple $w(\cdot)$

Numerical example 2: constrained pendulum - illustration

Optimal solutions of the constrained pendulum "path-planning" problem.
Red circles: equality constraints. Grayed areas: constraints over [0, T].
Angle $x(\cdot) \quad$ Velocity $\dot{x}(\cdot) \quad$ Couple $w(\cdot)$

