State-constrained Linear-Quadratic Optimal Control is a shape-constrained kernel regression

Pierre-Cyril Aubin-Frankowski

INRIA Paris - SIERRA

ORCOS VC, Vienna 2022

Where to use Machine Learning in control theory?

Many objects can be learnt depending on the available data

- Trajectory
- Control
- Vector field
- Lagrangian
- Value function

 $\begin{aligned} x &: t \in [t_0, T] \mapsto \mathbb{R}^Q \\ u &: t \in [t_0, T] \mapsto \mathbb{R}^P \\ f &: (t, x, u) \mapsto \mathbb{R}^Q \\ L &: (t, x, u) \mapsto \mathbb{R} \cup \{\infty\} \\ V_{T, x_T} &: (t_0, x_0) \mapsto \mathbb{R} \cup \{\infty\} \end{aligned}$

Which one should we try to approximate?

What is the most principled/theoretically grounded application of <u>kernel methods</u>?

Where to use Machine Learning in control theory?

Many objects can be learnt depending on the available data

- Trajectory
- Control
- Vector field
- Lagrangian
- Value function

 $\begin{aligned} x &: t \in [t_0, T] \mapsto \mathbb{R}^Q \\ u &: t \in [t_0, T] \mapsto \mathbb{R}^P \\ f &: (t, x, u) \mapsto \mathbb{R}^Q \\ L &: (t, x, u) \mapsto \mathbb{R} \cup \{\infty\} \\ V_{T, x_T} &: (t_0, x_0) \mapsto \mathbb{R} \cup \{\infty\} \end{aligned}$

Which one should we try to approximate?

What is the most principled/theoretically grounded application of <u>kernel methods</u>?

Trajectories of linear systems belong to a reproducing kernel Hilbert space (RKHS)!

State constraints are then easy to satisfy!

Table of Contents

Finding the RKHS of LQ optimal control

2 Dealing with an infinite number of constraints

This talk summarizes

- Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel methods, Aubin, SIAM J. on Control and Optimization, 2021
- Interpreting the dual Riccati equation through the LQ reproducing kernel, Aubin, Comptes Rendus. Mathématique, 2021

The code is available at https://github.com/PCAubin.

Follow-ups are on their way

Operator-valued Kernels and Control of Infinite dimensional Dynamic Systems, Aubin, Alain Bensoussan **arxiv.org/abs/2206.09419**

Time-varying state-constrained LQ optimal control

$$\begin{split} \min_{\mathbf{x}(\cdot),\mathbf{u}(\cdot)} & \chi_{\mathbf{x}_0}(\mathbf{x}(t_0)) + g(\mathbf{x}(\mathcal{T})) \\ + \mathbf{x}(t_{ref})^\top \mathbf{J}_{ref} \mathbf{x}(t_{ref}) + \int_{t_0}^{\mathcal{T}} \left[\mathbf{x}(t)^\top \mathbf{Q}(t) \mathbf{x}(t) + \mathbf{u}(t)^\top \mathbf{R}(t) \mathbf{u}(t) \right] \mathrm{d}t \\ \text{s.t.} & \mathbf{x}'(t) = \mathbf{A}(t) \mathbf{x}(t) + \mathbf{B}(t) \mathbf{u}(t), \text{ a.e. in } [t_0, \mathcal{T}], \\ & \mathbf{c}_i(t)^\top \mathbf{x}(t) \leq d_i(t), \forall t \in \mathcal{T}_c, \forall i \in [\mathcal{I}] = \llbracket 1, \mathcal{I} \rrbracket, \end{split}$$

- state $\mathbf{x}(t) \in \mathbb{R}^Q$, control $\mathbf{u}(t) \in \mathbb{R}^P$,
- reference time $t_{ref} \in [t_0, T]$, set of constraint times $\mathfrak{T}_c \subset [t_0, T]$,
- $A(\cdot) \in L^1(t_0, T)$, $B(\cdot) \in L^2(t_0, T)$, $Q(\cdot) \in L^1(t_0, T)$, $R(\cdot) \in L^2(t_0, T)$,
- $\mathbf{Q}(t) \succcurlyeq 0 \text{ and } \mathbf{R}(t) \succcurlyeq r \operatorname{Id}_{M}(r > 0), \ \mathbf{c}_{i}(\cdot), d_{i}(\cdot) \in C^{0}(t_{0}, T), \ \mathbf{J}_{ref} \succ \mathbf{0},$
- lower-semicontinuous terminal cost $g : \mathbb{R}^Q \to R \cup \{\infty\}$, indicator function $\chi_{\mathbf{x}_0}$,

•
$$\mathbf{x}(\cdot) : [t_0, T] \to \mathbb{R}^Q$$
 absolutely continuous, $\mathbf{R}(\cdot)^{1/2} \mathbf{u}(\cdot) \in L^2([t_0, T])$

Time-varying state-constrained LQ optimal control

$$\begin{split} \min_{\mathbf{x}(\cdot),\mathbf{u}(\cdot)} & \chi_{\mathbf{x}_{0}}(\mathbf{x}(t_{0})) + g(\mathbf{x}(\mathcal{T})) & \to L(\mathbf{x}(t_{j})_{j \in [\mathcal{I}]} \\ + \mathbf{x}(t_{ref})^{\top} \mathbf{J}_{ref} \mathbf{x}(t_{ref}) + \int_{t_{0}}^{\mathcal{T}} \left[\mathbf{x}(t)^{\top} \mathbf{Q}(t) \mathbf{x}(t) + \mathbf{u}(t)^{\top} \mathbf{R}(t) \mathbf{u}(t) \right] \mathrm{d}t & \to \|\mathbf{x}(\cdot)\|_{\mathcal{S}}^{2} \\ \text{s.t.} & \mathbf{x}'(t) = \mathbf{A}(t) \mathbf{x}(t) + \mathbf{B}(t) \mathbf{u}(t), \text{ a.e. in } [t_{0}, \mathcal{T}], \\ & \mathbf{c}_{i}(t)^{\top} \mathbf{x}(t) \leq d_{i}(t), \forall t \in \mathcal{T}_{c}, \forall i \in [\mathcal{I}] = [\![1, \mathcal{I}]\!], \end{split}$$

- state $\mathbf{x}(t) \in \mathbb{R}^Q$, control $\mathbf{u}(t) \in \mathbb{R}^P$,
- reference time $t_{ref} \in [t_0, T]$, set of constraint times $\mathfrak{T}_c \subset [t_0, T]$,
- $A(\cdot) \in L^1(t_0, T)$, $B(\cdot) \in L^2(t_0, T)$, $Q(\cdot) \in L^1(t_0, T)$, $R(\cdot) \in L^2(t_0, T)$,
- $\mathbf{Q}(t) \succcurlyeq 0 \text{ and } \mathbf{R}(t) \succcurlyeq r \operatorname{Id}_{M}(r > 0), \mathbf{c}_{i}(\cdot), d_{i}(\cdot) \in C^{0}(t_{0}, T), \mathbf{J}_{ref} \succ \mathbf{0},$
- lower-semicontinuous terminal cost $g : \mathbb{R}^Q \to R \cup \{\infty\}$, indicator function $\chi_{\mathbf{x}_0}$, "loss function" $L : (\mathbb{R}^Q)^J \to \mathbb{R} \cup \{\infty\}$,
- $\mathbf{x}(\cdot) : [t_0, T] \to \mathbb{R}^Q$ absolutely continuous, $\mathbf{R}(\cdot)^{1/2} \mathbf{u}(\cdot) \in L^2([t_0, T])$

Why are state constraints difficult to study?

- **Theoretical obstacle**: Pontryagine's Maximum Principle involves not only an adjoint vector $\mathbf{p}(t)$ but also measures/BV functions $\psi(t)$ supported at times where the constraints are saturated. You cannot just backpropagate the Hamiltonian system from the transversality condition.
- Numerical obstacle: Time discretization of constraints may fail e.g.

Speed cameras in traffic control

In between two cameras, drivers always break the speed limit.

Reproducing kernel Hilbert spaces (RKHS)

A RKHS $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$ is a Hilbert space of real-valued functions over a set \mathcal{T} if one of the following equivalent conditions is satisfied [Aronszajn, 1950]

 $\exists k : \mathfrak{T} \times \mathfrak{T} \to \mathbb{R} \text{ s.t. } k_t(\cdot) = k(\cdot, t) \in \mathfrak{F}_k \text{ and } f(t) = \langle f(\cdot), k_t(\cdot) \rangle_{\mathfrak{F}_k} \text{ for all } t \in \mathfrak{T} \text{ and } f \in \mathfrak{F}_k$ (reproducing property)

the topology of $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$ is stronger than pointwise convergence i.e. $\delta_t : f \in \mathcal{F}_k \mapsto f(t)$ is continuous for all $t \in \mathcal{T}$.

$$|f(t) - f_n(t)| = |\langle f - f_n, k_t \rangle_{\mathcal{F}_k}| \le ||f - f_n||_{\mathcal{F}_k} ||k_t||_{\mathcal{F}_k} = ||f - f_n||_{\mathcal{F}_k} \sqrt{k(t, t)}$$

For $\mathfrak{T} \subset \mathbb{R}^d$, Sobolev spaces $\mathcal{H}^s(\mathfrak{T}, \mathbb{R})$ satisfying $s > d/2$ are RKHSs.

$$\begin{cases} H_0^1 = \{f \mid f(0) = 0, \exists f' \in L^2(0,\infty)\} \\ \langle f,g \rangle_{H_0^1} = \int_0^\infty f'g' \mathrm{d}t \end{cases} \longleftrightarrow k(t,s) = \min(t,s).$$

Other classical kernels

$$k_{\mathsf{Gauss}}(t,s) = \exp\left(-\|t-s\|_{\mathbb{R}^d}^2/(2\sigma^2)
ight) \quad k_{\mathsf{poly}}(t,s) = (1+\langle t,s
angle_{\mathbb{R}^d})^2.$$

Two essential tools for computations

Representer Theorem (e.g. [Schölkopf et al., 2001])

Let $L : \mathbb{R}^N \to \mathbb{R} \cup \{\infty\}$, strictly increasing $\Omega : \mathbb{R}_+ \to \mathbb{R}$, and

$$\overline{f} \in \operatorname*{arg\,min}_{f \in \mathcal{F}_k} L\left((f(t_n))_{n \in [N]} \right) + \Omega\left(\|f\|_k \right)$$

Then
$$\exists (a_n)_{n \in [N]} \in \mathbb{R}^N$$
 s.t. $\overline{f}(\cdot) = \sum_{n \in [N]} a_n k(\cdot, t_n)$

 \hookrightarrow Optimal solutions lie in a finite dimensional subspace of \mathcal{F}_k .

Finite number of evaluations \implies finite number of coefficients

Kernel trick

$$\langle \sum_{n \in [N]} a_n k(\cdot, t_n), \sum_{m \in [M]} b_m k(\cdot, s_m) \rangle_{\mathcal{F}_k} = \sum_{n \in [N]} \sum_{m \in [M]} a_n b_m k(t_n, s_m)$$

 \hookrightarrow On this finite dimensional subspace, no need to know $(\mathcal{F}_k, \langle \cdot, \cdot \rangle_{\mathcal{F}_k})$.

Vector-valued reproducing kernel Hilbert space (vRKHS)

Definition (vRKHS)

Let \mathcal{T} be a non-empty set. A Hilbert space $(\mathcal{F}_{\mathcal{K}}, \langle \cdot, \cdot \rangle_{\mathcal{K}})$ of \mathbb{R}^{Q} -vector-valued functions defined on \mathcal{T} is a vRKHS if there exists a matrix-valued kernel $\mathcal{K} : \mathcal{T} \times \mathcal{T} \to \mathbb{R}^{Q \times Q}$ such that the reproducing property holds:

 $\mathcal{K}(\cdot,t)\mathbf{p}\in\mathfrak{F}_{\mathcal{K}}, \quad \mathbf{p}^{\top}\mathbf{f}(t)=\langle \mathbf{f},\mathcal{K}(\cdot,t)\mathbf{p}
angle_{\mathcal{K}}, \quad ext{ for } t\in\mathfrak{T}, \, \mathbf{p}\in\mathbb{R}^Q, \mathbf{f}\in\mathfrak{F}_{\mathcal{K}}$

There is a one-to-one correspondence between K and $(\mathcal{F}_{K}, \langle \cdot, \cdot \rangle_{K})$ [Micheli and Glaunès, 2014], so changing \mathcal{T} or $\langle \cdot, \cdot \rangle_{K}$ changes K.

Theorem (Representer theorem with constraints, P.-C. Aubin, 2021)

Let $(\mathcal{F}_{\mathcal{K}}, \langle \cdot, \cdot \rangle_{\mathcal{K}})$ be a vRKHS defined on a set \mathfrak{T} . For a "loss" $L : \mathbb{R}^{N_0} \to \mathbb{R} \cup \{+\infty\}$, strictly increasing "regularizer" $\Omega : \mathbb{R}_+ \to \mathbb{R}$, and constraints $d_i : \mathbb{R}^{N_i} \to \mathbb{R}$, consider the optimization problem

$$\begin{split} \bar{\mathbf{f}} &\in \mathop{\arg\min}_{\mathbf{f}\in\mathcal{F}_{K}} \quad L\left(\mathbf{c}_{0,1}^{\top}\mathbf{f}(t_{0,1}), \dots, \mathbf{c}_{0,N_{0}}^{\top}\mathbf{f}(t_{0,N_{0}})\right) + \Omega\left(\|\mathbf{f}\|_{K}\right) \\ &\text{s.t.} \\ \lambda_{i}\|\mathbf{f}\|_{K} \leq d_{i}(\mathbf{c}_{i,1}^{\top}\mathbf{f}(t_{i,1}), \dots, \mathbf{c}_{i,N_{i}}^{\top}\mathbf{f}(t_{i,N_{i}})), \,\forall \, i \in \llbracket 1, P \rrbracket. \end{split}$$

Then there exists $\{\mathbf{p}_{i,m}\}_{m\in [\![1,N_i]\!]} \subset \mathbb{R}^Q$ and $\alpha_{i,m} \in \mathbb{R}$ such that

$$\bar{\mathbf{f}} = \sum_{i=0}^{P} \sum_{m=1}^{N_i} K(\cdot, t_{i,m}) \mathbf{p}_{i,m}$$
 with $\mathbf{p}_{i,m} = \alpha_{i,m} \mathbf{c}_{i,m}$.

Objective: Turn the state-constrained LQR into "KRR"

We have a vector space $\mathcal S$ of controlled trajectories $\mathbf x(\cdot):[t_0,T] o \mathbb R^Q$

$$\mathcal{S}_{[t_0,\mathcal{T}]} := \{ \mathsf{x}(\cdot) \, | \, \exists \, \mathsf{u}(\cdot) \in L^2(t_0,\mathcal{T}) \text{ s.t. } \mathsf{x}'(t) = \mathsf{A}(t)\mathsf{x}(t) + \mathsf{B}(t)\mathsf{u}(t) \text{ a.e. } \}$$

Given $\mathbf{x}(\cdot)\in\mathcal{S}_{[t_0,\mathcal{T}]}$, for the pseudoinverse $\mathbf{B}(t)^\ominus$ of $\mathbf{B}(t)$, set

$$\begin{split} \mathbf{u}(t) &:= \mathbf{B}(t)^{\ominus}[\mathbf{x}'(t) - \mathbf{A}(t)\mathbf{x}(t)] \text{ a.e. in } [t_0, T].\\ \langle \mathbf{x}_1(\cdot), \mathbf{x}_2(\cdot) \rangle_{\mathcal{S}} &:= \mathbf{x}_1(t_{ref})^\top \mathbf{J}_{ref} \mathbf{x}_2(t_{ref})\\ &+ \int_{t_0}^T \left[\mathbf{x}_1(t)^\top \mathbf{Q}(t) \mathbf{x}_2(t) + \mathbf{u}_1(t)^\top \mathbf{R}(t) \mathbf{u}_2(t) \right] \mathrm{d}t \end{split}$$

LQR for $\mathbf{Q}\equiv0$, $\mathbf{R}\equivId$	"KRR" (Kernel Ridge Regression)
$\min_{\substack{\mathbf{x}(\cdot)\in\mathcal{S}\\\mathbf{u}(\cdot)\in\mathcal{L}^2}} L(\mathbf{x}(t_j)_{j\in[J]}) + \ \mathbf{u}(\cdot)\ _{L^2(t_0,T)}^2$	$\min_{\mathbf{x}(\cdot)\in\mathcal{S}} L(\mathbf{x}(t_j)_{j\in[J]}) + \ \mathbf{x}(\cdot)\ _{\mathcal{S}}^2$
$\mathbf{c}_i(t)^ op \mathbf{x}(t) \leq d_i(t), t \in \mathbb{T}_c, i \in [\mathcal{I}]$	$\mathbf{c}_i(t)^ op \mathbf{x}(t) \leq d_i(t), t \in \mathbb{T}_c, i \in [\mathcal{I}]$
$l_{c}(S / \lambda) = DKHS2$	

Is $(\mathcal{S}, \langle \cdot, \cdot
angle_{\mathcal{S}})$ a RKHS?

Objective: Turn the state-constrained LQR into "KRR"

We have a vector space $\mathcal S$ of controlled trajectories $\mathbf x(\cdot):[t_0,\mathcal T] o\mathbb R^Q$

$$\mathcal{S}_{[t_0,\mathcal{T}]} := \{ \mathbf{x}(\cdot) \, | \, \exists \, \mathbf{u}(\cdot) \in L^2(t_0,\mathcal{T}) \text{ s.t. } \mathbf{x}'(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t) \text{ a.e. } \}$$

Given $\mathbf{x}(\cdot)\in\mathcal{S}_{[t_0,\mathcal{T}]}$, for the pseudoinverse $\mathbf{B}(t)^\ominus$ of $\mathbf{B}(t)$, set

$$\begin{aligned} \mathbf{u}(t) &:= \mathbf{B}(t)^{\ominus} [\mathbf{x}'(t) - \mathbf{A}(t)\mathbf{x}(t)] \text{ a.e. in } [t_0, T]. \\ \langle \mathbf{x}_1(\cdot), \mathbf{x}_2(\cdot) \rangle_{\mathcal{S}} &:= \mathbf{x}_1(t_{ref})^\top \mathbf{J}_{ref} \mathbf{x}_2(t_{ref}) \\ &+ \int_{t_0}^T \left[\mathbf{x}_1(t)^\top \mathbf{Q}(t) \mathbf{x}_2(t) + \mathbf{u}_1(t)^\top \mathbf{R}(t) \mathbf{u}_2(t) \right] \mathrm{d}t \end{aligned}$$

Lemma (P.-C. Aubin, SICON 2021)

 $(S_{[t_0,T]}, \langle \cdot, \cdot \rangle_{S})$ is a vRKHS over $[t_0, T]$ with uniformly continuous $K(\cdot, \cdot; [t_0, T])$.

Splitting $S_{[t_0,T]}$ into subspaces and identifying their kernels

It is hard to identify K, but take $\mathbf{Q} \equiv \mathbf{0}$, $\mathbf{R} \equiv \mathsf{Id}$, $t_{ref} = t_0$, $\mathbf{J}_{ref} = \mathsf{Id}$

$$\begin{aligned} \langle \mathbf{x}_1(\cdot), \mathbf{x}_2(\cdot) \rangle_{\mathcal{S}} &:= \mathbf{x}_1(t_0)^\top \mathbf{x}_2(t_0) + \int_{t_0}^T \mathbf{u}_1(t)^\top \mathbf{u}_2(t) \mathrm{d}t. \\ \mathcal{S}_0 &:= \{ \mathbf{x}(\cdot) \,|\, \mathbf{x}'(t) = \mathbf{A}(t)\mathbf{x}(t), \text{ a.e. in } [t_0, T] \} \qquad \|\mathbf{x}(\cdot)\|_{\mathcal{K}_0}^2 = \|\mathbf{x}(t_0)\|^2 \\ \mathcal{S}_u &:= \{ \mathbf{x}(\cdot) \,|\, \mathbf{x}(\cdot) \in \mathcal{S} \text{ and } \mathbf{x}(t_0) = 0 \} \qquad \|\mathbf{x}(\cdot)\|_{\mathcal{K}_1}^2 = \|\mathbf{u}(\cdot)\|_{L^2(t_0, T)}^2. \end{aligned}$$

As $S = S_0 \oplus S_u$, $K = K_0 + K_1$.

Splitting $S_{[t_0,T]}$ into subspaces and identifying their kernels

It is hard to identify K, but take $\mathbf{Q} \equiv \mathbf{0}$, $\mathbf{R} \equiv \mathsf{Id}$, $t_{ref} = t_0$, $\mathbf{J}_{ref} = \mathsf{Id}$

$$\langle \mathbf{x}_{1}(\cdot), \mathbf{x}_{2}(\cdot) \rangle_{\mathcal{S}} := \mathbf{x}_{1}(t_{0})^{\top} \mathbf{x}_{2}(t_{0}) + \int_{t_{0}}^{T} \mathbf{u}_{1}(t)^{\top} \mathbf{u}_{2}(t) dt.$$

$$\mathcal{S}_{0} := \{ \mathbf{x}(\cdot) \, | \, \mathbf{x}'(t) = \mathbf{A}(t) \mathbf{x}(t), \text{ a.e. in } [t_{0}, T] \} \qquad \| \mathbf{x}(\cdot) \|_{K_{0}}^{2} = \| \mathbf{x}(t_{0}) \|^{2}$$

$$\mathcal{S}_{u} := \{ \mathbf{x}(\cdot) \, | \, \mathbf{x}(\cdot) \in \mathcal{S} \text{ and } \mathbf{x}(t_{0}) = 0 \} \qquad \| \mathbf{x}(\cdot) \|_{K_{1}}^{2} = \| \mathbf{u}(\cdot) \|_{L^{2}(t_{0}, T)}^{2}.$$

As $S = S_0 \oplus S_u$, $K = K_0 + K_1$. Since dim $(S_0) = Q$, for $\Phi_A(t, s) \in \mathbb{R}^{Q \times Q}$ the state-transition matrix $s \to t$ of $\mathbf{x}'(\tau) = \mathbf{A}(\tau)\mathbf{x}(\tau)$

 $K_0(s,t) = \mathbf{\Phi}_{\mathbf{A}}(s,t_0)\mathbf{\Phi}_{\mathbf{A}}(t,t_0)^{\top}.$

Splitting $S_{[t_0,T]}$ into subspaces and identifying their kernels

It is hard to identify K, but take $\mathbf{Q} \equiv \mathbf{0}$, $\mathbf{R} \equiv \mathsf{Id}$, $t_{ref} = t_0$, $\mathbf{J}_{ref} = \mathsf{Id}$

$$\langle \mathbf{x}_{1}(\cdot), \mathbf{x}_{2}(\cdot) \rangle_{\mathcal{S}} := \mathbf{x}_{1}(t_{0})^{\top} \mathbf{x}_{2}(t_{0}) + \int_{t_{0}}^{T} \mathbf{u}_{1}(t)^{\top} \mathbf{u}_{2}(t) dt.$$

$$\mathcal{S}_{0} := \{ \mathbf{x}(\cdot) \, | \, \mathbf{x}'(t) = \mathbf{A}(t) \mathbf{x}(t), \text{ a.e. in } [t_{0}, T] \} \qquad \| \mathbf{x}(\cdot) \|_{K_{0}}^{2} = \| \mathbf{x}(t_{0}) \|^{2}$$

$$\mathcal{S}_{u} := \{ \mathbf{x}(\cdot) \, | \, \mathbf{x}(\cdot) \in \mathcal{S} \text{ and } \mathbf{x}(t_{0}) = 0 \} \qquad \| \mathbf{x}(\cdot) \|_{K_{1}}^{2} = \| \mathbf{u}(\cdot) \|_{L^{2}(t_{0}, T)}^{2}.$$

As $S = S_0 \oplus S_u$, $K = K_0 + K_1$. Since dim $(S_0) = Q$, for $\Phi_A(t, s) \in \mathbb{R}^{Q \times Q}$ the state-transition matrix $s \to t$ of $\mathbf{x}'(\tau) = \mathbf{A}(\tau)\mathbf{x}(\tau)$

$$\mathcal{K}_0(s,t) = \mathbf{\Phi}_{\mathbf{A}}(s,t_0)\mathbf{\Phi}_{\mathbf{A}}(t,t_0)^{\top}.$$

 K_1 obtained using only the reproducing property and variation of constants

$$\mathcal{K}_{1}(s,t) = \int_{t_{0}}^{\min(s,t)} \mathbf{\Phi}_{\mathsf{A}}(s,\tau) \mathbf{B}(\tau) \mathbf{B}(\tau)^{\top} \mathbf{\Phi}_{\mathsf{A}}(t,\tau)^{\top} \mathrm{d}\tau.$$

Examples: controllability Gramian/transversality condition

Steer a point from (0,0) to (T, \mathbf{x}_T) , with e.g. $g(\mathbf{x}(T)) = \|\mathbf{x}_T - \mathbf{x}(T)\|_N^2$

Exact planning $(\mathbf{x}(\mathcal{T}) = \mathbf{x}_{\mathcal{T}})$	Relaxed planning $(\mathbf{g}\in\mathcal{C}^1$ convex)
$ \min_{\substack{\mathbf{x}(\cdot) \in \mathcal{S} \\ \mathbf{x}(0) = 0}} \chi_{\mathbf{x}_{\mathcal{T}}}(\mathbf{x}(\mathcal{T})) + \frac{1}{2} \ \mathbf{u}(\cdot)\ _{L^{2}(t_{0},\mathcal{T})}^{2} $	$\min_{\substack{\mathbf{x}(\cdot)\in\mathcal{S}\\\mathbf{x}(0)=0}} g(\mathbf{x}(T)) + \frac{1}{2} \ \mathbf{u}(\cdot)\ _{L^2(t_0,T)}^2$

 $\mathbf{x}(0) = \mathbf{0} \Leftrightarrow \mathbf{x}(\cdot) \in \mathcal{S}_u. \text{ Representer theorem: } \exists \, \mathbf{p}_{\mathcal{T}}, \, \bar{\mathbf{x}}(\cdot) = \mathcal{K}_1(\cdot, \, \mathcal{T}) \mathbf{p}_{\mathcal{T}}$

Controllability Gramian	Transversality Condition
$K_{1}(T, T) = \int_{0}^{T} \boldsymbol{\Phi}_{\mathbf{A}}(T, \tau) \mathbf{B}(\tau) \mathbf{B}(\tau)^{\top} \boldsymbol{\Phi}_{\mathbf{A}}(T, \tau)^{\top} d\tau$	$0 = \nabla \left(\mathbf{p} \mapsto g(K_1(T, T)\mathbf{p}) + \frac{1}{2} \mathbf{p}^\top K_1(T, T)\mathbf{p} \right) (\mathbf{p}_T)$ $= K_1(T, T) (\nabla g(K_1(T, T)\mathbf{p}_T) + \mathbf{p}_T).$
$\mathbf{x}(T) = \mathbf{x}_T \Leftrightarrow \mathbf{x}_T \in \mathrm{Im}(K_1(T, T))$	Sufficient to take $\mathbf{p}_{\mathcal{T}} = - abla g(ar{\mathbf{x}}(\mathcal{T}))$

Relation with the differential Riccati equation

Take $t_{ref} = T$, $\mathbf{J}_{ref} = \mathbf{J}_T \succ \mathbf{0}$. Let J(t, T) be the solution of

$$\begin{array}{rl} -\partial_1 \mathbf{J}(t,T) &= \mathbf{A}(t)^\top \mathbf{J}(t,T) + \mathbf{J}(t,T) \mathbf{A}(t) \\ &\quad -\mathbf{J}(t,T) \mathbf{B}(t) \mathbf{R}(t)^{-1} \mathbf{B}(t)^\top \mathbf{J}(t,T) + \mathbf{Q}(t), \\ \mathbf{J}(T,T) &= \mathbf{J}_T, \end{array}$$

Theorem (P.-C. Aubin, 2021)

Let K_{diag} : $t_0 \in]-\infty, T] \mapsto K(t_0, t_0; [t_0, T])$. Then $K_{\text{diag}}(t_0) = \mathbf{J}(t_0, T)^{-1}$. More generally, $K(\cdot, t; [t_0, T])$ is given by a matrix Hamiltonian system for all $t \in [t_0, T]$

$$\begin{aligned} \partial_1 \mathcal{K}(s,t) &= \mathbf{A}(s)\mathcal{K}(s,t) + \mathbf{B}(s)\mathbf{R}(s)^{-1}\mathbf{B}(s)^{\top} \begin{cases} \mathbf{\Pi}(s,t) + \mathbf{\Phi}_{\mathbf{A}}(t_0,s)^{\top} - \mathbf{\Phi}_{\mathbf{A}}(t,s)^{\top}, s \geq t \\ \mathbf{\Pi}(s,t) + \mathbf{\Phi}_{\mathbf{A}}(t_0,s)^{\top}, s < t. \end{cases} \\ \partial_1 \mathbf{\Pi}(s,t) &= -\mathbf{A}(s)^{\top} \mathbf{\Pi}(s,t) + \mathbf{Q}(s)\mathcal{K}(s,t), \\ \mathbf{\Pi}(t_0,t) &= -Id_N, \\ \mathcal{K}(t,T) &= -\mathbf{J}_T^{-1}(\mathbf{\Pi}(T,t)^{\top} + \mathbf{\Phi}_{\mathbf{A}}(t,T) - \mathbf{\Phi}_{\mathbf{A}}(t_0,T)). \end{aligned}$$

Relation with the differential Riccati equation

$$\bar{\mathbf{x}}(\cdot) := \underset{\mathbf{x}(\cdot)\in\mathcal{S}_{[t_0,T]}}{\operatorname{arg min}} \underbrace{\mathbf{x}(T)^\top \mathbf{J}_T \mathbf{x}(T) + \int_{t_0}^{T} [\mathbf{x}(t)^\top \mathbf{Q}(t)\mathbf{x}(t) + \mathbf{u}(t)^\top \mathbf{R}(t)\mathbf{u}(t)] dt}_{\|\mathbf{x}(\cdot)\|_{\mathcal{S}}^2} \\ \text{s.t.} \\ \mathbf{x}(t_0) = \mathbf{x}_0,$$

Pontryagine's Maximum Principle (PMP)

$$\mathbf{p}(t) = -\mathbf{J}(t, T)\bar{\mathbf{x}}(t)$$
 and $\bar{\mathbf{u}}(t) = \mathbf{R}(t)^{-1}\mathbf{B}(t)^{\top}\mathbf{p}(t) = -\mathbf{R}(t)^{-1}\mathbf{B}(t)^{\top}\mathbf{J}(t, T)\bar{\mathbf{x}}(t) =: \mathbf{G}(t)\bar{\mathbf{x}}(t)$
 \hookrightarrow online and differential approach

Representer theorem from kernel methods

 $\mathbf{\bar{x}}(t) = \mathcal{K}(t, t_0; [t_0, T])\mathbf{p}_0$, with $\mathbf{p}_0 = \mathcal{K}(t_0, t_0; [t_0, T])^{-1}\mathbf{x}_0 \in \mathbb{R}^Q$ \hookrightarrow offline and integral approach (\sim Green kernel in PDEs)

Original control problem

$$\begin{split} \min_{\substack{z(\cdot) \in W^{2,2}, u(\cdot) \in L^2 \\ \text{s.t.}}} & \int_0^1 |u(t)|^2 \mathrm{d}t \\ \text{s.t.} \\ z(0) &= 0, \quad \dot{z}(0) = 0, \\ \ddot{z}(t) &= -\dot{z}(t) + u(t), \, \forall t \in [0, 1], \\ z(t) &\in [z_{\mathsf{low}}(t), z_{\mathsf{up}}(t)], \, \forall t \in [0, 1]. \end{split}$$

Original control problem	Rewriting in standard form
$\min_{z(\cdot)\in W^{2,2}, u(\cdot)\in L^2} \int_0^1 u(t) ^2 \mathrm{d}t$	$\min_{\mathbf{x}(\cdot)\in W^{1,2}, u(\cdot)\in L^2} \int_0^1 u(t) ^2 \mathrm{d}t$
s.t.	s.t.
$z(0)=0, \dot{z}(0)=0,$	$\mathbf{x}(0) = 0,$
$\ddot{z}(t)=-\dot{z}(t)+u(t),orall t\in[0,1],$	$\mathbf{x}'(t) \stackrel{\text{a.e.}}{=} \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t),$
$z(t)\in [z_{low}(t),z_{up}(t)],orallt\in [0,1].$	$z_1(t) \in [z_{low}(t), z_{up}(t)], orall t \in [0,1]$
$\mathbf{x} = egin{pmatrix} z \ \dot{z} \end{pmatrix}$, $\mathbf{A} = egin{pmatrix} 0 & 1 \ 0 & -1 \end{pmatrix}$, $\mathbf{B} = egin{pmatrix} 0 \ 1 \end{pmatrix}$	

RKHS regression	Rewriting in standard form
$egin{aligned} & \min_{oldsymbol{K_1}} & \ \mathbf{x}(\cdot) \ _{K_1}^2 \ \mathbf{x}(\cdot) \in \mathcal{S}_u & \ ext{s.t.} \ & z_1(t) \in [z_{low}(t), z_{up}(t)], orall t \in [0,1] \end{aligned}$	$ \min_{\substack{x(\cdot)\in W^{1,2}, u(\cdot)\in L^2 \\ \text{ s.t.}}} \int_0^1 u(t) ^2 \mathrm{d}t $
$egin{aligned} \mathcal{S}_u &:= \{\mathbf{x}(\cdot) \mathbf{x}(\cdot) \in \mathcal{S} ext{ and } \mathbf{x}(0) = 0\} \ \ \mathbf{x}(\cdot)\ _{K_1}^2 &= \ \mathbf{u}(\cdot)\ _{L^2(0,1)}^2. \end{aligned}$	$egin{aligned} \mathbf{x}'(t) \stackrel{ ext{a.e.}}{=} \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t), \ z_1(t) \in [z_{ ext{low}}(t), z_{ ext{up}}(t)], orall t \in [0,1] \end{aligned}$

$$\mathcal{K}_1(s,t) = \int_0^{\min(s,t)} \mathbf{e}^{(s- au)\mathbf{A}} \mathbf{B} \mathbf{B}^{ op} \mathbf{e}^{(t- au)\mathbf{A}^{ op}} \mathrm{d} au$$

$$\mathcal{K}_1(s,t) = \int^{\min(s,t)} \mathbf{e}^{(s- au)\mathbf{A}} \mathbf{B} \mathbf{B}^{ op} \mathbf{e}^{(t- au)\mathbf{A}^{ op}} \mathrm{d} au$$

15/28

$$\mathcal{K}_1(s,t) = \int_0^{\min(s,t)} \mathbf{e}^{(s-\tau)\mathbf{A}} \mathbf{B} \mathbf{B}^{\top} \mathbf{e}^{(t-\tau)\mathbf{A}^{\top}} \mathrm{d}\tau$$

$$\mathcal{K}_{1}(s,t) = \int_{0}^{\min(s,t)} \mathbf{e}^{(s-\tau)\mathbf{A}} \mathbf{B} \mathbf{B}^{\top} \mathbf{e}^{(t-\tau)\mathbf{A}^{\top}} \mathrm{d}\tau$$

15/28

Van Loan's trick for time-invariant Gramians

Use matrix exponentials as in [Van Loan, 1978]

$$\exp\left(\begin{pmatrix} \mathbf{A} & \mathbf{Q}_c \\ 0 & -\mathbf{A}^\top \end{pmatrix} \Delta\right) = \begin{pmatrix} \mathbf{F}_2(\Delta) & \mathbf{G}_2(\Delta) \\ 0 & \mathbf{F}_3(\Delta) \end{pmatrix}$$

$$\begin{split} \hat{\mathbf{F}}_2(t) &= e^{\mathbf{A}t} \\ \hat{\mathbf{F}}_3(t) &= e^{-\mathbf{A}^\top t} \\ \hat{\mathbf{G}}_2(t) &= \int_0^t e^{(t-\tau)\mathbf{A}} \mathbf{Q}_c e^{-\tau \mathbf{A}^\top} \mathrm{d}\tau \end{split}$$

$$\begin{split} \mathcal{K}_{1}(s,t) &= \int_{0}^{\min(s,t)} e^{(s-\tau)\mathbf{A}} \mathbf{B} \mathbf{B}^{\top} e^{(t-\tau)\mathbf{A}^{\top}} \mathrm{d}\tau \\ \text{Set } \mathbf{Q}_{C} &= \mathbf{B} \mathbf{R}^{-1} \mathbf{B}^{\top}. \\ \text{For } s &\leq t, \ \mathcal{K}_{1}(s,t) = \hat{\mathbf{G}}_{2}(s) \hat{\mathbf{F}}_{2}(t)^{\top} \\ \text{For } t &\leq s, \ \mathcal{K}_{1}(s,t) = \hat{\mathbf{F}}_{2}(s) \hat{\mathbf{G}}_{2}(t)^{\top} \end{split}$$

No representer theorem for: $c(t)^{\top}x(t) \leq d, \forall t \in [0, T]$

Discretize on $\{t_m\}_{m \in [M]} \subset [0, T]$?

 $c(t_m)^ op x(t_m) \leq d, \forall m \in \llbracket 1, M
rbracket$

No guarantees!

Dealing with an infinite number of constraints

No representer theorem for: $c(t)^{\top}x(t) \leq d, \forall t \in [0, T]$

Discretize on $\{t_m\}_{m \in [M]} \subset [0, T]$?

$$\|\eta_m\| \mathbf{x}(\cdot)\|_{\mathcal{K}} + c(t_m)^{\top} \mathbf{x}(t_m) \leq d, \forall m \in \llbracket 1, M \rrbracket$$

Second-Order Cone (SOC) constraints: $\{f \mid ||Af + b||_{\mathcal{K}} \leq c^{\top}f + d\}$

SOC comes from adding a buffer, $\eta_m > 0$, to a discretization, $\{t_m\}_{m \in [M]}$.

 $\mathsf{LP} \subset \mathsf{QP} \subset \mathsf{SOCP} \subset \mathsf{SDP}$

Dealing with an infinite number of constraints

No representer theorem for: $c(t)^{\top}x(t) \leq d, \forall t \in [0, T]$

Discretize on $\{t_m\}_{m \in [M]} \subset [0, T]$?

$$\|\eta_m\| \mathbf{x}(\cdot)\|_{\mathcal{K}} + c(t_m)^{ op} \mathbf{x}(t_m) \leq d, \forall m \in \llbracket 1, M \rrbracket$$

Second-Order Cone (SOC) constraints: $\{f \mid ||Af + b||_{\mathcal{K}} \leq c^{\top}f + d\}$

SOC comes from adding a buffer, $\eta_m > 0$, to a discretization, $\{t_m\}_{m \in [M]}$.

How to choose η_m ? The choice $\eta_m || x(\cdot) ||_K$ is related to continuity moduli:

Deriving SOC constraints through continuity moduli

Take
$$\delta \geq 0$$
 and t s.t. $|t - t_m| \leq \delta$
 $|c(t)^{\top}x(t) - c(t_m)^{\top}x(t_m)| = |\langle x(\cdot), K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m)\rangle_K|$
 $\leq ||x(\cdot)||_{\mathcal{K}} \sup_{\substack{\{t \mid |t - t_m| \leq \delta\}}} ||K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m)||_{\mathcal{K}}}$
 $\omega_m(x, \delta) := \sup_{\substack{\{t \mid |t - t_m| \leq \delta\}}} |c(t)^{\top}x(t) - c(t_m)^{\top}x(t_m)| \leq \eta_m(\delta) ||x(\cdot)||_{\mathcal{K}}}$
For a covering $[0, T] = \bigcup_{m \in [M]} [t_m - \delta_m, t_m + \delta_m]$

$$"c(t)^{\top}x(t) \leq d, \forall t \in [0, T]" \Leftarrow "c(t_m)^{\top}x(t_m) + \omega_m(x, \delta) \leq d, \forall m \in [M]"$$

Deriving SOC constraints through continuity moduli

Take
$$\delta \geq 0$$
 and t s.t. $|t - t_m| \leq \delta$
 $|c(t)^{\top} x(t) - c(t_m)^{\top} x(t_m)| = |\langle x(\cdot), K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m) \rangle_{\mathcal{K}}|$
 $\leq ||x(\cdot)||_{\mathcal{K}} \sup_{\substack{\{t \mid |t - t_m| \leq \delta\}}} ||K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m)||_{\mathcal{K}}}$
 $\omega_m(x, \delta) := \sup_{\substack{\{t \mid |t - t_m| \leq \delta\}}} |c(t)^{\top} x(t) - c(t_m)^{\top} x(t_m)| \leq \eta_m(\delta) ||x(\cdot)||_{\mathcal{K}}}$
For a covering $[0, T] = \bigcup_{m \in [M]} [t_m - \delta_m, t_m + \delta_m]$
 $"c(t)^{\top} x(t) \leq d , \forall t \in [0, T]" \leftarrow "c(t_m)^{\top} x(t_m) + \eta_m ||x(\cdot)|| \leq d , \forall m \in [M]"$
 $||K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m)||_{\mathcal{K}}^2 := c(t)^{\top} K(t, t)c(t) + c(t_m)^{\top} K(t_m, t_m)c(t_m)$
 $- 2c(t_m)^{\top} K(t_m, t)c(t)$

Since the kernel is smooth, for $c(\cdot) \in C^0$, $\delta \to 0$ gives $\eta_m(\delta) \to 0$.

Deriving SOC constraints through continuity moduli

Take $\delta \ge 0$ and t s.t. $|t - t_m| \le \delta$ $|c(t)^{\top} x(t) - c(t_m)^{\top} x(t_m)| = |\langle x(\cdot), K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m) \rangle_{\mathcal{K}}|$ $\le ||x(\cdot)||_{\mathcal{K}} \sup_{\substack{\{t \mid |t - t_m| \le \delta\}}} ||K(\cdot, t)c(t) - K(\cdot, t_m)c(t_m)||_{\mathcal{K}}}{\eta_m(\delta)}$ $\omega_m(x, \delta) := \sup_{\{t \mid |t - t_m| \le \delta\}} |c(t)^{\top} x(t) - c(t_m)^{\top} x(t_m)| \le \eta_m(\delta) ||x(\cdot)||_{\mathcal{K}}$

For a covering $[0, T] \subset \bigcup_{m \in [M]} [t_m - \delta_m, t_m + \delta_m]$

 $"c(t)^{\top}x(t) \leq d(t), \forall t \in [0, T]" \Leftarrow "c(t_m)^{\top}x(t_m) + \eta_m \|x(\cdot)\| \leq d_m, \forall m \in [M]"$

with $d_m := \inf_{t \in [t_m - \delta_m, t_m + \delta_m]} d(t)$.

From affine state constraints to SOC constraints

Take (t_m, δ_m) such that $[0, T] \subset \cup_{m \in \llbracket 1, N_P \rrbracket} [t_m - \delta_m, t_m + \delta_m]$, define

$$egin{aligned} &\eta_i(\delta_m,t_m) := \sup_{\substack{t \in [t_m-\delta_m,t_m+\delta_m] \cap [0,\mathcal{T}]}} \|K(\cdot,t_m)\mathbf{c}_i(t_m)-K(\cdot,t)\mathbf{c}_i(t)\|_{\mathcal{K}}, \ &d_i(\delta_m,t_m) := \inf_{\substack{t \in [t_m-\delta_m,t_m+\delta_m] \cap [0,\mathcal{T}]}} d_i(t). \end{aligned}$$

We have strengthened SOC constraints that enable a representer theorem

$$egin{aligned} &\eta_i(\delta_m,t_m)\|\mathbf{x}(\cdot)\|_{\mathcal{K}}+\mathbf{c}_i(t_m)^{ op}\mathbf{x}(t_m) \leq d_i(\delta_m,t_m), \, orall \, m \in \llbracket 1,N_P
rbracket, orall \, i \in \llbracket 1,P
rbracket \ & \downarrow \ & \mathbf{c}_i(t)^{ op}\mathbf{x}(t) \leq d_i(t), \, orall \, t \in \llbracket 0,T
rbracket, orall \, i \in \llbracket 1,P
rbracket \end{aligned}$$

Lemma (Uniform continuity of tightened constraints)

As $K(\cdot, \cdot)$ is UC, if $\mathbf{c}_i(\cdot)$ and $\mathbf{d}_i(\cdot)$ are \mathcal{C}^0 -continuous, when $\delta \to 0^+$, $\eta_i(\cdot, t)$ converges to 0 and $d_i(\cdot, t)$ converges to $d_i(t)$, uniformly w.r.t. t.

SOC tightening of state-constrained LQ optimal control

Problem of time-varying linear quadratic optimal control with finite horizon and affine inequality state constraints

$$\min_{\substack{\mathbf{x}(\cdot) \in \mathcal{S}_{[t_0, \mathcal{T}]} \\ \text{s.t.}}} \chi_{\mathbf{x}_0}(\mathbf{x}(t_0)) + g(\mathbf{x}(\mathcal{T})) + \|\mathbf{x}(\cdot)\|_{\mathcal{K}}^2$$

$$\mathbf{c}_i(t)^{ op}\mathbf{x}(t) \leq d_i(t), \, orall \, t \in [t_0, \, \mathcal{T}], orall \, i \in [\mathcal{I}],$$

SOC tightening of state-constrained LQ optimal control

Problem of time-varying linear quadratic optimal control with finite horizon and affine inequality state constraints with SOC tightening

$$\begin{split} \min_{\substack{\mathbf{x}(\cdot) \in \mathcal{S}_{[t_0,T]} \\ \text{s.t.}}} & \chi_{\mathbf{x}_0}(\mathbf{x}(t_0)) + g(\mathbf{x}(\mathcal{T})) + \|\mathbf{x}(\cdot)\|_{\mathcal{K}}^2 \\ \text{s.t.} \\ & \eta_i(\delta_m, t_m) \|\mathbf{x}(\cdot)\|_{\mathcal{K}} + \mathbf{c}_i(t_{i,m})^\top \mathbf{x}(t_{i,m}) \leq d_{i,m}, \, \forall \, m \in [M_i], \forall \, i \in [\mathcal{I}], \end{split}$$

with $[t_0, \mathcal{T}] \subset \bigcup_{m \in [M]} [t_m - \delta_m, t_m + \delta_m]$, and two values defined at each t_m

$$\eta_i(\delta_m, t_m) := \sup_{\substack{t \in [t_m - \delta_m, t_m + \delta_m] \cap [0, T]}} \|K(\cdot, t_m) \mathbf{c}_i(t_m) - K(\cdot, t) \mathbf{c}_i(t)\|_{\mathcal{K}},$$

 $d_{i,m} := \inf_{\substack{t \in [t_m - \delta_m, t_m + \delta_m] \cap [t_0, T]}} d_i(t).$

Actually also works for ball constraints $\|\mathbf{x}(t)\|_{p} \leq 1$ and variations!

Main theoretical result in P.-C. Aubin, SICON, 2021

(H-gen) $\mathbf{A}(\cdot), \mathbf{Q}(\cdot) \in L^1$ and $\mathbf{B}(\cdot), \mathbf{R}(\cdot) \in L^2$, $\mathbf{c}_i(\cdot)$ and $d_i(\cdot) \in C^0$. (H-sol) $\mathbf{c}_i(t_0)^\top \mathbf{x}_0 < d_i(t_0)$ and there exists a trajectory $\mathbf{x}^{\epsilon}(\cdot) \in S$ satisfying strictly the affine constraints, as well as the initial condition.¹

(H-obj) $g(\cdot)$ is convex and continuous.

Theorem (\exists /Approximation by SOC constraints, P.-C. Aubin, 2021)

Both the original problem and its strengthening have unique optimal solutions. For any $\rho > 0$, there exists $\overline{\delta} > 0$ such that for all $(\delta_m)_{m \in [\![1,N_0]\!]}$, with $[t_0, T] \subset \bigcup_{m \in [\![1,N_0]\!]} [t_m - \delta_m, t_m + \delta_m]$ satisfying $\overline{\delta} \ge \max_{m \in [\![1,N_0]\!]} \delta_m$,

$$\frac{1}{\gamma_{\mathcal{K}}}\sup_{t\in[t_0,\mathcal{T}]}\|\bar{\mathtt{x}}_\eta(t)-\bar{\mathtt{x}}(t)\|\leq\|\bar{\mathtt{x}}_\eta(\cdot)-\bar{\mathtt{x}}(\cdot)\|_{\mathcal{K}}\leq\rho$$

with $\gamma_{\mathcal{K}} := \sup_{t \in [0,T], \mathbf{p} \in \mathbb{B}_N} \sqrt{\mathbf{p}^\top \mathcal{K}(t,t) \mathbf{p}}.$

¹(H-sol) is implied for instance by an inward-pointing condition at the boundary.

Main practical result in P.-C. Aubin, SICON, 2021

Problem of time-varying linear quadratic optimal control with finite horizon and affine inequality state constraints with SOC tightening

$$\begin{split} \min_{\substack{\mathbf{x}_{(\mathbf{v})} \in \mathcal{S}_{[t_0,T]} \\ \text{s.t.}}} \chi_{\mathbf{x}_0}(\mathbf{x}(t_0)) + g(\mathbf{x}(T)) + \|\mathbf{x}(\cdot)\|_{\mathcal{K}}^2 \\ \text{s.t.} \\ \eta_i(\delta_m, t_m) \|\mathbf{x}(\cdot)\|_{\mathcal{K}} + \mathbf{c}_i(t_{i,m})^\top \mathbf{x}(t_{i,m}) \leq d_{i,m}, \, \forall \, m \in [M_i], \forall \, i \in [\mathcal{I}]. \end{split}$$

By the representer theorem, the optimal solution has the form

$$ar{\mathbf{x}}(\cdot) = \sum_{j=0}^{P} \sum_{m=1}^{N_j} \mathcal{K}(\cdot, t_{j,m}) ar{\mathbf{p}}_{j,m},$$

where $t_{0,1} = t_0$ and $t_{0,2} = T$, and the coefficients $(\bar{\mathbf{p}}_{j,m})_{j,m}$ solve a finite dimensional second-order cone problem.

Main practical result in P.-C. Aubin, SICON, 2021

More precisely, setting $t_{0,1} = t_0$ and $t_{0,2} = T$, the coefficients of the optimal solution $\bar{\mathbf{x}}(\cdot) = \sum_{j=0}^{P} \sum_{m=1}^{N_j} K(\cdot, t_{j,m}) \bar{\mathbf{p}}_{j,m}$ solve

$$\begin{split} \min_{\substack{\gamma \in \mathbb{R}_{+}, \\ \mathbf{p}_{j,m} \in \mathbb{R}^{N}, \\ \alpha_{j,m} \in \mathbb{R}}} & \chi_{\mathbf{x}_{0}} \left(\sum_{j=0}^{P} \sum_{m=1}^{N_{j}} \mathcal{K}(t_{0}, t_{j,m}) \bar{\mathbf{p}}_{j,m} \right) + g \left(\sum_{j=0}^{P} \sum_{m=1}^{N_{j}} \mathcal{K}(T, t_{j,m}) \bar{\mathbf{p}}_{j,m} \right) + \gamma^{2} \\ \text{s.t.} & \gamma^{2} = \sum_{i=0}^{P} \sum_{n=1}^{N_{i}} \sum_{j=0}^{P} \sum_{m=1}^{N_{j}} \mathbf{p}_{i,n}^{\top} \mathcal{K}(t_{i,n}, t_{j,m}) \mathbf{p}_{j,m}, \\ & \mathbf{p}_{j,m} = \alpha_{j,m} \mathbf{c}_{j}(t_{m}), \quad \forall m \in \llbracket 1, N_{j} \rrbracket, \forall j \in \llbracket 1, P \rrbracket, \\ \eta_{i}(\delta_{i,m}, t_{i,m})\gamma + \sum_{j=0}^{P} \sum_{m=1}^{N_{j}} \mathbf{c}_{i}(t_{i,m})^{\top} \mathcal{K}(t_{i,m}, t_{j,m}) \mathbf{p}_{j,m} \quad \forall m \in \llbracket 1, N_{i} \rrbracket, \\ & \leq d_{i}(\delta_{i,m}, t_{i,m}), \end{split}$$

which can be written equivalently as a finite dimensional second-order cone problem (SOCP).

"State-constrained LQ Optimal Control is a shape-constrained kernel regression."

"Controlled trajectories have the adequate structure to use kernel methods, most of all for path-planning."

"In general, positive definite kernels are much too linear to tackle nonlinear control problems \rightarrow Linearize! "

Future work: Pushing RKHSs beyond/Revisiting LQR

For RKHSs

- Control constraints do not correspond to continuous evaluations
 → limits of RKHS pointwise theory (e.g. x' = u ∈ L²([0, T], [-1, 1]) a.e.)
- Successive linearizations of nonlinear system lead to changing kernels \hookrightarrow a single kernel may not be sufficient (e.g. $x' = f_{[x_n(\cdot)]}x + f_{[u_n(\cdot)]}u$ a.e.)
- Non-quadratic costs for linear systems do not lead to Hilbert spaces \hookrightarrow one may need Banach kernels (e.g. $\|\mathbf{u}(\cdot)\|_{L^2(0,T)}^2 \to \|\mathbf{u}(\cdot)\|_{L^1(0,T)})$

Future work: Pushing RKHSs beyond/Revisiting LQR

For RKHSs

- Control constraints do not correspond to continuous evaluations
 → limits of RKHS pointwise theory (e.g. x' = u ∈ L²([0, T], [-1, 1]) a.e.)
- Successive linearizations of nonlinear system lead to changing kernels \hookrightarrow a single kernel may not be sufficient (e.g. $x' = f_{[x_n(\cdot)]}x + f_{[u_n(\cdot)]}u$ a.e.)
- Non-quadratic costs for linear systems do not lead to Hilbert spaces \hookrightarrow one may need Banach kernels (e.g. $\|\mathbf{u}(\cdot)\|_{L^2(0,T)}^2 \to \|\mathbf{u}(\cdot)\|_{L^1(0,T)})$

For control theory

• To each evaluation at time t corresponds a covector $p_t \in \mathbb{R}^Q$

 \hookrightarrow Representer theorem well adapted for state constraints, but unsuitable for control constraints. Reverts the difficulty w.r.t. PMP approach.

• The Gramian of controllability generates trajectories

 \hookrightarrow This allows for close-form solutions in continuous-time.

Future work and open questions

- Extending results to linear PDE control->done
- Extending results to Gramian of observability & Kalman filter->almost done

This talk summarizes

- Linearly-constrained Linear Quadratic Regulator from the viewpoint of kernel methods, Aubin, SIAM J. on Control and Optimization, 2021
- Interpreting the dual Riccati equation through the LQ reproducing kernel, Aubin, Comptes Rendus. Mathématique, 2021

The code is available at https://github.com/PCAubin

More to be found at https://pcaubin.github.io/

Thank you for your attention!

References I

Aronszajn, N. (1950).

Theory of reproducing kernels.

Transactions of the American Mathematical Society, 68:337–404.

Berlinet, A. and Thomas-Agnan, C. (2004).

Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer.

Heckman, N. (2012).

The theory and application of penalized methods or reproducing kernel Hilbert spaces made easy. *Statistics Surveys*, 6(0):113–141.

Micheli, M. and Glaunès, J. A. (2014).

Matrix-valued kernels for shape deformation analysis.

Geometry, Imaging and Computing, 1(1):57–139.

Saitoh, S. and Sawano, Y. (2016). *Theory of Reproducing Kernels and Applications*. Springer Singapore.

Van Loan, C. (1978).

Computing integrals involving the matrix exponential. *IEEE Transactions on Automatic Control*, 23(3):395–404.

Annex: Green kernels and RKHSs

Let *D* be a differential operator, D^* its formal adjoint. Define the Green function $G_{D^*D,x}(y): \Omega \to \mathbb{R}$ s.t. $D^*D G_{D^*D,x}(y) = \delta_z(y)$ then, if the integrals over the boundaries in Green's formula are null, for any $f \in \mathcal{F}_k$

$$f(x) = \int_{\Omega} f(y) D^* DG_{D^*D,x}(y) dy = \int_{\Omega} Df(y) DG_{D^*D,x}(y) =: \langle f, G_{D^*D,x} \rangle_{\mathcal{F}_k},$$

so $k(x, y) = G_{D^*D, x}(y)$ [Saitoh and Sawano, 2016, p61]. For vector-valued contexts, e.g. $\mathcal{F}_{K} = W^{s,2}(\mathbb{R}^d, \mathbb{R}^d)$ and $D^*D = (1 - \sigma^2 \Delta)^s$ component-wise, see [Micheli and Glaunès, 2014, p9].

Alternatively, in 1D, $D G_{D,x}(y) = \delta_z(y)$, the kernel associated to the inner product $\int_{\Omega} Df(y) Dg(y) dy$ for the space of f "null at the border" writes as

$$k(x,y) = \int_{\Omega} G_{D,x}(z) G_{D,y}(z) dz$$

see [Berlinet and Thomas-Agnan, 2004, p286] and [Heckman, 2012].

Annex: IPC gives strictly feasible trajectories

(H-sol) $C(0)x_0 < d(0)$ and there exists a trajectory $x^{\epsilon}(\cdot) \in S$ satisfying strictly the affine constraints, as well as the initial condition.

- (H1) $\mathbf{A}(\cdot), \mathbf{B}(\cdot) \in \mathcal{C}^0$, $\mathbf{c}_i(\cdot), d_i(\cdot) \in \mathcal{C}^1$ and $\mathbf{C}(0)\mathbf{x}_0 < \mathbf{d}(0)$.
- (H2) There exists $M_u > 0$ s.t., for all $t \in [t_0, T]$ and $\mathbf{x} \in \mathbb{R}^Q$ satisfying $\mathbf{C}(t)\mathbf{x} \leq \mathbf{d}(t)$, and $\|\mathbf{x}\| \leq (1 + \|\mathbf{x}_0\|)e^{T\|\mathbf{A}(\cdot)\|_{L^{\infty}(t_0, T)} + TM_u\|\mathbf{B}(\cdot)\|_{L^{\infty}(t_0, T)}}$, there exists $\mathbf{u}_{t,x} \in M_u \mathbb{B}_M$ such that

$$\forall i \in \{j \,|\, \mathbf{c}_j(t)^\top \mathbf{x} = d_j(t)\}, \ \mathbf{c}_i'(t)^\top \mathbf{x} - d_i'(t) + \mathbf{c}_i(t)^\top (\mathbf{A}(t)\mathbf{x} + \mathbf{B}(t)\mathbf{u}_{t,\times}) < 0.$$

This is an inward-pointing condition (IPC) at the boundary.

Lemma (Existence of interior trajectories)

If (H1) and (H2) hold, then (H-sol) holds.

Annex: control proof main idea, nested property

$$\eta_i(\delta, t) := \sup \| K(\cdot, t) \mathbf{c}_i(t) - K(\cdot, s) \mathbf{c}_i(s) \|_{\mathcal{K}}, \quad \omega_i(\delta, t) := \sup |d_i(t) - d_i(s)|_{\mathcal{K}},$$

$$d_i(\delta_m, t_m) := \inf d_i(s), \quad \text{over } s \in [t_m - \delta_m, t_m + \delta_m] \cap [t_0, T]$$

For $\overrightarrow{\epsilon} \in \mathbb{R}^P_+$, the constraints we shall consider are defined as follows

$$\begin{aligned} \mathcal{V}_{0} &:= \{\mathbf{x}(\cdot) \in \mathcal{S} \mid \mathbf{C}(t)\mathbf{x}(t) \leq \mathbf{d}(t), \forall t \in [t_{0}, T]\}, \\ \mathcal{V}_{\delta, \mathsf{fin}} &:= \{\mathbf{x}(\cdot) \in \mathcal{S} \mid \overrightarrow{\eta}(\delta_{m}, t_{m}) \| \mathbf{x}(\cdot) \|_{\mathcal{K}} + \mathbf{C}(t_{m})\mathbf{x}(t_{m}) \leq \mathbf{d}(\delta_{m}, t_{m}), \forall m \in \llbracket 1, M_{0} \rrbracket\}, \\ \mathcal{V}_{\delta, \mathsf{inf}} &:= \{\mathbf{x}(\cdot) \in \mathcal{S} \mid \overrightarrow{\eta}(\delta, t) \| \mathbf{x}(\cdot) \|_{\mathcal{K}} + \overrightarrow{\omega}(\delta, t) + \mathbf{C}(t)\mathbf{x}(t) \leq \mathbf{d}(t), \forall t \in [t_{0}, T]\}, \\ \mathcal{V}_{\overrightarrow{\epsilon}} &:= \{\mathbf{x}(\cdot) \in \mathcal{S} \mid \overrightarrow{\epsilon} + \mathbf{C}(t)\mathbf{x}(t) \leq \mathbf{d}(t), \forall t \in [t_{0}, T]\}. \end{aligned}$$

Proposition (Nested sequence)

Let $\delta_{\max} := \max_{m \in [\![1,M_0]\!]} \delta_m$. For any $\delta \ge \delta_{\max}$, if, for a given $y_0 \ge 0$, $\epsilon_i \ge \sup_{t \in [t_0,T]} [\eta_i(\delta,t)y_0 + \omega_i(\delta,t)]$, then we have a nested sequence

$$(\mathcal{V}_{\overrightarrow{\epsilon}} \cap y_0 \mathbb{B}_{\mathcal{K}}) \subset \mathcal{V}_{\delta,inf} \subset \mathcal{V}_{\delta,fin} \subset \mathcal{V}_0.$$

Only the simpler $\mathcal{V}_{\overrightarrow{}}$ constraints matter!

Numerical example 2: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

$$\begin{array}{l} \min_{x(\cdot),w(\cdot),u(\cdot)} -\dot{x}(T) + \lambda \| u(\cdot) \|_{L^{2}(0,T)}^{2} & \lambda \ll 1 \\ \hline x(0) = 0.5, \quad \dot{x}(0) = 0, \quad w(0) = 0, \quad x(T/3) = 0.5, \quad x(T) = 0 \\ \hline \ddot{x}(t) = -10 \, x(t) + w(t), \quad \dot{w}(t) = u(t), \text{ a.e. in } [0,T] \\ \hline \dot{x}(t) \in [-3, +\infty[, \quad w(t) \in [-10, 10], \forall t \in [0,T]] \\ \hline & & \downarrow \\ \hline & & \downarrow \\ &$$

Numerical example 2: constrained pendulum - definition

Constrained pendulum when controlling the third derivative of the angle

$$\begin{aligned} \min_{x(\cdot),w(\cdot),u(\cdot)} &-\dot{x}(T) + \lambda \|u(\cdot)\|_{L^{2}(0,T)}^{2} \qquad \lambda \ll 1\\ \hline x(0) &= 0.5, \quad \dot{x}(0) = 0, \quad w(0) = 0, \quad x(T/3) = 0.5, \quad x(T) = 0\\ \hline \ddot{x}(t) &= -10 \, x(t) + w(t), \quad \dot{w}(t) = u(t), \text{ a.e. in } [0,T] \\ \hline \dot{x}(t) &\in [-3, +\infty[, \quad w(t) \in [-10, 10], \forall t \in [0,T]] \end{aligned}$$

Converting affine state constraints to SOC constraints, applying rep. thm

Most of computational cost is related to the "controllability Gramians" $K_1(s, t) = \int_0^{\min(s,t)} \mathbf{e}^{(s-\tau)\mathbf{A}} \mathbf{B} \mathbf{B}^\top \mathbf{e}^{(t-\tau)\mathbf{A}^\top} d\tau$ which we have to approximate.

/28