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Quick Summary

Rigorous proof of convergence of Mirror Descent (MD) under relative smoothness and
convexity, in the infinite-dimensional setting of optimization over measure spaces

New and simple way to derive rates of convergence for Sinkhorn’s algorithm as an MD
over transport plans

New expression of Expectation-Maximization (EM) as MD, convergence rates when
restricted to the latent distribution, coincides with Lucy-Richardson’s algorithm in signal
processing
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Optimisation over the space of measures

Let X ⊂ Rd , M(X ) the space of Radon measures on X , convex functionals
F , ϕ : M(X ) → R ∪ {+∞}, convex C ⊂ M(X ), consider mirror descent:

min
µ∈C

F(µ)

µn+1 = argmin
ν∈C

{d+F(µn)(ν − µn) + LDϕ(ν|µn)} (1)

Under which assumptions does it converge and at which rate?
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Examples of optimization of measures

The “Kullback-Leibler divergence” or relative entropy is

KL(µ|µ̄) =
® ∫

Rd log
Ä
µ
µ̄(x)
ä

dµ(x) if µ ≪ µ̄

+∞ else.

Entropic optimal transport minπ∈Π(µ,ν) KL(π|R) for R ∝ exp(−c(x ,y)/ϵ)µ⊗ ν

Expectation-Maximization minq∈Q KL(ν̄|pYpq) with the observations ν̄

Bayesian inference minµ∈P(X ) KL(µ|µ̄) with the posterior µ̄ ∝ exp(−V )

Optimization of 1-hidden layer neural network minµ∈C MMD2(µ|µ̄)
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Definitions of derivatives

µn+1 = argmin
ν∈C

{d+F(µn)(ν − µn) + LDϕ(ν|µn)}

The KL does not have a Gâteaux derivative! Need for weaker notions:

(directional derivative) d+F(ν)(µ) = lim
h→0+

F(ν + hµ)−F(ν)

h
, (2)

(first variation) ⟨∇CF(µ), ξ⟩ = d+F(µ)(ξ) ξ + µ ∈ dom(F) ∩ C, (3)
(Bregman divergence) Dϕ(ν|µ) = ϕ(ν)− ϕ(µ)− d+ϕ(µ)(ν − µ). (4)
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Convergence result for mirror descent under relative smoothness

F is L-smooth relative to ϕ over C for L ≥ 0 if, for any µ, ν ∈ C ∩ dom(F) ∩ dom(ϕ),

DF (ν|µ) = F(ν)−F(µ)− d+F(µ)(ν − µ) ≤ LDϕ(ν|µ).

Conversely, F is l-strongly convex relative to ϕ, for l ≥ 0, if we have

DF (ν|µ) ≥ lDϕ(ν|µ).

Theorem 1
Assume that F is l-strongly convex and L-smooth relative to ϕ, with l ,L ≥ 0. Consider the
mirror descent scheme (1), and assume that for each n ≥ 0, ∇Cϕ(µn) exists. Then for all
n ≥ 0 and all ν ∈ C ∩ dom(F) ∩ dom(ϕ):

F(µn)−F(ν) ≤
lDϕ(ν|µ0)Ä

1 + l
L−l

än
− 1

≤ L
n

Dϕ(ν|µ0)
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Entropic optimal transport and Sinkhorn

Entropic optimal transport min
π∈Π(µ̄,ν̄)

KL(π|e−c/ϵµ̄⊗ ν̄)

The Sinkhorn algorithm in its primal formulation does alternative (entropic) projections on
Π(µ̄, ∗) and Π(∗, ν̄), i.e. initializing with π0 ∈ Πc , iterate

πn+ 1
2
= argmin

π∈Π(µ̄,∗)
KL(π|πn), (5)

πn+1 = argmin
π∈Π(∗,ν̄)

KL(π|πn+ 1
2
). (6)

For c ∈ L∞, define C = Π(∗, ν̄) and the objective function FS(π) = KL(pXπ|µ̄).

The Sinkhorn iterations can be written as a mirror descent with objective FS and Bregman
divergence KL over the constraint C = Π(∗, ν̄), with ∇FS(πn) = ln(dµn/d µ̄) ∈ L∞(X × Y),
µn = pXπn

πn+1 = argmin
π∈C

⟨∇FS(πn), π − πn⟩+ KL(π|πn) (7)
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Entropic optimal transport and Sinkhorn (cont.)

The functional FS(π) = KL(pXπ|µ̄) is convex and is 1-relatively smooth w.r.t. KL over
P(X × Y).

Dc := 1
2 supx ,y ,x ′,y ′ [c(x , y) + c(x ′, y ′)− c(x , y ′)− c(x ′, y). For π̃, π ∈ Πc ∩ C, we have that

KL(π̃|π) ≤ (1 + 4e3Dc/ϵ) KL(pX π̃|pXπ),

i.e. FS is (1 + 4e3Dc/ϵ)−1-relatively strongly convex w.r.t. KL over Πc ∩ C (cyclically
invariant).

For all n ≥ 0, the Sinkhorn algorithm is a mirror descent and verifies, for π∗ the optimum of
EOT and µ∗ its first marginal,

KL(µn|µ∗) ≤
KL(π∗|π0)

(1 + 4e
3Dc
ϵ )

Å(
1 + 4e− 3Dc

ϵ

)n
− 1
ã ≤ KL(π∗|π0)

n
.
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EM and latent EM

We posit a joint distribution pq(dx ,dy) parametrized by an element q of some given set Q.
For pYpq(dy) =

∫
X pq(dx ,dy), the goal is to infer q by solving

min
q∈Q

KL(ν̄|pYpq), (8)

EM then proceeds by alternate minimizations of KL(π,pq):

qn = argmin
q∈Q

KL(πn|pq), (9)

πn+1 = argmin
π∈Π(∗,ν̄)

KL(π|pqn). (10)

Define the constraint set C = Π(∗, ν̄) and FEM(π) = infq∈Q KL(π|pq).

EM is a mirror descent, with ∇FEM(πn) = ln(dπn/dpqn),

πn+1 = argmin
π∈C

⟨∇FEM(πn), π − πn⟩+ KL(π|πn) (11)
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EM and latent EM (cont.)

FEM = infq∈Q KL(π|pq) is in general non-convex.
However, writing pq(dx , dy) = µ(dx)K (x , dy) and optimizing only over its first marginal, i.e.
q = µ, makes FEM convex.

Define FLEM(π) := KL(π|pXπ ⊗ K ) = infµ∈P(X ) KL(π|µ⊗ K )

Latent EM can be written as mirror descent with objective FLEM, Bregman potential ϕe and
the constraints C = Π(∗, ν̄),

πn+1 = argmin
π∈C

⟨∇FLEM(πn), π − πn⟩+ KL(π|πn) (12)

Set µ∗ ∈ argminµ∈P(X ) KL(ν̄|TK (µ)) where TK : µ ∈ P(X ) 7→
∫
X µ(dx)K (x , ·) ∈ M(Y). The

functional FLEM is convex and 1-smooth relative to ϕe. For π0 ∈ Π(∗, ν̄),

KL(ν̄|TKµn) ≤ KL(ν̄|TKµ∗) +
KL(µ∗|µ0) + KL(ν̄|TKµ∗)− KL(ν̄|TKµ0)

n
. (13)
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