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Optimisation over the space of measures

Let X ⊂ Rd and consider P(X ) the space of probability
measures on X

Let F : P(X ) → R ∪ {+∞} convex and C ⊂ M(X ) is a convex
set:

min
ν∈C

F(ν)

Many problems in machine learning can be cast as the latter
optimization problem, where F(·) = D(·|µ̄) where µ̄ is a fixed
target distribution on Rd .
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Example 1 and 2

We will consider the following examples:
• Sinkhorn’s algorithm
• Expectation-Maximization algorithm
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Example 3 - Bayesian inference

Goal of Bayesian inference: learn the best distribution over
a parameter x to fit observed data.

(1) Let D = (wi , yi)
p
i=1 a dataset of i.i.d. examples with features

w , label y .

(2) Assume an underlying model parametrized by x ∈ Rd , e.g.:

y = g(w , x) + ϵ, ϵ ∼ N (0, Id).

Step 1. Compute the Likelihood:

p(D|x)
(1)
∝

p∏
i=1

p(yi |x ,wi)
(2)
∝ exp

(
−1

2

p∑
i=1

∥yi − g(wi , x)∥2

)
.
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Step 2. Choose a prior distribution (initial guess) on the
parameter:

x ∼ p0, e.g. p0(x) ∝ exp

Ç
−∥x∥2

2

å
.

Step 3. Bayes’ rule yields the formula for the posterior
distribution over the parameter x :

p(x |D) =
p(D|x)p0(x)

Z
where Z =

∫
Rd

p(D|x)p0(x)dx

is called the normalization constant and is intractable.

Denoting µ̄ := p(·|D) the posterior on parameters x ∈ Rd , we
have:

µ̄(x) ∝ exp (−V (x)) , V (x) =
1
2

p∑
i=1

∥yi − g(wi , x)∥2 +
∥x∥2

2
.

i.e. µ̄’s density is known ”up to a normalization constant”.
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The posterior µ̄ is interesting for
• measuring uncertainty on prediction through the distribution

of g(w , ·), x ∼ µ̄.

• prediction for a new input w :

ŷ =

∫
Rd

g(w , x)d µ̄(x)︸ ︷︷ ︸
”Bayesian model averaging”

i.e. predictions of models parametrized by x ∈ Rd are
reweighted by µ̄(x).
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Can be cast as:
min
ν∈C

KL(ν|µ̄)

where KL is the ”Kullback-Leibler divergence” or relative
entropy”:

KL(µ|µ̄) =
® ∫

Rd log
Ä
µ
µ̄(x)
ä

dµ(x) if µ ≪ µ̄

+∞ else.

The KL as an objective is convenient since it does not depend
on the normalization constant Z (unknown in Bayesian
inference)!

Recall that writing µ̄(x) = e−V (x)/Z we have:

KL(µ|µ̄) =
∫
Rd

log
( µ

e−V (x)
)

dµ(x) + log(Z ).
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Example 4 - Optimisation of 1 hidden layer neural
networks
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Assume ∃µ̄, E[y |X = x ] =
∫
ϕz(x)d µ̄(z).

The problem can be cast as:

min
ν∈C

MMD2(ν, µ̄)

where MMD is the Maximum Mean Discrepancy:

MMD2(µ, π) = E z∼µ
z′∼µ

[k(z, z ′)]+E z∼π
z′∼µ̄

[k(z, z ′)]−2E z∼µ
z′∼µ̄

[k(z, z ′)],

with k : Rd × Rd → R is a kernel.
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Mirror Descent with relative smoothness over the space
of measures

To solve
min
ν∈C

F(ν)

we consider the mirror descent algorithm
[Beck and Teboulle, 2003], a first-order optimization method
based on Bregman divergences.

Its convergence analysis classically requires strong convexity
and smoothness.

However, the latter is not satisfied for the KL, hence we consider
relative convexity and smoothness.

For now assume C = M(X ).
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Space of measures

Let X ⊂ Rd , and fix a vector space of (signed) measures M(X ).

It could be L1(dρ), L2(dρ) where ρ is a reference measure, or the
space of Radon measures Mr (X ) with the total variation (TV)
norm.

Let M∗(X ) the dual of M(X ).

For µ ∈ M(X ) and f ∈ M∗(X ), we denote

⟨f , µ⟩ = ⟨f , µ⟩M∗(X )×M(X ) =

∫
X

f (x)µ(dx).
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Derivative of F
Mirror Descent is a first-order optimization scheme based on the
knowledge of the “derivative” of the objective functional F .

The difficulty is to choose the right notion of derivative.

Recall that Gâteaux and Fréchet derivatives have to be defined
in every direction:

Definition 1
The function F is said to be Gâteaux differentiable at ν if there
exists a linear operator ∇F (ν) : M(X ) → R such that for any
direction µ ∈ M(X ):

∇F(ν)(µ) = lim
h→0

F(ν + hµ)−F(ν)

h
. (1)

The operator ∇F(ν) is called the Gâteaux derivative of F at ν,
and if it exists, it is unique.

14 / 41
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However in infinite dimensions, Int(dom(F)) is however often
empty (most of all for the negative entropy F(µ) =

∫
log(µ)dµ)

We thus consider first a weaker notion of directional derivatives.

Then, the notion of first variation will allow to perform all the
computations we need, as if the function was Gâteaux
differentiable.
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Definition 2 (Directional derivative)
If it exists, the directional derivative of F : M(X ) → R ∪ {±∞}
at a point ν ∈ dom(F) in the direction µ ∈ M(X ) is defined as

d+F(ν)(µ) = lim
h→0+

F(ν + hµ)−F(ν)

h
. (2)

Definition 3 (First variation)
If it exists, the first variation of F evaluated at µ ∈ dom(F) is the
element ∇F(µ) ∈ M∗(X ), unique up to orthogonal components
to span(dom(F)− µ), s.t.:

⟨∇F(µ), ξ⟩ = d+F(µ)(ξ) (3)

for all ξ = ν − µ ∈ M(X ), where ν ∈ dom(F).
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Bregman divergences
Let ϕ : M(X ) → R ∪ {+∞} be a convex functional. For
µ ∈ dom(ϕ), the ϕ-Bregman divergence is defined for all
ν ∈ dom(ϕ) by

Dϕ(ν|µ) = ϕ(ν)− ϕ(µ)− d+ϕ(µ)(ν − µ) ∈ [0,+∞], (4)

and +∞ elsewhere. The function ϕ is referred to as the
Bregman potential.

Properties:
• Dϕ(·|µ) is convex if ϕ has a first variation (last term is linear)
• Dϕ separates measures for ϕ strictly convex
• linearity Dϕ+ψ = Dϕ + Dψ (since d+ is linear )
• idempotence: DDϕ(·|ξ)(ν|µ) = Dϕ(ν|µ) for any ξ ∈ dom(ϕ)

assuming ∇ϕ(ξ) exists.
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Relative smoothness and convexity

F is L-smooth relative to ϕ if, for any µ, ν ∈ dom(F) ∩ dom(ϕ),
we have

DF (ν|µ) = F(ν)−F(µ)− d+F(µ)(ν − µ) ≤ LDϕ(ν|µ).

Conversely, we say that F is l-strongly convex relative to ϕ, for
some scalar l ≥ 0, if we have

DF (ν|µ) ≥ lDϕ(ν|µ).
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• Since DF (ν|µ) = F(ν)−F(µ)− d+F(µ)(ν − µ), convexity
of F writes DF (ν|µ) ≥ 0.

• Smoothness can be written as

∥∇F(µ)−∇F(ν)∥ ≤ L∥µ− ν∥

which implies

F(ν)−F(µ)− d+F(µ)(ν − µ) ≤ L∥ν − µ∥2

• A Bregman divergence objective F(·) = Dϕ(·|ξ) is always
1-relatively smooth and strongly convex w.r.t. ϕ (due to the
idempotence: DDϕ(·|ξ)(ν|µ) = Dϕ(ν|µ))
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Case of the KL
The KL is not smooth:

• the ”gradient of the KL”: µ 7→ log(µ|µ̄)(.) typically is not
Lipschitz

• traditional smoothness cannot hold because KL diverges for
Dirac masses, thus does not have subquadratic growth with
respect to any norm on measures.

Fact: Let ϕe(µ) =
∫
X ln(µ(x))µ(x)dρ(x) the negative entropy.

The KL can be written as a Bregman divergence of ϕe, if
µ ≪ µ̄ ≪ ρ, i.e.

Dϕe(µ|µ̄) = KL(µ|µ̄).

Hence the KL is always 1-relatively smooth with respect to the
negative entropy.

Remark: It is a strong Bregman divergence. For instance, for a
bounded kernel k , MMD(µ, ν) ≤ ck KL(µ|ν).
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Relative smoothness :
F(ν) ≤ F(µ) + d+F(µ)(ν − µ) + LDϕ(ν|µ).

Mirror descent can be written in its minimal formulation as the
proximal scheme

µn+1 = argmin
ν∈C

{d+F(µn)(ν − µn) + LDϕ(ν|µn)} (5)

Remark: If F and ϕ were Gâteaux differentiable at µn, then
provided µn+1 exists, the first-order optimality condition for (5)
would give

∇ϕ(µn+1)−∇ϕ(µn) = −1
L
∇F(µn). (6)

Remark: If ϕ = ϕe, ∇ϕe(µ) = log(µ) + 1 which leads to the
famous multiplicative update µn+1 = µne− 1

L∇F(µn).
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Convergence result for mirror descent

Theorem: Assume that F is l-strongly convex and L-smooth
relative to ϕ, with l ,L ≥ 0. Consider the mirror descent scheme
(5), and assume that for each n ≥ 0, ∇ϕ(µn) exists. Then for all
n ≥ 0 and all ν ∈ dom(F) ∩ dom(ϕ):

F(µn)−F(ν) ≤
lDϕ(ν|µ0)Ä

1 + l
L−l

än
− 1

≤ L
n

Dϕ(ν|µ0)

Remark: mirror descent rates with strong (standard) convexity
and smoothness lead to O(1/

√
n) rate with a decreasing

step-size ∝ 1/
√

n.
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Preliminaries

Notations:
• Π(µ̄, ∗) the set of couplings having first marginal µ̄
• Π(∗, ν̄) the set of couplings having second marginal ν̄
• Π(µ̄, ν̄) = Π(µ̄, ∗) ∩ Π(∗, ν̄) the couplings with marginals
(µ̄, ν̄)
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For any π ∈ P(X × Y), we can write π = pXπ ⊗ Kπ where
Kπ̄(x ,dy) = π̄(dx ,dy)/pX π̄(dx).

Hence we have the decomposition:

KL(π|π̄) =
∫

log
(π
π̄

)
d(pXπ ⊗ Kπ)

= KL(pXπ|pX π̄) +

∫
X
KL(Kπ|Kπ̄)dpXπ

= KL(pXπ|pX π̄) + KL(π|pXπ ⊗ Kπ̄). (7)

It will be crucial for assessing the (relative) smoothness and
convexity two objective functions FS and FEM we will consider.
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Consider a cost function c ∈ L∞(X × Y, µ̄⊗ ν̄) and a
regularization parameter ϵ > 0.

The entropic optimal transport problem is the minimization
problem

OTϵ(µ̄, ν̄) = min
π∈Π(µ̄,ν̄)

KL(π|e−c/ϵµ̄⊗ ν̄). (8)

We say that a coupling π is cyclically invariant, and write π ∈ Πc ,
if denoting by (µ, ν) = (pXπ,pYπ) its marginals we have

KL(π|e−c/ϵµ⊗ ν) = min
π̃∈Π(µ,ν)

KL(π̃|e−c/ϵµ⊗ ν). (9)

Moreover when π ∈ Πc , there exist f ∈ L∞(X ) and g ∈ L∞(Y)
such that π = e(f+g−c)/ϵµ⊗ ν.

27 / 41
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The Sinkhorn algorithm in its primal formulation searches for the
solution of (8) by alternative (entropic) projections on Π(µ̄, ∗) and
Π(∗, ν̄), i.e. initializing with π0 ∈ Πc , iterate

πn+ 1
2
= argmin

π∈Π(µ̄,∗)
KL(π|πn), (10)

πn+1 = argmin
π∈Π(∗,ν̄)

KL(π|πn+ 1
2
). (11)

Define the constraint set C = Π(∗, ν̄) and the objective function

FS(π) = KL(pXπ|µ̄). (12)

28 / 41
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Sinkhorn algorithm as mirror descent

Proposition: The Sinkhorn iterations (10) can be written as a
mirror descent with objective FS and Bregman divergence KL
over the constraint C = Π(∗, ν̄),

πn+1 = argmin
π∈C

⟨∇FS(πn), π − πn⟩+ KL(π|πn)

with ∇FS(πn) = ln(dµn/d µ̄) ∈ L∞(X × Y). (13)

where µn = pXπn.

Proof: We have the identity:

FS(πn)+⟨∇FS(πn), π−πn⟩+KL(π|πn) = KL(π|µ̄⊗πn/µn) = KL(π|πn+ 1
2
).

We conclude by taking the argmin over π ∈ C.
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(Relative) smoothness and convexity of FS

Lemma: The functional FS is convex and is 1-relatively smooth
w.r.t. the negative entropy ϕe over P(X × Y).

Proof: Let π, π̃ ∈ P(X × Y) with pX π̃ ≪ pXπ ≪ µ̄. Then:
• with straightforward computations,

DFS(π̃|π) = KL(pX π̃|pXπ) ≥ 0, so FS is convex

• applying the disintegration formula, we obtain that
DFS(π̃|π) ≤ KL(π̃|π). (KL of joint distributions is smaller
than KL of marginals)

Consequence: this already yields a O(1/n) rate for Sinkhorn’s
algorithm.
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(Relative) strong convexity of FS

Proposition Let
Dc := 1

2 supx ,y ,x ′,y ′ [c(x , y) + c(x ′, y ′)− c(x , y ′)− c(x ′, y)] < ∞.
For π̃, π ∈ Πc ∩ C, we have that

KL(π̃|π) ≤ (1 + 4e3Dc/ϵ) KL(pX π̃|pXπ),

in other words FS is (1 + 4e3Dc/ϵ)−1-relatively strongly convex
w.r.t. KL over Πc ∩ C.

Consequence: this yields a linear rate for Sinkhorn’s algorithm.
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We recover (known) rates for Sinkhorn

Proposition: For all n ≥ 0, the Sinkhorn iterates verify, for π∗
the optimum of:

OTϵ(µ̄, ν̄) = min
π∈Π(µ̄,ν̄)

KL(π|e−c/ϵµ̄⊗ ν̄).

and µ∗ its first marginal,

KL(µn|µ∗) ≤
KL(π∗|π0)

(1 + 4e
3Dc
ϵ )

Å(
1 + 4e− 3Dc

ϵ

)n
− 1
ã ≤ KL(π∗|π0)

n
.
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EM

Goal: fit a parametric distribution to some observed data Y (e.g.
a mixture of Gaussians approximating the data), where one
needs to estimate both

• the latent variable distribution on X (e.g. weights of each
Gaussian)

• parameters of conditionals P(Y |X = x) (e.g. means and
covariances of each Gaussian)
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Consider the following probabilistic model: we have a latent,
hidden random variable X ∈ (X , µ̄), an observed variable Y ∈ Y
distributed as ν̄.

We posit a joint distribution pq(dx ,dy) parametrized by an
element q of some given set Q. The goal is to infer q by solving

min
q∈Q

KL(ν̄|pYpq), (14)

where pYpq(dy) =
∫
X pq(dx ,dy).
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For any π ∈ Π(∗, ν̄), by the disintegration formula:
• KL(ν̄|pYpq) ≤ KL(π|pq)

• with equality if π(dx ,dy) = pq(dx ,dy)ν̄(dy)/pYpq(dy)

EM then proceeds by alternate minimizations of KL(π,pq)
[Neal and Hinton, 1998]:

qn = argmin
q∈Q

KL(πn|pq), (15)

πn+1 = argmin
π∈Π(∗,ν̄)

KL(π|pqn). (16)

The above formulation consists in (15), optimizing the
parameters qn at step n (M-step), and then (16), optimizing the
joint distribution πn+1 at step n + 1 (E-step, which is explicit).
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Define the constraint set C = Π(∗, ν̄) and

FEM(π) = inf
q∈Q

KL(π|pq). (17)

Proposition: EM can be written as a mirror descent iteration:

πn+1 = argmin
π∈C

⟨∇FEM(πn), π − πn⟩+ KL(π|πn)

with ∇FEM(πn) = ln(dπn/dpqn). (18)

Proof: Use the envelope theorem to differentiate FEM and find

that ∇FEM(πn) = ln(dπn/dpqn). Then for any coupling π, we
have the identity

FEM(πn) + ⟨∇FEM(πn), π − πn⟩+ KL(π|πn) = KL(π|pqn).

Thus the MD iteration matches (16).
37 / 41



Introduction and Motivation Background Mirror descent over measures Sinkhorn’s algorithm Expectation-Maximization Bibliography

Latent EM

FEM is in general non-convex. However, writing
pq(dx ,dy) = µ(dx)K (x ,dy) and optimizing only over its first
marginal makes FEM convex.

Define FLEM(π) := infµ∈P(X ) KL(π|µ⊗ K )
(FLEM(π) = KL(π|pXπ ⊗ K ) by the disintegration formula).

Proposition: Latent EM can be written as mirror descent with
objective FLEM, Bregman potential ϕe and the constraints
C = Π(∗, ν̄),

πn+1 = argmin
π∈C

⟨∇FLEM(πn), π − πn⟩+ KL(π|πn)

with ∇FLEM(πn) = ln

Å
dπn

d(µn ⊗ K )

ã
∈ L∞. (19)
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Rate for Latent EM

Proposition Set µ∗ ∈ argminµ∈P(X ) KL(ν̄|TK (µ)) where
TK : µ ∈ P(X ) 7→

∫
X µ(dx)K (x , ·) ∈ M(Y).

The functional FLEM is convex and 1-smooth relative to ϕe.
Moreover for π0 ∈ Π(∗, ν̄),

KL(ν̄|TKµn) ≤ KL(ν̄|TKµ∗)+
KL(µ∗|µ0) + KL(ν̄|TKµ∗)− KL(ν̄|TKµ0)

n
.
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Conclusion

• rigorous proof of convergence of mirror descent under
relative smoothness and convexity, which holds in the
infinite-dimensional setting of optimization over measure
spaces

• provides a new and simple way to derive rates of
convergence for Sinkhorn’s algorithm

• new convergence rates for EM when restricted to the latent
distribution, obtaining similar but complementary rates to
[Kunstner et al., 2021].

Questions?
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