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Quick Summary

e Rigorous proof of convergence of Mirror Descent (MD) under relative
smoothness and convexity, in the infinite-dimensional setting of optimiza-
tion over measure spaces

e New and simple way to derive rates of convergence for Sinkhorn’s al-

ocorithm as an MD over transport plans

e New expression as MD for EM, convergence rates when restricted to
the latent distribution, coincides with Lucy-Richardson

Mirror descent over measures

Let X C RY, M(X) the space of Radon measures on X, convex functionals
F,o: M(X)— RU{+o0}, convex C' C M(X), consider mirror descent:

min JF ()

neC

Hnp1 = ar;ggin{ff (1) (V = i) + LDV 1) } (1)

Under which assumptions does it converge and for which rate?

Examples of optimization of measures

The “Kullback-Leibler divergence” or relative entropy is

KL(p| ) = { fRd log (5(33» du(x) if p << 1

+00 else.

) KL(7| R) for R o< exp(—¢cl#:¥)/e) p@v

e [xpectation-Maximization mingeg KL( [pyp,) With the observations v

e Entropic optimal transport min e,

e Bayesian inference min ,epx) KL(p|ft) with the posterior g oc exp(—V)
e Optimization of 1-hidden layer neural network min,cc MMD?(|f)

Definitions of derivatives and relative smoothness

The KL does not have a Gateaux derivative! Need for weaker notions:

Fv+hp) — F(v)
kAL

(VoF (1), §) = dF(p)(§) € — p € dom(F) N (C)
3
—d'o(p) v —p). (4

(directional derivative) d'F(v)(p) = lim

(first variation)

= o) = o(p)

(Bregman divergence) Dg(v|u)

F is L-smooth relative to ¢ for L > 0 if, for any u, v € dom(F) N dom(¢),
Dr(v|p) = F(v) = Flp) — d"F(p)(v — p) < LDy(v|p).
Conversely, F is [-strongly convex relative to ¢, for [ > 0, if we have
D(v|u) > 1D,(v]p).

Convergence result for mirror descent

Theorem: Assume that F is [-strongly convex and L-smooth relative to ¢,
with [, L > 0. Consider the mirror descent scheme (1), and assume that for

each n > 0, Vo(u,) exists. Then for all n > 0 and all v € dom(F)Ndom(¢):

[Dy(v|u L
M) L )
(1++5) —1"n

Entropic optimal transport and Sinkhorn

F(Mn)_F(V>§

[1( s, *), II(*, v) the set of couplings having first /second marginal p, v

[T, v) = (@, %) N II(*, ) the couplings with marginals (u, /)

For any m € P(X x )), we can write m = pym ® K, where Kz(z,dy) =
m(dz,dy)/py7(dz). Hence we have the decomposition:

KL(7|7) = /10g (g) dpxm @ K;) = KL(pxm|pxm) + KL(7|pxm @ K5).

Define cyclically invariant = € Il if for (u, v) = (pxm, pym) its marginals,

KL(mle “‘p®@v) = min KL(7le ““u® v). (5)
mell(p,v)

When 7 € I1,, there exist f, g € L>®(X) x L®(Y) such that 7 = e’ 7 u@wv.

The Sinkhorn algorithm in its primal formulation does alternative (entropic)
projections on II(f, %) and II(x, ), i.e. initializing with my € II,, iterate

w1 = argmin KL(7|m,), (6)
’ mell(p,*)
Mp+1 = argmin KL(m|m, 1). (7)
mell(*,0)
For ¢ € L™, define the constraint set C' = I1(x, /) and the objective function
Fs(m) = KL(pam|p). (8)

Proposition: The Sinkhorn iterations can be written as a mirror de-
scent with objective Fg and Bregman divergence KL over the constraint

C = Ml(x,v), with VFs(m,) = In(du,/dp) € L®(X X V), thy = pxmy
Tp1 = argmin(V Fs(m,), 7 — m,) + KL(7|7,) (9)

TelC

Proof: We have the identity:

Fs(mn) + (VFs(mn), m — mn) + KL(7|m) = KL(7| g @ ™/, ) = KL(mw|m,,,1).

Lemma: The functional Fg is convex and is 1-relatively smooth w.r.t. the
negative entropy ¢, over P(X x J).
Consequence: this already yields a O(1/n) rate for Sinkhorn’s algorithm.

Proposition Let D, = jsup, , . [c(z,y) + c(@,y) — clz,y) — (', y).
Form,mell.NC, we have that

KL(7t|m) < (1 + 4¢P/ KL(pa7|pa),
ie Fgis (1+ Ae3De/ )~ Lrelatively strongly convex w.r.t. KL over II.N C.

Consequence: this yields a linear rate for Sinkhorn’s algorithm.
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Main result for EOT /Sinkhorn

Proposition: For all n > 0. the Sinkhorn algorithm is a mirror descent
and verifies, for 7, the optimum of EOT and u, its first marginal,

KL (7| ) - KL(W*"ZTQ).
(1 + 4e™) ((1 +4e—‘°’—?c) _ 1) oo

KL (| p) <

EM and latent EM

We posit a joint distribution p,(dx, dy) parametrized by an element g of some
given set Q. For pyp,(dy) = [ v Dgldz, dy), the goal is to infer g by solving

min KL(2[pypy), (10)
qeQ
EM then proceeds by alternate minimizations of KL (7, p,):
¢n = argmin KL(m,[p,), (11)
qeQ
Tn+1 = argmin KL(7|p,, ). (12)
well(x,v)
Define the constraint set C' = II(x, ) and
Fay(m) = inf KL(7|p,). (13)

Main result for general EM

— hl(dﬂ-n/dp%))
Tp1 = argmin{V Fey(m,), 7 — m,) + KL(7|m,) (14)

meC

Proof: Use the envelope theorem to differentiate Fgy and find that
VFEM(WR)

FEM(TFn) R

Proposition: EM is a mirror descent, with V Fry(7,,)

= In(dm,/dp,, ). Then for any coupling 7, we have the identity
(V Feni(my), m — ) + KL(7|m,) = KL(7|py, )

= p(dz) K (z, dy)

and optimizing only over its first marginal, i.e. ¢ = u, makes Fgy; convex.

Define Fipm(m) = KL(7|pam ® K) = inf ,cpx) KL(7|p ® K)

Fgy is in general non-convex. However, writing p,(dx, dy)

Main result for latent EM

Proposition: Latent EM can be written as mirror descent with objective
Fiem, Bregman potential ¢, and the constraints C' = [1(x, v),
Tpi1 = argmin{V Frem(m,), 7 — ) + KL(7|m,) (15)
meC
Proposition Set p, € argmin,cp ) KL(V|Tx (1)) where T : p €
P(X) — [y u(de)K(x,-) € M(Y). The functional Fipy is convex and
1-smooth relative to ¢.. For my € TI(x, v),

KL (| pr0) + KL(¥ | Tk i)
T

— KL(#| g0

KL(0|Txpn) < KL(0| Tk ) A



