Mirror Descent with Relative Smoothness in Measure Spaces, with application to Sinkhorn and EM

Pierre-Cyril Aubin-Frankowski¹, Anna Korba², Flavien Léger¹

¹INRIA
Paris

²CREST,
ENSAE,
IP Paris

Quick Summary

- Rigorous proof of convergence of Mirror Descent (MD) under relative smoothness and convexity, in the infinite-dimensional setting of optimization over measure spaces
- New and simple way to derive rates of convergence for Sinkhorn's algorithm as an MD over transport plans
- New expression as MD for EM, convergence rates when restricted to the latent distribution, coincides with Lucy-Richardson

Mirror descent over measures

Let $\mathcal{X} \subset \mathbb{R}^d$, $\mathcal{M}(\mathcal{X})$ the space of Radon measures on \mathcal{X} , convex functionals $\mathcal{F}, \phi : \mathcal{M}(\mathcal{X}) \to \mathbb{R} \cup \{+\infty\}$, convex $C \subset \mathcal{M}(\mathcal{X})$, consider mirror descent:

$$\mu_{n+1} = \underset{\nu \in C}{\operatorname{argmin}} \{ d^{+} \mathcal{F}(\mu_{n})(\nu - \mu_{n}) + LD_{\phi}(\nu | \mu_{n}) \}$$
 (1)

Under which assumptions does it converge and for which rate?

Examples of optimization of measures

The "Kullback-Leibler divergence" or relative entropy is

$$\mathrm{KL}(\mu|\bar{\mu}) = \begin{cases} \int_{\mathbb{R}^d} \log\left(\frac{\mu}{\bar{\mu}}(x)\right) d\mu(x) & \text{if } \mu \ll \bar{\mu} \\ +\infty & \text{else.} \end{cases}$$

- Entropic optimal transport $\min_{\pi \in \Pi(\mu,\nu)} \mathrm{KL}(\pi|R)$ for $R \propto \exp(-c(x,y)/\epsilon)\mu \otimes \nu$
- Expectation-Maximization $\min_{q\in\mathcal{Q}} \mathrm{KL}(\bar{\nu}|p_{\mathcal{Y}}p_q)$ with the observations $\bar{\nu}$
- Bayesian inference $\min_{\mu \in \mathcal{P}(\mathcal{X})} \mathrm{KL}(\mu|\bar{\mu})$ with the posterior $\bar{\mu} \propto \exp(-V)$
- Optimization of 1-hidden layer neural network $\min_{\mu \in C} \text{MMD}^2(\mu|\bar{\mu})$

Definitions of derivatives and relative smoothness

The KL does not have a Gâteaux derivative! Need for weaker notions:

(directional derivative)
$$d^{+}\mathcal{F}(\nu)(\mu) = \lim_{h \to 0^{+}} \frac{\mathcal{F}(\nu + h\mu) - \mathcal{F}(\nu)}{h},$$
 (2)
(first variation) $\langle \nabla_{C}\mathcal{F}(\mu), \xi \rangle = d^{+}\mathcal{F}(\mu)(\xi) \quad \xi - \mu \in \text{dom}(\mathcal{F}) \cap C,$ (3)
(Bregman divergence) $D_{\phi}(\nu|\mu) = \phi(\nu) - \phi(\mu) - d^{+}\phi(\mu)(\nu - \mu).$ (4)

$$D_{\mathcal{F}}(\nu|\mu) = \mathcal{F}(\nu) - \mathcal{F}(\mu) - d^{+}\mathcal{F}(\mu)(\nu - \mu) \leq LD_{\phi}(\nu|\mu).$$

 \mathcal{F} is L-smooth relative to ϕ for $L \geq 0$ if, for any $\mu, \nu \in \text{dom}(\mathcal{F}) \cap \text{dom}(\phi)$,

Conversely, \mathcal{F} is l-strongly convex relative to ϕ , for $l \geq 0$, if we have

$$D_{\mathcal{F}}(\nu|\mu) \ge lD_{\phi}(\nu|\mu).$$

Convergence result for mirror descent

Theorem: Assume that \mathcal{F} is l-strongly convex and L-smooth relative to ϕ , with $l, L \geq 0$. Consider the mirror descent scheme (1), and assume that for each $n \geq 0$, $\nabla \phi(\mu_n)$ exists. Then for all $n \geq 0$ and all $\nu \in \text{dom}(\mathcal{F}) \cap \text{dom}(\phi)$:

$$\mathcal{F}(\mu_n) - \mathcal{F}(\nu) \le \frac{lD_{\phi}(\nu|\mu_0)}{(1 + \frac{l}{L-l})^n - 1} \le \frac{L}{n}D_{\phi}(\nu|\mu_0)$$

Entropic optimal transport and Sinkhorn

 $\Pi(\bar{\mu}, *), \Pi(*, \bar{\nu})$ the set of couplings having first/second marginal $\bar{\mu}, \bar{\nu}$ $\Pi(\bar{\mu}, \bar{\nu}) = \Pi(\bar{\mu}, *) \cap \Pi(*, \bar{\nu}) \text{ the couplings with marginals } (\bar{\mu}, \bar{\nu})$

For any $\pi \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$, we can write $\pi = p_{\mathcal{X}}\pi \otimes K_{\pi}$ where $K_{\bar{\pi}}(x, dy) = \bar{\pi}(dx, dy)/p_{\mathcal{X}}\bar{\pi}(dx)$. Hence we have the decomposition:

$$KL(\pi|\bar{\pi}) = \int \log\left(\frac{\pi}{\bar{\pi}}\right) d(p_{\mathcal{X}}\pi \otimes K_{\pi}) = KL(p_{\mathcal{X}}\pi|p_{\mathcal{X}}\bar{\pi}) + KL(\pi|p_{\mathcal{X}}\pi \otimes K_{\bar{\pi}}).$$

Define cyclically invariant $\pi \in \Pi_c$, if for $(\mu, \nu) = (p_{\chi}\pi, p_{\chi}\pi)$ its marginals,

$$KL(\pi|e^{-c/\epsilon}\mu\otimes\nu) = \min_{\tilde{\pi}\in\Pi(\mu,\nu)} KL(\tilde{\pi}|e^{-c/\epsilon}\mu\otimes\nu). \tag{5}$$

When $\pi \in \Pi_c$, there exist $f, g \in L^{\infty}(\mathcal{X}) \times L^{\infty}(\mathcal{Y})$ such that $\pi = e^{f+g-c/\epsilon} \mu \otimes \nu$.

The Sinkhorn algorithm in its primal formulation does alternative (entropic) projections on $\Pi(\bar{\mu}, *)$ and $\Pi(*, \bar{\nu})$, i.e. initializing with $\pi_0 \in \Pi_c$, iterate

$$\pi_{n+\frac{1}{2}} = \underset{\pi \in \Pi(\bar{\mu},*)}{\operatorname{argmin}} \operatorname{KL}(\pi|\pi_n), \tag{6}$$

$$\pi_{n+1} = \underset{\pi \in \Pi(*,\bar{\nu})}{\operatorname{argmin}} \operatorname{KL}(\pi | \pi_{n+\frac{1}{2}}). \tag{7}$$

For $c \in L^{\infty}$, define the constraint set $C = \Pi(*, \bar{\nu})$ and the objective function

$$F_{\rm S}(\pi) = \mathrm{KL}(p_{\mathcal{X}}\pi|\bar{\mu}). \tag{8}$$

Proposition: The Sinkhorn iterations can be written as a mirror descent with objective $F_{\rm S}$ and Bregman divergence KL over the constraint $C = \Pi(*, \bar{\nu})$, with $\nabla F_{\rm S}(\pi_n) = \ln(d\mu_n/d\bar{\mu}) \in L^{\infty}(\mathcal{X} \times \mathcal{Y}), \, \mu_n = p_{\mathcal{X}}\pi_n$

$$\pi_{n+1} = \underset{\pi \in C}{\operatorname{argmin}} \langle \nabla F_{S}(\pi_{n}), \pi - \pi_{n} \rangle + KL(\pi | \pi_{n})$$
(9)

Proof: We have the identity:

$$F_{S}(\pi_{n}) + \langle \nabla F_{S}(\pi_{n}), \pi - \pi_{n} \rangle + KL(\pi | \pi_{n}) = KL(\pi | \bar{\mu} \otimes \pi_{n} / \mu_{n}) = KL(\pi | \pi_{n+\frac{1}{2}}).$$

Lemma: The functional F_S is convex and is 1-relatively smooth w.r.t. the negative entropy ϕ_e over $\mathcal{P}(\mathcal{X} \times \mathcal{Y})$.

Consequence: this already yields a $\mathcal{O}(1/n)$ rate for Sinkhorn's algorithm.

Proposition Let $D_c := \frac{1}{2} \sup_{x,y,x',y'} [c(x,y) + c(x',y') - c(x,y') - c(x',y)]$. For $\tilde{\pi}, \pi \in \Pi_c \cap C$, we have that

$$KL(\tilde{\pi}|\pi) \le (1 + 4e^{3D_c/\epsilon}) KL(p_{\chi}\tilde{\pi}|p_{\chi}\pi),$$

i.e. F_S is $(1 + 4e^{3D_c/\epsilon})^{-1}$ -relatively strongly convex w.r.t. KL over $\Pi_c \cap C$. **Consequence**: this yields a linear rate for Sinkhorn's algorithm.

Main result for EOT/Sinkhorn

Proposition: For all $n \geq 0$, the Sinkhorn algorithm is a mirror descent and verifies, for π_* the optimum of EOT and μ_* its first marginal,

$$KL(\mu_n|\mu_*) \le \frac{KL(\pi_*|\pi_0)}{(1 + 4e^{\frac{3Dc}{\epsilon}})\left(\left(1 + 4e^{-\frac{3Dc}{\epsilon}}\right)^n - 1\right)} \le \frac{KL(\pi_*|\pi_0)}{n}.$$

EM and latent EM

We posit a joint distribution $p_q(dx, dy)$ parametrized by an element q of some given set \mathcal{Q} . For $p_{\mathcal{Y}}p_q(dy) = \int_{\mathcal{X}} p_q(dx, dy)$, the goal is to infer q by solving

$$\min_{q \in \mathcal{Q}} \mathrm{KL}(\bar{\nu}|p_{\mathcal{Y}}p_q),\tag{10}$$

EM then proceeds by alternate minimizations of $KL(\pi, p_q)$:

$$q_n = \underset{\epsilon}{\operatorname{argmin}} \operatorname{KL}(\pi_n | p_q), \tag{11}$$

$$\pi_{n+1} = \underset{\pi \in \Pi(*\bar{\nu})}{\operatorname{argmin}} \operatorname{KL}(\pi|p_{q_n}). \tag{12}$$

Define the constraint set $C = \Pi(*, \bar{\nu})$ and

$$F_{\text{EM}}(\pi) = \inf_{q \in \mathcal{Q}} \text{KL}(\pi | p_q). \tag{13}$$

Main result for general EM

Proposition: EM is a mirror descent, with $\nabla F_{\text{EM}}(\pi_n) = \ln(d\pi_n/dp_{q_n})$,

$$\pi_{n+1} = \underset{\pi \in C}{\operatorname{argmin}} \langle \nabla F_{\text{EM}}(\pi_n), \pi - \pi_n \rangle + \text{KL}(\pi | \pi_n)$$
 (14)

Proof: Use the envelope theorem to differentiate $F_{\rm EM}$ and find that $\nabla F_{\rm EM}(\pi_n) = \ln(d\pi_n/dp_{q_n})$. Then for any coupling π , we have the identity

$$F_{\text{EM}}(\pi_n) + \langle \nabla F_{\text{EM}}(\pi_n), \pi - \pi_n \rangle + \text{KL}(\pi | \pi_n) = \text{KL}(\pi | p_{q_n}).$$

 $F_{\rm EM}$ is in general non-convex. However, writing $p_q(dx, dy) = \mu(dx)K(x, dy)$ and optimizing only over its first marginal, i.e. $q = \mu$, makes $F_{\rm EM}$ convex.

Define
$$F_{\text{LEM}}(\pi) := \text{KL}(\pi | p_{\mathcal{X}} \pi \otimes K) = \inf_{\mu \in \mathcal{P}(\mathcal{X})} \text{KL}(\pi | \mu \otimes K)$$

Main result for latent EM

Proposition: Latent EM can be written as mirror descent with objective F_{LEM} , Bregman potential ϕ_e and the constraints $C = \Pi(*, \bar{\nu})$,

$$\pi_{n+1} = \underset{\pi \in C}{\operatorname{argmin}} \langle \nabla F_{\text{LEM}}(\pi_n), \pi - \pi_n \rangle + \text{KL}(\pi | \pi_n)$$
 (15)

Proposition Set $\mu_* \in \operatorname{argmin}_{\mu \in \mathcal{P}(\mathcal{X})} \operatorname{KL}(\bar{\nu}|T_K(\mu))$ where $T_K : \mu \in \mathcal{P}(\mathcal{X}) \mapsto \int_{\mathcal{X}} \mu(dx) K(x, \cdot) \in \mathcal{M}(\mathcal{Y})$. The functional F_{LEM} is convex and 1-smooth relative to ϕ_e . For $\pi_0 \in \Pi(*, \bar{\nu})$,

$$KL(\bar{\nu}|T_K\mu_n) \le KL(\bar{\nu}|T_K\mu_*) + \frac{KL(\mu_*|\mu_0) + KL(\bar{\nu}|T_K\mu_*) - KL(\bar{\nu}|T_K\mu_0)}{n}.$$