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Problem statement
• We consider a nonlinear system with unbounded control and state constraints

x′(t) = f(t, x(t), u(t)), for a.e. t ∈ [0, T ], (1)
x(t) ∈ A0,t := {x | h(t, x) ≤ 0}, for all t ∈ [0, T ], (2)

where f : [0, T ] × RN × RM → RN and h : [0, T ] × RN → RP . We call f-trajectories the
solutions of (1) for measurable controls u(·).

• We are given a reference trajectory x̄(·), such that h(0, x̄(0)) < 0, with control ū(·) ∈ L∞(0, T )
satisfying (1)-(2). Our goal is to design a neighboring feasible trajectory xϵ(·) satisfying (1)
and

xϵ(0) = x̄(0), ∥x̄(·) − xϵ(·)∥L∞(0,T ) ≤ λ,
∣∣∣∥ū(·)∥2

L2(0,T ) − ∥uϵ(·)∥2
L2(0,T )

∣∣∣ ≤ λ, λ ≪ 1

xϵ(t) ∈ Aϵ,t := {x | ϵ + h(t, x) ≤ 0} for all t ∈ [0, T ]. (3)

Important for interior point methods and perturbations!
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Problem statement (illustrated)
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Theorem

Under assumptions (H-1)-(H-6), for any λ > 0, there exists ϵ > 0 and a f-trajectory xϵ(·) on
[0, T ] such that xϵ(0) = x̄(0), xϵ(t) ∈ Int Aϵ,t for all t ∈ [0, T ], and

∥x̄(·) − xϵ(·)∥L∞(0,T ) ≤ λ.

Moreover if (H-7) is satisfied, then, for any mapping R(·) ∈ C0([0, T ],RM,M) with positive
semidefinite matrix values, one can choose ϵ > 0 and xϵ(·) such that the controls uϵ(·) satisfy∣∣∣∥R(·)1/2ū(·)∥2

L2(0,T ) − ∥R(·)1/2uϵ(·)∥2
L2(0,T )

∣∣∣ ≤ λ.
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(Some) prior literature

F (t, x) = {f(t, x, u) | u ∈ U(t, x)} and x(t) ∈ K (t) = A0,t := {x | h(t, x) ≤ 0}

bounded F : ∃c ∈ R, F (t, x) ⊂ c(1 + ∥x∥)BN i.e. ∥f(t, x, u)∥ ≤ c(1 + ∥x∥)

[Rampazzo, 1999]: bounded F and real-valued h(·) ∈ C2

[Bettiol et al., 2010]: bounded F and real-valued h(·)

[Bressan and Facchi, 2011]: bounded F and compact convex K both time-independent +
relaxation

[Bettiol and Vinter, 2011]: bounded F and K time-independent + inf-relaxation

Control-affine systems x′(t) = a(t, x) + b(t, x)u with u ∈ Rm are unbounded!!
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Assumptions

Aϵ := {(t, x) | t ∈ [0, T ], x ∈ Aϵ,t}.

(H-1) (Regular perturbation of A)

∀ λ > 0, ∃ ϵ > 0, ∀ (t, x) ∈ A0 ∩ ([0, T ] × ∥x̄(·)∥L∞(0,T )BN),
dAϵ,t (x) ≤ λ.

(H-2) (Uniform continuity from the right of d∂Aϵ,t w.r.t. ϵ and t) There exist ϵ0 > 0, ∆0 > 0,
and ωA(·) ∈ C0(R+,R+) such that ωA(0) = 0 and, for all ϵ ≤ ϵ0, and all (t, x) ∈
A0 ∩ ([0, T ] × 2∥x̄(·)∥L∞(0,T )BN),

∀ δ ∈ [0, min(∆0, T − t)], ∥d∂Aϵ,t+δ
(x) − d∂Aϵ,t (x)∥ ≤ ωA(δ).

Discussion: (H-1) and (H-2) are implied by C1,1-regularity of h with a surjective Jacobian
∂h(t,x)

∂x at all (t, x) ∈ ∂A0.
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Assumptions (cont’d)

Aϵ := {(t, x) | t ∈ [0, T ], x ∈ Aϵ,t}.

(H-3) (Sublinear growth of f w.r.t. x and u)

∃ θ(·) ∈ L2
+(0, T ), ∀ t ∈ [0, T ], ∀ x ∈ RN , ∀ u ∈ RM ,

∥f(t, x, u)∥ ≤ θ(t)(1 + ∥x∥ + ∥u∥).

(H-4) (Inward-pointing condition) There exist ϵ0 > 0, Mu > 0, Mv > 0, ξ > 0, and η > 0 such
that for all ϵ ≤ ϵ0 and all (t, x) ∈ (∂Aϵ+(0, ηBN))∩Aϵ∩([0, T ]×(1+2∥x̄(·)∥L∞(0,T ))BN),
we can find u ∈ MuBM such that v := f(t, x, u) belongs to MvBN and

y + δ(v + ξBN) ⊂ Aϵ,t+δ (4)

for all δ ∈ [0, ξ] and all y ∈ (x + ξBN) ∩ Aϵ,t
↪→ i.e. F (t, x) ∩ Int Tan(Aϵ,t(x)) ̸= ∅ on the boundary (Tan = Clark tangent cone).

Discussion: (H-3) prevents finite-time explosion of trajectories. (H-4) is paramount to the
construction (existence of control to “correct” the trajectory).
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Inward pointing condition illustrated

Yes! No!

We further ask the inward-pointing vector to be of bounded norm and bounded control, uniformly
over ∂Aϵ.
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Assumptions (cont’d)

R := e∥θ(·)∥L1(0,T )
[
1 + ∥x̄(·)∥L∞(0,T ) + (1 + Mu)∥θ(·)∥L1(0,T )

+ ∥θ(·)∥L2(0,T )(∥ū(·)∥L2(0,T ) + ∥βu(·)∥L2(0,T ))
]

. (5)

(H-6) (Local Lipschitz continuity of f w.r.t. x)

∃ kf (·) ∈ L2
+(0, T ), ∀ t ∈ [0, T ], ∀ x, y ∈ RBN , ∀ u ∈ (Mu + ∥ū(·)∥L∞(0,T ))BM ,

∥f(t, x, u) − f(t, y, u)∥ ≤ kf (t)∥x − y∥.

Discussion: (H-6) guarantees uniqueness and encompasses control-affine systems of the form
x′(t) = a(t, x) + b(t, x)u with k̃f (t)-Lipschitz functions a(t, ·) and b(t, ·), for some k̃f (·) ∈
L2(0, T ).
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Assumptions (cont’d)
(H-5) (Left local absolute continuity of f w.r.t. t)

∃ γ(·) ∈ L1
+(0, T ), ∃ βu(·) ∈ L2

+(0, T ), ∀ 0 ≤ s < t ≤ T , ∀ x ∈ (1 + 2∥x̄(·)∥L∞(0,T ))BN ,

∀ us ∈ (Mu + ∥ū(s)∥)BM , ∃ ut ∈ us + βu(s)BM ,

∥f(t, x, ut) − f(s, x, us)∥ ≤
∫ t

s
γ (σ) dσ.

(H-7) (Hölderian selection of the controls in (H-5))
∃ γ(·) ∈ L1

+(0, T ), ∃ α ∈]0, 1], ∃ ku(·) ∈ L2
+(0, T ),

∀ 0 ≤ s < t ≤ T , ∀ x ∈ (1 + 2∥x̄(·)∥L∞(0,T ))BN ,

∀ us ∈ (Mu + ∥ū(s)∥)BM , ∃ ut ∈ us + (t − s)αku(s)BM ,

∥f(t, x, ut) − f(s, x, us)∥ ≤
∫ t

s
γ (σ) dσ.

Discussion: (H-5) was introduced to tackle discontinuities in the dynamics, and showcased on
a civil engineering example [Bettiol et al., 2012, Section 4]. We adapt it to control systems and
refine it in (H-7).
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Idea of the proof

The overall strategy to construct a neighboring Aϵ-feasible trajectory can be related to that
of [Bettiol et al., 2012]. Modifying it to unbounded controls and time-varying constraints is
however not straightforward.
Consider small subintervals [0, T ] =

⋃
i∈[[0,N0−1]][ti , ti+1] and proceed iteratively.

If the ith-trajectory stays in Aϵ over [ti , ti+1], move to the next time interval.

Otherwise, (H-4) provides us with an inward-pointing control ui to stay in Aϵ for a short
time.

apply ui on [ti , ti + tϵ],
apply ū(· − tϵ) on [ti + tϵ, ti+1],
apply ū(·) over [ti+1, T ]

By adequately choosing tϵ, we prove that the resulting control after N0 iterations is L2-close
from ū(·) and that the obtained trajectory is in Aϵ.
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Illustration of construction
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from ū(·) and that the obtained trajectory is
in Aϵ.



12/16

Illustration of construction

Consider small subintervals
[0, T ] =

⋃
i∈[[0,N0−1]][ti , ti+1] and proceed

iteratively.
If the ith-trajectory stays in Aϵ over [ti , ti+1],
move to the next time interval. (H-4) provides
us with an inward-pointing control ui to stay
in Aϵ for a short time.

apply ui on [ti , ti + tϵ],
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apply ū(·) over [ti+1, T ]

By adequately choosing tϵ, we prove that the
resulting control after N0 iterations is L2-close
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Example: Consider an electric motor

x ′(t) = a(t, x) + b(t, u),

with a bounded a ∈ C1,1([0, 2] ×R,R) and constraints h(x) = 1 − |x |, for controls u ∈ R. The
motor suffers an incident at T = 1. If it is a power surge

b(t, u) = b̃(t)u =
{

u if t ∈ [0, 1]
u/ 4√t − 1 if t ∈]1, 2] ,

then (H-3) holds for θ ≡ b̃ + ∥f ∥∞ and so does (H-7) after some computation. If the incident
consists in a power decline

b(t, u) =
{

arctan(u) if t ∈ [0, 1]
(1 −

√
t−1
2 ) arctan(u) if t ∈]1, 2]

,

then the system is bounded and (H-7) holds with ut = us , γ(σ) = 1
4
√

σ−1 for σ ∈]1, 2] and
γ(σ) = 0 otherwise. In both cases (H-4) is satisfied, so perturbing the constraints still allows
for a trajectory and control close to the reference ones as per Theorem 1.
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Conclusion & Extensions

We have proven that one can approximate trajectories of systems with unbounded control
(e.g. control-affine) under assumptions similar to those of bounded systems.

Systems f̃ with Lipschitz (or Hölderian) control constraints t ; U(t) can be considered by
projecting over U(t), i.e. f(t, x, u) = f̃(t, x, projU(t)(u)) if f satisfies the above assumptions.

State constraints of order 2 (or more), e.g. ẍ = u with x constrained, do not enter into the
proposed framework (requires Lie brackets, see Franco Rampazzo’s recent work)
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