Stability of solutions for controlled nonlinear systems under perturbation of state constraints

Pierre-Cyril Aubin-Frankowski

DI, Ecole normale supérieure, Université PSL, CNRS, INRIA SIERRA, Paris, France

IFAC-CAO 2022

19th of July, 2022

Problem statement

• We consider a nonlinear system with unbounded control and state constraints

$$\begin{aligned} & \mathbf{x}'(t) = \mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t)), & \text{for a.e. } t \in [0, T], \\ & \mathbf{x}(t) \in \mathcal{A}_{0,t} := \{ \mathbf{x} \, | \, \mathbf{h}(t, \mathbf{x}) \leq 0 \}, & \text{for all } t \in [0, T], \end{aligned}$$

where $\mathbf{f} : [0, \mathcal{T}] \times \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N$ and $\mathbf{h} : [0, \mathcal{T}] \times \mathbb{R}^N \to \mathbb{R}^P$. We call **f**-trajectories the solutions of (1) for measurable controls $\mathbf{u}(\cdot)$.

Problem statement

• We consider a nonlinear system with unbounded control and state constraints

$$\begin{aligned} & \mathbf{x}'(t) = \mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t)), & \text{for a.e. } t \in [0, T], \\ & \mathbf{x}(t) \in \mathcal{A}_{0,t} := \{ \mathbf{x} \, | \, \mathbf{h}(t, \mathbf{x}) \leq 0 \}, & \text{for all } t \in [0, T], \end{aligned}$$

where $\mathbf{f} : [0, \mathcal{T}] \times \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N$ and $\mathbf{h} : [0, \mathcal{T}] \times \mathbb{R}^N \to \mathbb{R}^P$. We call \mathbf{f} -trajectories the solutions of (1) for measurable controls $\mathbf{u}(\cdot)$.

• We are given a reference trajectory $\bar{\mathbf{x}}(\cdot)$, such that $\mathbf{h}(0, \bar{\mathbf{x}}(0)) < 0$, with control $\bar{\mathbf{u}}(\cdot) \in L^{\infty}(0, T)$ satisfying (1)-(2). Our goal is to design a neighboring feasible trajectory $\mathbf{x}^{\epsilon}(\cdot)$ satisfying (1) and

$$\mathbf{x}^{\epsilon}(0) = \bar{\mathbf{x}}(0), \quad \|\bar{\mathbf{x}}(\cdot) - \mathbf{x}^{\epsilon}(\cdot)\|_{L^{\infty}(0,T)} \leq \lambda, \quad \left|\|\bar{\mathbf{u}}(\cdot)\|_{L^{2}(0,T)}^{2} - \|\mathbf{u}^{\epsilon}(\cdot)\|_{L^{2}(0,T)}^{2}\right| \leq \lambda, \quad \lambda \ll 1$$
$$\mathbf{x}^{\epsilon}(t) \in \mathcal{A}_{\epsilon,t} := \{\mathbf{x} \mid \epsilon + \mathbf{h}(t, \mathbf{x}) \leq 0\} \text{ for all } t \in [0, T].$$
(3)

Important for interior point methods and perturbations!

Problem statement (illustrated)

Theorem

Under assumptions (H-1)-(H-6), for any $\lambda > 0$, there exists $\epsilon > 0$ and a **f**-trajectory $\mathbf{x}^{\epsilon}(\cdot)$ on [0, T] such that $\mathbf{x}^{\epsilon}(0) = \bar{\mathbf{x}}(0)$, $\mathbf{x}^{\epsilon}(t) \in \operatorname{Int} \mathcal{A}_{\epsilon,t}$ for all $t \in [0, T]$, and

 $\|\bar{\mathbf{x}}(\cdot)-\mathbf{x}^{\epsilon}(\cdot)\|_{L^{\infty}(0,T)}\leq\lambda.$

Moreover if (H-7) is satisfied, then, for any mapping $\mathbf{R}(\cdot) \in C^0([0, T], \mathbb{R}^{M,M})$ with positive semidefinite matrix values, one can choose $\epsilon > 0$ and $\mathbf{x}^{\epsilon}(\cdot)$ such that the controls $\mathbf{u}^{\epsilon}(\cdot)$ satisfy

$$\left| \| \mathbf{R}(\cdot)^{1/2} \bar{\mathbf{u}}(\cdot) \|_{L^{2}(0,T)}^{2} - \| \mathbf{R}(\cdot)^{1/2} \mathbf{u}^{\epsilon}(\cdot) \|_{L^{2}(0,T)}^{2} \right| \leq \lambda.$$

(Some) prior literature

 $F(t,x) = \{\mathbf{f}(t,\mathbf{x},\mathbf{u}) \,|\, \mathbf{u} \in U(t,\mathbf{x})\} \text{ and } \mathbf{x}(t) \in \mathcal{K}(t) = \mathcal{A}_{0,t} := \{\mathbf{x} \,|\, \mathbf{h}(t,\mathbf{x}) \leq 0\}$

bounded $F: \exists c \in \mathbb{R}, F(t,x) \subset c(1+\|x\|)\mathbb{B}_N$ i.e. $\|\mathbf{f}(t,\mathbf{x},\mathbf{u})\| \leq c(1+\|x\|)$

- [Rampazzo, 1999]: bounded F and real-valued $h(\cdot) \in C^2$
- [Bettiol et al., 2010]: bounded F and real-valued $h(\cdot)$
- [Bressan and Facchi, 2011]: bounded F and compact convex K both time-independent + relaxation
- [Bettiol and Vinter, 2011]: bounded F and K time-independent + inf-relaxation

Control-affine systems $\mathbf{x}'(t) = \mathbf{a}(t, \mathbf{x}) + \mathbf{b}(t, \mathbf{x})\mathbf{u}$ with $\mathbf{u} \in \mathbb{R}^m$ are <u>unbounded</u>!!

$$\mathcal{A}_{\epsilon} := \{(t, \mathbf{x}) \mid t \in [0, T], \, \mathbf{x} \in \mathcal{A}_{\epsilon, t}\}.$$

(H-1) (Regular perturbation of A)

$$egin{aligned} &orall \lambda > 0, \; \exists \, \epsilon > 0, \; orall \left(t, \mathbf{x}
ight) \in \mathcal{A}_0 \cap \left([0, \, \mathcal{T}] imes \| ar{\mathbf{x}}(\cdot) \|_{L^\infty(0, \, \mathcal{T})} \mathbb{B}_N
ight), \ &d_{\mathcal{A}_{e,t}}(\mathbf{x}) \leq \lambda. \end{aligned}$$

(H-2) (Uniform continuity from the right of $d_{\partial \mathcal{A}_{\epsilon,t}}$ w.r.t. ϵ and t) There exist $\epsilon_0 > 0$, $\Delta_0 > 0$, and $\omega_{\mathcal{A}}(\cdot) \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R}_+)$ such that $\omega_{\mathcal{A}}(0) = 0$ and, for all $\epsilon \leq \epsilon_0$, and all $(t, \mathbf{x}) \in \mathcal{A}_0 \cap ([0, T] \times 2 \| \bar{\mathbf{x}}(\cdot) \|_{L^{\infty}(0, T)} \mathbb{B}_N)$,

$$\forall \, \delta \in [0,\min(\Delta_0, \mathcal{T} - t)], \, \|d_{\partial \mathcal{A}_{\epsilon,t+\delta}}(\mathbf{x}) - d_{\partial \mathcal{A}_{\epsilon,t}}(\mathbf{x})\| \leq \omega_{\mathcal{A}}(\delta).$$

Discussion: (H-1) and (H-2) are implied by $\mathcal{C}^{1,1}$ -regularity of **h** with a surjective Jacobian $\frac{\partial \mathbf{h}(t,\mathbf{x})}{\partial \mathbf{x}}$ at all $(t,\mathbf{x}) \in \partial \mathcal{A}_0$.

Assumptions (cont'd)

 $\mathcal{A}_{\epsilon} := \{(t, \mathbf{x}) \mid t \in [0, T], \, \mathbf{x} \in \mathcal{A}_{\epsilon, t}\}.$

(H-3) (Sublinear growth of f w.r.t. x and u)

$$\begin{aligned} \exists \, \theta(\cdot) \in L^2_+(0,\,T), \, \forall \, t \in [0,\,T], \, \forall \, \mathbf{x} \in \mathbb{R}^N, \, \forall \, \mathbf{u} \in \mathbb{R}^M, \\ \|\mathbf{f}(t,\mathbf{x},\mathbf{u})\| \leq \theta(t)(1+\|\mathbf{x}\|+\|\mathbf{u}\|). \end{aligned}$$

(H-4) (Inward-pointing condition) There exist $\epsilon_0 > 0$, $M_u > 0$, $M_v > 0$, $\xi > 0$, and $\eta > 0$ such that for all $\epsilon \le \epsilon_0$ and all $(t, \mathbf{x}) \in (\partial \mathcal{A}_{\epsilon} + (0, \eta \mathbb{B}_N)) \cap \mathcal{A}_{\epsilon} \cap ([0, T] \times (1+2\|\bar{\mathbf{x}}(\cdot)\|_{L^{\infty}(0, T)})\mathbb{B}_N)$, we can find $\mathbf{u} \in M_u \mathbb{B}_M$ such that $\mathbf{v} := \mathbf{f}(t, \mathbf{x}, \mathbf{u})$ belongs to $M_v \mathbb{B}_N$ and

$$\mathbf{y} + \delta(\mathbf{v} + \xi \mathbb{B}_N) \subset \mathcal{A}_{\epsilon, t+\delta} \tag{4}$$

for all $\delta \in [0,\xi]$ and all $\mathbf{y} \in (\mathbf{x} + \xi \mathbb{B}_N) \cap \mathcal{A}_{\epsilon,t}$

 \hookrightarrow i.e. $F(t,x) \cap \operatorname{Int} \operatorname{Tan}(\mathcal{A}_{\epsilon,t}(x)) \neq \emptyset$ on the boundary (Tan = Clark tangent cone). **Discussion:** (H-3) prevents finite-time explosion of trajectories. (H-4) is paramount to the construction (existence of control to "correct" the trajectory).

Inward pointing condition illustrated

We further ask the inward-pointing vector to be of bounded norm and bounded control, uniformly over ∂A_{ϵ} .

$$R := e^{\|\theta(\cdot)\|_{L^{1}(0,T)}} \left[1 + \|\bar{\mathbf{x}}(\cdot)\|_{L^{\infty}(0,T)} + (1 + M_{u})\|\theta(\cdot)\|_{L^{1}(0,T)} + \|\theta(\cdot)\|_{L^{2}(0,T)} (\|\bar{\mathbf{u}}(\cdot)\|_{L^{2}(0,T)} + \|\beta_{u}(\cdot)\|_{L^{2}(0,T)}) \right].$$
(5)

(H-6) (Local Lipschitz continuity of f w.r.t. x)

$$\exists k_f(\cdot) \in L^2_+(0, T), \ \forall t \in [0, T], \ \forall \mathbf{x}, \mathbf{y} \in R\mathbb{B}_N, \ \forall \mathbf{u} \in (M_u + \|\bar{\mathbf{u}}(\cdot)\|_{L^{\infty}(0, T)})\mathbb{B}_M, \\ \|\mathbf{f}(t, \mathbf{x}, \mathbf{u}) - \mathbf{f}(t, \mathbf{y}, \mathbf{u})\| \leq k_f(t) \|\mathbf{x} - \mathbf{y}\|.$$

Discussion: (H-6) guarantees uniqueness and encompasses control-affine systems of the form $\mathbf{x}'(t) = \mathbf{a}(t, \mathbf{x}) + \mathbf{b}(t, \mathbf{x})\mathbf{u}$ with $\tilde{k}_f(t)$ -Lipschitz functions $\mathbf{a}(t, \cdot)$ and $\mathbf{b}(t, \cdot)$, for some $\tilde{k}_f(\cdot) \in L^2(0, T)$.

Assumptions (cont'd)

(H-5) (Left local absolute continuity of \mathbf{f} w.r.t. t) $\exists \gamma(\cdot) \in L^1_+(0, T), \ \exists \beta_u(\cdot) \in L^2_+(0, T), \ \forall 0 \le s < t \le T, \ \forall \mathbf{x} \in (1+2\|\bar{\mathbf{x}}(\cdot)\|_{L^{\infty}(0,T)})\mathbb{B}_N,$ $\forall \mathbf{u}_s \in (M_u + \|\bar{\mathbf{u}}(s)\|)\mathbb{B}_M, \ \exists \mathbf{u}_t \in \mathbf{u}_s + \beta_u(s)\mathbb{B}_M,$ $\|\mathbf{f}(t, \mathbf{x}, \mathbf{u}_t) - \mathbf{f}(s, \mathbf{x}, \mathbf{u}_s)\| \le \int_s^t \gamma(\sigma) d\sigma.$

(H-7) (Hölderian selection of the controls in (H-5))

$$\begin{aligned} \exists \gamma(\cdot) \in L^{1}_{+}(0, T), \ \exists \alpha \in]0, 1], \ \exists k_{u}(\cdot) \in L^{2}_{+}(0, T), \\ \forall 0 \leq s < t \leq T, \ \forall \mathbf{x} \in (1 + 2 \| \bar{\mathbf{x}}(\cdot) \|_{L^{\infty}(0, T)}) \mathbb{B}_{N}, \\ \forall \mathbf{u}_{s} \in (M_{u} + \| \bar{\mathbf{u}}(s) \|) \mathbb{B}_{M}, \ \exists \mathbf{u}_{t} \in \mathbf{u}_{s} + (t - s)^{\alpha} k_{u}(s) \mathbb{B}_{M}, \\ \| \mathbf{f}(t, \mathbf{x}, \mathbf{u}_{t}) - \mathbf{f}(s, \mathbf{x}, \mathbf{u}_{s}) \| \leq \int_{s}^{t} \gamma(\sigma) \, d\sigma. \end{aligned}$$

Discussion: (H-5) was introduced to tackle discontinuities in the dynamics, and showcased on a civil engineering example [Bettiol et al., 2012, Section 4]. We adapt it to control systems and refine it in (H-7).

The overall strategy to construct a neighboring A_{ϵ} -feasible trajectory can be related to that of [Bettiol et al., 2012]. Modifying it to unbounded controls and time-varying constraints is however not straightforward.

Consider small subintervals $[0, T] = \bigcup_{i \in [0, N_0-1]} [t_i, t_{i+1}]$ and proceed iteratively.

- If the *i*th-trajectory stays in A_{ϵ} over $[t_i, t_{i+1}]$, move to the next time interval.
- Otherwise, (H-4) provides us with an inward-pointing control \mathbf{u}_i to stay in \mathcal{A}_{ϵ} for a short time.
 - apply \mathbf{u}_i on $[t_i, t_i + t_{\epsilon}]$,
 - apply $ar{\mathbf{u}}(\cdot t_\epsilon)$ on $[t_i + t_\epsilon, t_{i+1}]$,
 - apply $\bar{\mathbf{u}}(\cdot)$ over $[t_{i+1}, T]$

By adequately choosing t_{ϵ} , we prove that the resulting control after N_0 iterations is L^2 -close from $\bar{\mathbf{u}}(\cdot)$ and that the obtained trajectory is in \mathcal{A}_{ϵ} .

Illustration of construction

Consider small subintervals $[0, T] = \bigcup_{i \in [0, N_0 - 1]} [t_i, t_{i+1}]$ and proceed iteratively. If the *i*th-trajectory stays in \mathcal{A}_{ϵ} over $[t_i, t_{i+1}]$, move to the next time interval.

Illustration of construction

Consider small subintervals $[0, T] = \bigcup_{i \in [0, N_0 - 1]} [t_i, t_{i+1}]$ and proceed iteratively.

If the *i*th-trajectory stays in \mathcal{A}_{ϵ} over $[t_i, t_{i+1}]$, move to the next time interval. (H-4) provides us with an inward-pointing control \mathbf{u}_i to stay in \mathcal{A}_{ϵ} for a short time.

- apply \mathbf{u}_i on $[t_i, t_i + t_{\epsilon}]$,
- apply $\bar{\mathbf{u}}(\cdot t_{\epsilon})$ on $[t_i + t_{\epsilon}, t_{i+1}]$,
- apply $\bar{\mathbf{u}}(\cdot)$ over $[t_{i+1}, T]$

Illustration of construction

Consider small subintervals $[0, T] = \bigcup_{i \in [0, N_0 - 1]} [t_i, t_{i+1}]$ and proceed iteratively.

If the *i*th-trajectory stays in \mathcal{A}_{ϵ} over $[t_i, t_{i+1}]$, move to the next time interval. (H-4) provides us with an inward-pointing control \mathbf{u}_i to stay in \mathcal{A}_{ϵ} for a short time.

- apply \mathbf{u}_i on $[t_i, t_i + t_{\epsilon}]$,
- apply $\bar{\mathbf{u}}(\cdot t_{\epsilon})$ on $[t_i + t_{\epsilon}, t_{i+1}]$,
- apply $\bar{\mathbf{u}}(\cdot)$ over $[t_{i+1}, T]$

By adequately choosing t_{ϵ} , we prove that the resulting control after N_0 iterations is L^2 -close from $\bar{\mathbf{u}}(\cdot)$ and that the obtained trajectory is in \mathcal{A}_{ϵ} .

Example: Consider an electric motor

$$x'(t) = a(t,x) + b(t,u)$$

with a bounded $a \in C^{1,1}([0,2] \times \mathbb{R}, \mathbb{R})$ and constraints h(x) = 1 - |x|, for controls $u \in \mathbb{R}$. The motor suffers an incident at T = 1. If it is a power surge

$$b(t,u) = \widetilde{b}(t)u = \left\{egin{array}{cc} u & ext{if } t\in [0,1] \ u/\sqrt[4]{t-1} & ext{if } t\in]1,2] \end{array}
ight.,$$

then (H-3) holds for $\theta \equiv \tilde{b} + \|f\|_{\infty}$ and so does (H-7) after some computation. If the incident consists in a power decline

$$b(t,u) = \left\{egin{array}{ll} \operatorname{arctan}(u) & ext{if } t \in [0,1] \ \left(1 - rac{\sqrt{t-1}}{2}
ight) \operatorname{arctan}(u) & ext{if } t \in]1,2] \end{array}
ight.$$

then the system is bounded and (H-7) holds with $u_t = u_s$, $\gamma(\sigma) = \frac{1}{4\sqrt{\sigma-1}}$ for $\sigma \in]1,2]$ and $\gamma(\sigma) = 0$ otherwise. In both cases (H-4) is satisfied, so perturbing the constraints still allows for a trajectory and control close to the reference ones as per Theorem 1.

- We have proven that one can approximate trajectories of systems with unbounded control (e.g. control-affine) under assumptions similar to those of bounded systems.
- Systems f̃ with Lipschitz (or Hölderian) control constraints t → U(t) can be considered by projecting over U(t), i.e. f(t, x, u) = f̃(t, x, proj_{U(t)}(u)) if f satisfies the above assumptions.
- State constraints of order 2 (or more), e.g. $\ddot{x} = u$ with x constrained, do not enter into the proposed framework (requires Lie brackets, see Franco Rampazzo's recent work)

References I

Bettiol, P., Bressan, A., and Vinter, R. (2010).

On trajectories satisfying a state constraint: $W^{1,1}$ estimates and counterexamples. SIAM j. control optim., 48(7):4664–4679.

Bettiol, P., Frankowska, H., and Vinter, R. B. (2012).

 L^{∞} estimates on trajectories confined to a closed subset. Journal of Differential Equations, 252:1912–1933.

Bettiol, P. and Vinter, R. (2011).

Trajectories satisfying a state constraint: Improved estimates and new non-degeneracy conditions. *IEEE Transactions on Automatic Control*, 56(5):1090–1096.

Bressan, A. and Facchi, G. (2011).

Trajectories of differential inclusions with state constraints.

J. Differ. Equ., 250(4):2267-2281.

Rampazzo, F. (1999).

A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control.

IMA J. Math. Control Inform., 16(4):335–351.