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Problem statement
e We consider a nonlinear system with unbounded control and state constraints

x'(t) = f(t,x(t),u(t)), fora.e. t €0, T], (1)
x(t) € Ao+ == {x|h(t,x) <0}, for all t € [0, T], (2)

where f : [0, T] x RY x RM — RN and h : [0, T] x RV — RP. We call f-trajectories the
solutions of (1) for measurable controls u(-).



Problem statement

e We consider a nonlinear system with unbounded control and state constraints
x'(t) = f(t,x(t),u(t)), fora.e. t €0, T], (1)
x(t) € Ao+ == {x|h(t,x) <0}, for all t € [0, T], (2)

where f : [0, T] x RY x RM — RN and h : [0, T] x RV — RP. We call f-trajectories the
solutions of (1) for measurable controls u(-).

e We are given a reference trajectory X(+), such that h(0,x(0)) < 0, with control u(-) € L>(0, T)
satisfying (1)-(2). Our goal is to design a neighboring feasible trajectory x¢(-) satisfying (1)
and
x(0) =%(0), K ~xOllimom <A 8O — Ol <A A<l
x(t) € Act := {x]| e+ h(t,x) <0} forall t € [0, T]. (3)

Important for interior point methods and perturbations!



Problem statement (illustrated)




Under assumptions (H-1)-(H-6), for any X\ > 0, there exists € > 0 and a f-trajectory x(-) on
[0, T] such that x°(0) = x(0), x*(t) € Int Ac ¢ for all t € [0, T], and

[1%(-) = x“()llzoeo,my < A

Moreover if (H-7) is satisfied, then, for any mapping R(-) € C°([0, T],RM:M) with positive
semidefinite matrix values, one can choose € > 0 and x°(-) such that the controls u‘(-) satisfy

[IRCY25() Bz0,7) — IR0 o,y < A




(Some) prior literature

F(t,x) = {f(t,x,u)|u e U(t,x)} and x(t) € K(t) = Ao, := {x|h(t,x) <0}
bounded F: 3c € R, F(t,x) C c(1+||x|)Bn i.e. |[f(t,x,u)]| < c(1+ |x])

o [Rampazzo, 1999]: bounded F and real-valued h(-) € C?
@ [Bettiol et al., 2010]: bounded F and real-valued h(-)

@ [Bressan and Facchi, 2011]: bounded F and compact convex K both time-independent +
relaxation

@ [Bettiol and Vinter, 2011]: bounded F and K time-independent + inf-relaxation

Control-affine systems x’(t) = a(t,x) + b(t,x)u with u € R™ are unbounded!!



Assumptions

Ac :={(t,;x) [t € [0, T], x € Ac+}.
(H-1) (Regular perturbation of A)
VA0, 3e> 0, ¥ (t,x) € Ao N1 ([0, T] x [X() 10,7y Bw),
dAg,t(X) <\

(H-2) (Uniform continuity from the right of dyg4,, w.r.t. € and t) There exist g > 0, Ag > 0,
and w4(-) € CO(R4,Ry) such that wy(0) = 0 and, for all € < €, and all (t,x) €
Ao N ([0, T] x 2[|%(+)[| oo 0, 1) Bn),

V4 € [0,min(Ag, T = t)], [[doa, o5 (X) = doa. (X)]| < walf)-

Discussion: (H-1) and (H-2) are implied by C1:’-regularity of h with a surjective Jacobian
dh(gi’x) at all (t,x) € 0Ap.




Assumptions (cont'd)

Ac ={(t,x) [t € [0, T], x € Ac¢}.
(H-3) (Sublinear growth of f w.r.t. x and u)

30(-) € L2(0,T), Vt€ [0, T], Yx e RV, vu e RV,
1£(t, %, u)[| < O(t)(1 + [Ix]| + [ul]).
(H-4) (Inward-pointing condition) There exist ¢g > 0, M, >0, M, >0, { > 0, and > 0 such

that for all € < €g and all (t,x) € (0AA+(0, nBn))NAN([0, T]X (1+2[X(-)[| oo (0, 7)) Bn),
we can find u € M, By such that v := (¢, x,u) belongs to M, By and

y+0(v+EBN) C Acrrs (4)

for all § € [0,€] and all y € (x + £By) N Ac ¢
— i.e. F(t,x)NIntTan(Ac¢(x)) # 0 on the boundary (Tan = Clark tangent cone).
Discussion: (H-3) prevents finite-time explosion of trajectories. (H-4) is paramount to the
construction (existence of control to “correct” the trajectory).




Inward pointing condition illustrated

Yes! Nol!

We further ask the inward-pointing vector to be of bounded norm and bounded control, uniformly
over 0A..



Assumptions (cont'd)

R = el Ol [1 4+ () |0,y + (1 + M) 0O 10,7y
+ 1020,y (IO 20,7y + 1Bulli20,7)] - (5)
(H-6) (Local Lipschitz continuity of f w.r.t. x)

Jke(-) € L2(0,T), YVt € [0, T], Vx,y € RBy, Yu € (M, + 16(-) || o< (0, 7)) B,
1F(t,x,u) — f(t,y,u)|| < ke(t)l[x —yl|.

Discussion: (H-6) guarantees uniqueness and encompasses control-affine systems of the form
x'(t) = a(t,x) + b(t,x)u with k¢(t)-Lipschitz functions a(t,-) and b(t,-), for some k¢(-) €
L2(0, T).



Assumptions (cont'd)

(H-5) (Left local absolute continuity of f w.r.t. t)
3y(-) € L3(0,T), 3Bu() € L3(0, T), VO<s <t < T, Vx € (1 + 2||%(-) | 1o (0, 7)) Bw>
Vus € (M, + ||a(s)|)Bun, Jur € us + Bu(s)Bu,
1 (£, x, ug) — £(s, x, us)|| < /t'y(a) do.
(H-7) (Holderian selection of the controls in (H-5)) S
3v(:) € LL(0, T), 3 €]0,1], Tky(-) € L2(0, T),
VO<s<t<T,Vxe (1+2[x()llLoe(0,7))Bn,
Yus € (M, + [|a(s))Bp, Jue € us + (t — 5)%ky(s)Bp,

t
I£(e.x.u) — f(s.x )] < [ 7(0) dov
S

Discussion: (H-5) was introduced to tackle discontinuities in the dynamics, and showcased on
a civil engineering example [Bettiol et al., 2012, Section 4]. We adapt it to control systems and
refine it in (H-7).



|dea of the proof

The overall strategy to construct a neighboring A.-feasible trajectory can be related to that

of [Bettiol et al., 2012]. Modifying it to unbounded controls and time-varying constraints is
however not straightforward.

Consider small subintervals [0, T] = U;cpo,np—1j[ti; ti+1] and proceed iteratively.
o If the ith-trajectory stays in A, over [t;, ti+1], move to the next time interval.

@ Otherwise, (H-4) provides us with an inward-pointing control u; to stay in A for a short
time.
e apply u; on [t;, t; + t],
e apply (- — t.) on [t + te, tit1],
e apply u(-) over [tit1, T]
By adequately choosing t., we prove that the resulting control after Ny iterations is L?-close
from u(-) and that the obtained trajectory is in A,.



[[lustration of construction

Consider small subintervals

[0, T] = Uicpo,no—1y[ti: ti+1] and proceed
iteratively.

If the ith-trajectory stays in A, over [t;, ti+1],
move to the next time interval.




[[lustration of construction

Consider small subintervals

[0, T] = Uicpo,no—1p[ti, ti+1] and proceed
iteratively.

If the ith-trajectory stays in A, over [t;, ti+1],
move to the next time interval. (H-4) provides
us with an inward-pointing control u; to stay
in A, for a short time.

o apply u; on [t;, ti + t],
e apply u(- — t.) on [t + t, ti+1],
e apply u(-) over [tit1, T]



[[lustration of construction

Consider small subintervals

[0, T] = Uicpo,no—1p[ti, ti+1] and proceed
iteratively.

If the ith-trajectory stays in A, over [t;, ti+1],
move to the next time interval. (H-4) provides
us with an inward-pointing control u; to stay
in A, for a short time.

e apply u; on [t;, t; + t],

e apply (- — t.) on [t; + t, tiv1],

e apply u(-) over [ti+1, T]
By adequately choosing t., we prove that the
resulting control after Ny iterations is L?-close

from @(-) and that the obtained trajectory is
in A..



Example: Consider an electric motor
x'(t) = a(t,x) + b(t, u),

with a bounded a € C*1([0,2] x R, R) and constraints h(x) = 1 — |x|, for controls u € R. The
motor suffers an incident at T = 1. If it is a power surge

r u if t €[0,1]
b(t,u)—b(t)u—{ u/Vt—1 iftell,2]

then (H-3) holds for # = b + ||f ||« and so does (H-7) after some computation. If the incident
consists in a power decline

| arctan(u) if t €[0,1]
b(t, u) = { (1- ﬁ) arctan(u) if t €]1,2]

then the system is bounded and (H-7) holds with u; = us, v(0) = 4\/7 for o €]1,2] and

v(0) = 0 otherwise. In both cases (H-4) is satisfied, so perturbing the constraints still allows
for a trajectory and control close to the reference ones as per Theorem 1.



Conclusion & Extensions

@ We have proven that one can approximate trajectories of systems with unbounded control
(e.g. control-affine) under assumptions similar to those of bounded systems.

@ Systems f with Lipschitz (or Hélderian) control constraints t ~» U(t) can be considered by
projecting over U(t), i.e. f(t,x,u) = f(t,x, projy(¢)(u)) if f satisfies the above assumptions.

@ State constraints of order 2 (or more), e.g. X = u with x constrained, do not enter into the
proposed framework (requires Lie brackets, see Franco Rampazzo's recent work)
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