Stability of solutions for controlled nonlinear systems under perturbation of state constraints

Pierre-Cyril Aubin-Frankowski

DI, Ecole normale supérieure, Université PSL, CNRS, INRIA SIERRA, Paris, France

IFAC-CAO 2022
19th of July, 2022

Problem statement

- We consider a nonlinear system with unbounded control and state constraints

$$
\begin{array}{ll}
\mathbf{x}^{\prime}(t)=\mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t)), & \text { for a.e. } t \in[0, T], \\
\mathbf{x}(t) \in \mathcal{A}_{0, t}:=\{\mathbf{x} \mid \mathbf{h}(t, \mathbf{x}) \leq 0\}, & \text { for all } t \in[0, T], \tag{2}
\end{array}
$$

where $\mathbf{f}:[0, T] \times \mathbb{R}^{N} \times \mathbb{R}^{M} \rightarrow \mathbb{R}^{N}$ and $\mathbf{h}:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}$. We call \mathbf{f}-trajectories the solutions of (1) for measurable controls $\mathbf{u}(\cdot)$.

Problem statement

- We consider a nonlinear system with unbounded control and state constraints

$$
\begin{align*}
\mathbf{x}^{\prime}(t) & =\mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t)), & & \text { for a.e. } t \in[0, T] \tag{1}\\
\mathbf{x}(t) & \in \mathcal{A}_{0, t}:=\{\mathbf{x} \mid \mathbf{h}(t, \mathbf{x}) \leq 0\}, & & \text { for all } t \in[0, T] \tag{2}
\end{align*}
$$

where $\mathbf{f}:[0, T] \times \mathbb{R}^{N} \times \mathbb{R}^{M} \rightarrow \mathbb{R}^{N}$ and $\mathbf{h}:[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{P}$. We call \mathbf{f}-trajectories the solutions of (1) for measurable controls $\mathbf{u}(\cdot)$.

- We are given a reference trajectory $\overline{\mathbf{x}}(\cdot)$, such that $\mathbf{h}(0, \overline{\mathbf{x}}(0))<0$, with control $\overline{\mathbf{u}}(\cdot) \in L^{\infty}(0, T)$ satisfying (1)-(2). Our goal is to design a neighboring feasible trajectory $\mathbf{x}^{\epsilon}(\cdot)$ satisfying (1) and

$$
\begin{gather*}
\mathbf{x}^{\epsilon}(0)=\overline{\mathbf{x}}(0), \quad\left\|\overline{\mathbf{x}}(\cdot)-\mathbf{x}^{\epsilon}(\cdot)\right\|_{L^{\infty}(0, T)} \leq \lambda, \quad\left|\|\overline{\mathbf{u}}(\cdot)\|_{L^{2}(0, T)}^{2}-\left\|\mathbf{u}^{\epsilon}(\cdot)\right\|_{L^{2}(0, T)}^{2}\right| \leq \lambda, \quad \lambda \ll 1 \\
\mathbf{x}^{\epsilon}(t) \in \mathcal{A}_{\epsilon, t}:=\{\mathbf{x} \mid \boldsymbol{\epsilon}+\mathbf{h}(t, \mathbf{x}) \leq 0\} \text { for all } t \in[0, T] . \tag{3}
\end{gather*}
$$

Important for interior point methods and perturbations!

Problem statement (illustrated)

Theorem

Under assumptions (H-1)-(H-6), for any $\lambda>0$, there exists $\boldsymbol{\epsilon}>0$ and a \mathbf{f}-trajectory $\mathbf{x}^{\epsilon}(\cdot)$ on $[0, T]$ such that $\mathbf{x}^{\epsilon}(0)=\overline{\mathbf{x}}(0), \mathbf{x}^{\epsilon}(t) \in \operatorname{Int} \mathcal{A}_{\epsilon, t}$ for all $t \in[0, T]$, and

$$
\left\|\overline{\mathbf{x}}(\cdot)-\mathbf{x}^{\epsilon}(\cdot)\right\|_{L^{\infty}(0, T)} \leq \lambda .
$$

Moreover if (H-7) is satisfied, then, for any mapping $\mathbf{R}(\cdot) \in \mathcal{C}^{0}\left([0, T], \mathbb{R}^{M, M}\right)$ with positive semidefinite matrix values, one can choose $\boldsymbol{\epsilon}>0$ and $\mathbf{x}^{\epsilon}(\cdot)$ such that the controls $\mathbf{u}^{\epsilon}(\cdot)$ satisfy

$$
\left|\left\|\mathbf{R}(\cdot)^{1 / 2} \overline{\mathbf{u}}(\cdot)\right\|_{L^{2}(0, T)}^{2}-\left\|\mathbf{R}(\cdot)^{1 / 2} \mathbf{u}^{\epsilon}(\cdot)\right\|_{L^{2}(0, T)}^{2}\right| \leq \lambda
$$

(Some) prior literature

$$
\begin{gathered}
F(t, x)=\{\mathbf{f}(t, \mathbf{x}, \mathbf{u}) \mid \mathbf{u} \in U(t, \mathbf{x})\} \text { and } \mathbf{x}(t) \in K(t)=\mathcal{A}_{0, t}:=\{\mathbf{x} \mid \mathbf{h}(t, \mathbf{x}) \leq 0\} \\
\text { bounded } F: \exists c \in \mathbb{R}, F(t, x) \subset c(1+\|x\|) \mathbb{B}_{N} \text { i.e. }\|\mathbf{f}(t, \mathbf{x}, \mathbf{u})\| \leq c(1+\|x\|)
\end{gathered}
$$

- [Rampazzo, 1999]: bounded F and real-valued $h(\cdot) \in C^{2}$
- [Bettiol et al., 2010]: bounded F and real-valued $h(\cdot)$
- [Bressan and Facchi, 2011]: bounded F and compact convex K both time-independent + relaxation
- [Bettiol and Vinter, 2011]: bounded F and K time-independent + inf-relaxation

Control-affine systems $\mathbf{x}^{\prime}(t)=\mathbf{a}(t, \mathbf{x})+\mathbf{b}(t, \mathbf{x}) \mathbf{u}$ with $\mathbf{u} \in \mathbb{R}^{m}$ are unbounded!!

Assumptions

$$
\mathcal{A}_{\epsilon}:=\left\{(t, \mathbf{x}) \mid t \in[0, T], \mathbf{x} \in \mathcal{A}_{\epsilon, t}\right\}
$$

(H-1) (Regular perturbation of \mathcal{A})

$$
\begin{aligned}
\forall \lambda>0, \exists \epsilon>0, \forall(t, \mathbf{x}) & \in \mathcal{A}_{0} \cap\left([0, T] \times\|\overline{\mathbf{x}}(\cdot)\|_{L^{\infty}(0, T)} \mathbb{B}_{N}\right), \\
& d_{\mathcal{A}_{\epsilon, t}}(\mathbf{x}) \leq \lambda .
\end{aligned}
$$

(H-2) (Uniform continuity from the right of $d_{\partial \mathcal{A}_{\epsilon, t}}$ w.r.t. ϵ and t) There exist $\epsilon_{0}>0, \Delta_{0}>0$, and $\omega_{\mathcal{A}}(\cdot) \in \mathcal{C}^{0}\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$such that $\omega_{\mathcal{A}}(0)=0$ and, for all $\boldsymbol{\epsilon} \leq \epsilon_{0}$, and all $(t, \mathbf{x}) \in$ $\mathcal{A}_{0} \cap\left([0, T] \times 2\|\overline{\mathbf{x}}(\cdot)\|_{L^{\infty}(0, T)} \mathbb{B}_{N}\right)$,

$$
\forall \delta \in\left[0, \min \left(\Delta_{0}, T-t\right)\right],\left\|d_{\partial \mathcal{A}_{\epsilon, t+\delta}}(\mathbf{x})-d_{\partial \mathcal{A}_{\epsilon, t}}(\mathbf{x})\right\| \leq \omega_{\mathcal{A}}(\delta)
$$

Discussion: (H-1) and (H-2) are implied by $\mathcal{C}^{1,1}$-regularity of \mathbf{h} with a surjective Jacobian $\frac{\partial \mathbf{h}(t, \mathbf{x})}{\partial \mathbf{x}}$ at all $(t, \mathbf{x}) \in \partial \mathcal{A}_{0}$.

Assumptions (cont'd)

$$
\mathcal{A}_{\epsilon}:=\left\{(t, \mathbf{x}) \mid t \in[0, T], \mathbf{x} \in \mathcal{A}_{\epsilon, t}\right\}
$$

(H-3) (Sublinear growth of \mathbf{f} w.r.t. \mathbf{x} and \mathbf{u})

$$
\begin{gathered}
\exists \theta(\cdot) \in L_{+}^{2}(0, T), \forall t \in[0, T], \forall \mathbf{x} \in \mathbb{R}^{N}, \forall \mathbf{u} \in \mathbb{R}^{M} \\
\|\mathbf{f}(t, \mathbf{x}, \mathbf{u})\| \leq \theta(t)(1+\|\mathbf{x}\|+\|\mathbf{u}\|) .
\end{gathered}
$$

(H-4) (Inward-pointing condition) There exist $\epsilon_{0}>0, M_{u}>0, M_{v}>0, \xi>0$, and $\eta>0$ such that for all $\boldsymbol{\epsilon} \leq \epsilon_{0}$ and all $(t, \mathbf{x}) \in\left(\partial \mathcal{A}_{\epsilon}+\left(0, \eta \mathbb{B}_{N}\right)\right) \cap \mathcal{A}_{\epsilon} \cap\left([0, T] \times\left(1+2\|\overline{\mathbf{x}}(\cdot)\|_{L^{\infty}(0, T)}\right) \mathbb{B}_{N}\right)$, we can find $\mathbf{u} \in M_{u} \mathbb{B}_{M}$ such that $\mathbf{v}:=\mathbf{f}(t, \mathbf{x}, \mathbf{u})$ belongs to $M_{v} \mathbb{B}_{N}$ and

$$
\begin{equation*}
\mathbf{y}+\delta\left(\mathbf{v}+\xi \mathbb{B}_{N}\right) \subset \mathcal{A}_{\epsilon, t+\delta} \tag{4}
\end{equation*}
$$

for all $\delta \in[0, \xi]$ and all $\mathbf{y} \in\left(\mathbf{x}+\xi \mathbb{B}_{N}\right) \cap \mathcal{A}_{\epsilon, t}$
\hookrightarrow i.e. $F(t, x) \cap \operatorname{Int} \operatorname{Tan}\left(\mathcal{A}_{\epsilon, t}(x)\right) \neq \emptyset$ on the boundary (Tan = Clark tangent cone).
Discussion: (H-3) prevents finite-time explosion of trajectories. (H-4) is paramount to the construction (existence of control to "correct" the trajectory).

Inward pointing condition illustrated

We further ask the inward-pointing vector to be of bounded norm and bounded control, uniformly over $\partial \mathcal{A}_{\epsilon}$.

Assumptions (cont'd)

$$
\begin{align*}
\left.R:=e^{\|\theta(\cdot)\|_{L^{1}(0, T)}\left[1+\|\overline{\mathbf{x}}(\cdot)\|_{L^{\infty}(0, T)}+\right.} \begin{array}{rl}
& \left(1+M_{u}\right)\|\theta(\cdot)\|_{L^{1}(0, T)} \\
& \left.+\|\theta(\cdot)\|_{L^{2}(0, T)}\left(\|\overline{\mathbf{u}}(\cdot)\|_{L^{2}(0, T)}+\left\|\beta_{u}(\cdot)\right\|_{L^{2}(0, T)}\right)\right] .
\end{array} . . \begin{array}{ll}
\\
&
\end{array}\right) \\ \tag{5}
\end{align*}
$$

(H-6) (Local Lipschitz continuity of \mathbf{f} w.r.t. \mathbf{x})

$$
\begin{gathered}
\exists k_{f}(\cdot) \in L_{+}^{2}(0, T), \quad \forall t \in[0, T], \forall \mathbf{x}, \mathbf{y} \in R \mathbb{B}_{N}, \forall \mathbf{u} \in\left(M_{u}+\|\overline{\mathbf{u}}(\cdot)\|_{L^{\infty}(0, T)}\right) \mathbb{B}_{M} \\
\\
\|\mathbf{f}(t, \mathbf{x}, \mathbf{u})-\mathbf{f}(t, \mathbf{y}, \mathbf{u})\| \leq k_{f}(t)\|\mathbf{x}-\mathbf{y}\|
\end{gathered}
$$

Discussion: (H-6) guarantees uniqueness and encompasses control-affine systems of the form $\mathbf{x}^{\prime}(t)=\mathbf{a}(t, \mathbf{x})+\mathbf{b}(t, \mathbf{x}) \mathbf{u}$ with $\tilde{k}_{f}(t)$-Lipschitz functions $\mathbf{a}(t, \cdot)$ and $\mathbf{b}(t, \cdot)$, for some $\tilde{k}_{f}(\cdot) \in$ $L^{2}(0, T)$.

Assumptions (cont'd)

(H-5) (Left local absolute continuity of \mathbf{f} w.r.t. t)

$$
\begin{gathered}
\exists \gamma(\cdot) \in L_{+}^{1}(0, T), \exists \beta_{u}(\cdot) \in L_{+}^{2}(0, T), \forall 0 \leq s<t \leq T, \forall \mathbf{x} \in\left(1+2\|\overline{\mathbf{x}}(\cdot)\|_{L^{\infty}(0, T)}\right) \mathbb{B}_{N}, \\
\forall \mathbf{u}_{s} \in\left(M_{u}+\|\overline{\mathbf{u}}(s)\|\right) \mathbb{B}_{M}, \exists \mathbf{u}_{t} \in \mathbf{u}_{s}+\beta_{u}(s) \mathbb{B}_{M} \\
\left\|\mathbf{f}\left(t, \mathbf{x}, \mathbf{u}_{t}\right)-\mathbf{f}\left(s, \mathbf{x}, \mathbf{u}_{s}\right)\right\| \leq \int_{s}^{t} \gamma(\sigma) d \sigma
\end{gathered}
$$

(H-7) (Hölderian selection of the controls in (H-5))

$$
\begin{gathered}
\left.\left.\exists \gamma(\cdot) \in L_{+}^{1}(0, T), \exists \alpha \in\right] 0,1\right], \exists k_{u}(\cdot) \in L_{+}^{2}(0, T), \\
\forall 0 \leq s<t \leq T, \forall \mathbf{x} \in\left(1+2\|\overline{\mathbf{x}}(\cdot)\|_{L^{\infty}(0, T)}\right) \mathbb{B}_{N}, \\
\forall \mathbf{u}_{s} \in\left(M_{u}+\|\overline{\mathbf{u}}(s)\|\right) \mathbb{B}_{M}, \exists \mathbf{u}_{t} \in \mathbf{u}_{s}+(t-s)^{\alpha} k_{u}(s) \mathbb{B}_{M}, \\
\left\|\mathbf{f}\left(t, \mathbf{x}, \mathbf{u}_{t}\right)-\mathbf{f}\left(s, \mathbf{x}, \mathbf{u}_{s}\right)\right\| \leq \int_{s}^{t} \gamma(\sigma) d \sigma .
\end{gathered}
$$

Discussion: (H-5) was introduced to tackle discontinuities in the dynamics, and showcased on a civil engineering example [Bettiol et al., 2012, Section 4]. We adapt it to control systems and refine it in ($\mathrm{H}-7$).

Idea of the proof

The overall strategy to construct a neighboring \mathcal{A}_{ϵ}-feasible trajectory can be related to that of [Bettiol et al., 2012]. Modifying it to unbounded controls and time-varying constraints is however not straightforward.
Consider small subintervals $[0, T]=\bigcup_{i \in \llbracket 0, N_{0}-1 \rrbracket}\left[t_{i}, t_{i+1}\right]$ and proceed iteratively.

- If the i th-trajectory stays in \mathcal{A}_{ϵ} over $\left[t_{i}, t_{i+1}\right]$, move to the next time interval.
- Otherwise, (H-4) provides us with an inward-pointing control \mathbf{u}_{i} to stay in \mathcal{A}_{ϵ} for a short time.
- apply \mathbf{u}_{i} on $\left[t_{i}, t_{i}+t_{\epsilon}\right]$,
- apply $\overline{\mathbf{u}}\left(\cdot-t_{\epsilon}\right)$ on $\left[t_{i}+t_{\epsilon}, t_{i+1}\right]$,
- apply $\overline{\mathbf{u}}(\cdot)$ over $\left[t_{i+1}, T\right]$

By adequately choosing t_{ϵ}, we prove that the resulting control after N_{0} iterations is L^{2}-close from $\overline{\mathbf{u}}(\cdot)$ and that the obtained trajectory is in \mathcal{A}_{ϵ}.

Illustration of construction

Consider small subintervals $[0, T]=\bigcup_{i \in \llbracket 0, N_{0}-1 \rrbracket}\left[t_{i}, t_{i+1}\right]$ and proceed iteratively.
If the i th-trajectory stays in \mathcal{A}_{ϵ} over $\left[t_{i}, t_{i+1}\right]$, move to the next time interval.

Illustration of construction

Consider small subintervals $[0, T]=\bigcup_{i \in \llbracket 0, N_{0}-1 \rrbracket}\left[t_{i}, t_{i+1}\right]$ and proceed iteratively.
If the i th-trajectory stays in \mathcal{A}_{ϵ} over $\left[t_{i}, t_{i+1}\right]$, move to the next time interval. ($\mathrm{H}-4$) provides us with an inward-pointing control \mathbf{u}_{i} to stay in \mathcal{A}_{ϵ} for a short time.

- apply \mathbf{u}_{i} on $\left[t_{i}, t_{i}+t_{\epsilon}\right]$,
- apply $\overline{\mathbf{u}}\left(\cdot-t_{\epsilon}\right)$ on $\left[t_{i}+t_{\epsilon}, t_{i+1}\right]$,
- apply $\overline{\mathbf{u}}(\cdot)$ over $\left[t_{i+1}, T\right]$

Illustration of construction

Consider small subintervals
$[0, T]=\bigcup_{i \in \llbracket 0, N_{0}-1 \rrbracket}\left[t_{i}, t_{i+1}\right]$ and proceed iteratively.
If the i th-trajectory stays in \mathcal{A}_{ϵ} over $\left[t_{i}, t_{i+1}\right]$, move to the next time interval. ($\mathrm{H}-4$) provides us with an inward-pointing control \mathbf{u}_{i} to stay in \mathcal{A}_{ϵ} for a short time.

- apply \mathbf{u}_{i} on $\left[t_{i}, t_{i}+t_{\epsilon}\right]$,
- apply $\overline{\mathbf{u}}\left(\cdot-t_{\epsilon}\right)$ on $\left[t_{i}+t_{\epsilon}, t_{i+1}\right]$,
- apply $\overline{\mathbf{u}}(\cdot)$ over $\left[t_{i+1}, T\right]$

By adequately choosing t_{ϵ}, we prove that the resulting control after N_{0} iterations is L^{2}-close from $\overline{\mathbf{u}}(\cdot)$ and that the obtained trajectory is in \mathcal{A}_{ϵ}.

Example: Consider an electric motor

$$
x^{\prime}(t)=a(t, x)+b(t, u)
$$

with a bounded $a \in C^{1,1}([0,2] \times \mathbb{R}, \mathbb{R})$ and constraints $h(x)=1-|x|$, for controls $u \in \mathbb{R}$. The motor suffers an incident at $T=1$. If it is a power surge

$$
b(t, u)=\tilde{b}(t) u= \begin{cases}u & \text { if } t \in[0,1] \\ u / \sqrt[4]{t-1} & \text { if } t \in] 1,2]\end{cases}
$$

then (H-3) holds for $\theta \equiv \tilde{b}+\|f\|_{\infty}$ and so does (H-7) after some computation. If the incident consists in a power decline

$$
b(t, u)= \begin{cases}\arctan (u) & \text { if } t \in[0,1] \\ \left(1-\frac{\sqrt{t-1}}{2}\right) \arctan (u) & \text { if } t \in] 1,2]\end{cases}
$$

then the system is bounded and (H-7) holds with $u_{t}=u_{s}, \gamma(\sigma)=\frac{1}{4 \sqrt{\sigma-1}}$ for $\left.\sigma \in\right] 1$, 2] and $\gamma(\sigma)=0$ otherwise. In both cases (H-4) is satisfied, so perturbing the constraints still allows for a trajectory and control close to the reference ones as per Theorem 1.

Conclusion \& Extensions

- We have proven that one can approximate trajectories of systems with unbounded control (e.g. control-affine) under assumptions similar to those of bounded systems.
- Systems $\tilde{\mathbf{f}}$ with Lipschitz (or Hölderian) control constraints $t \leadsto U(t)$ can be considered by projecting over $U(t)$, i.e. $\mathbf{f}(t, \mathbf{x}, \mathbf{u})=\tilde{\mathbf{f}}\left(t, \mathbf{x}, \operatorname{proj}_{U(t)}(\mathbf{u})\right)$ if \mathbf{f} satisfies the above assumptions.
- State constraints of order 2 (or more), e.g. $\ddot{x}=u$ with x constrained, do not enter into the proposed framework (requires Lie brackets, see Franco Rampazzo's recent work)

References I

Bettiol，P．，Bressan，A．，and Vinter，R．（2010）．
On trajectories satisfying a state constraint：$W^{1,1}$ estimates and counterexamples． SIAM j．control optim．，48（7）：4664－4679．

Bettiol，P．，Frankowska，H．，and Vinter，R．B．（2012）．
L^{∞} estimates on trajectories confined to a closed subset．
Journal of Differential Equations，252：1912－1933．

Bettiol，P．and Vinter，R．（2011）．
Trajectories satisfying a state constraint：Improved estimates and new non－degeneracy conditions． IEEE Transactions on Automatic Control，56（5）：1090－1096．

Bressan，A．and Facchi，G．（2011）．
Trajectories of differential inclusions with state constraints．
J．Differ．Equ．，250（4）：2267－2281．

References II

Rampazzo, F. (1999).
A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control.
IMA J. Math. Control Inform., 16(4):335-351.

