Kernels and optimization: Hilbert vs tropical, kernel Sum-of-Squares, optimal control, c-concavity and representer theorems

Pierre-Cyril Aubin-Frankowski

INRIA SIERRA, Paris, France Moving to TU Wien for postdoc in Sept 23

LIKE 2023

June 29, 2023, Bern

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
●00	00000	0000	000000	0000000	
A very natur	al problem				

Let X be a set, and $\mathcal{F} = \{f : X \to \mathbb{R}\}$ a function class. For $F \in \mathcal{F}$ and $L : \mathcal{F} \to \mathbb{R}$

$$\min_{x \in X} F(x) \quad \mathsf{VS} \quad \min_{f \in \mathcal{F}} \mathcal{L}(f) = L(f(x_1), \dots, f(x_N))$$

Typical examples of $\mathcal F$ in this talk

- \mathcal{F} is a RKHS \mathcal{H}_k with kernel k
- \mathcal{F} is $\mathsf{CVEX}(\mathbb{R}^d)$, the set of convex lower semicontinuous functions over \mathbb{R}^d
- \mathcal{F} is Lip(X), the set of 1-Lipschitz functions over a metric space X

Questions:

- can we minimize a given F through function evaluations?
- $\bullet\,$ can we minimize over ${\cal F}$ when ${\cal L}$ involves a finite number of evaluations?

Motivation	RkHSs	kSoS	Tropical	<i>c</i> -concavity	References
○●○	00000	0000	000000	0000000	
Some very	special function	spaces, the	ones generate	ed by a kernel	

RKHSs and convex functions have the common property of having clear generators:

$$\mathcal{H}_{k} = \{f(\cdot) = \sum_{y \in X} a_{y} k(\cdot, y) | (a_{y})_{y} \text{ finite}\} + \text{ completion}$$
$$\mathsf{CVEX}(\mathbb{R}^{d}) = \{f(\cdot) = \sup_{y \in \mathbb{R}^{d}} (\cdot, y) + a_{y} | (a_{y})_{y} \subset \mathbb{R} \cup \{-\infty\}\}$$

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
○●○	00000	0000	000000	0000000	
Some very s	special function	on spaces, th	ne ones genera	ated by a kernel	

RKHSs and convex functions have the common property of having clear generators:

$$\mathcal{H}_{k} = \{f(\cdot) = \sum_{y \in X} a_{y} k(\cdot, y) | (a_{y})_{y} \text{ finite} \} + \text{ completion}$$
$$\mathsf{CVEX}(\mathbb{R}^{d}) = \{f(\cdot) = \sup_{y \in \mathbb{R}^{d}} (\cdot, y) + a_{y} | (a_{y})_{y} \subset \mathbb{R} \cup \{-\infty\}\}$$

More generally take a (max-plus) kernel $b: X \times Y \rightarrow \mathbb{R}$, and define its range

$$\mathsf{Rg}(B) := \{ \sup_{y \in Y} b(\cdot, y) + a_y \, | \, a_y \in \mathbb{R} \cup \{ -\infty \} \}$$

Take X = Y for now: i) For $X = \mathbb{R}^d$, $b(x, y) = -\|x - y\|^2$ gives the 1-semiconvex l.s.c. functions, $\operatorname{Rg}(B) = \{f \text{ l.s.c. } | f + \| \cdot \|^2 \text{ is convex} \}.$

ii) For (X, d) a metric space, $p \in (0, 1]$, $b(x, y) = -d(x, y)^p$ gives the (1, p)-Hölder continuous functions,

$$\mathsf{Rg}(B) = \{f \mid \forall x, y, |f(x) - f(y)| \le 1 \cdot d(x, y)^p\}.$$

Motivation	RkHSs	kSoS	Tropical	<i>c</i> -concavity	References	
00●	00000	0000	000000	0000000		
What are we going to see?						

If $\mathcal{F} = \mathcal{H}_k$ is a RKHS,

- (minimize over \mathcal{H}_k): **known** \rightarrow representer theorems \hookrightarrow (**new** cases in optimal control/estimation)
- (minimize $F \in \mathcal{H}_k$): **new** \rightarrow kernel Sum-of-Squares

If $\mathcal{F} = \operatorname{Rg}(B)$ is a tropical kernel space,

- (minimize over Rg(B)): **new** \rightarrow tropical representer theorems
- (minimize $F \in Rg(B)$): **new** $\rightarrow F$ *c*-concave and alternating minimization

Separate works with Alain Bensoussan (UT Dallas), Alessandro Rudi (INRIA Paris), Stéphane Gaubert (INRIA Polytechnique), Flavien Léger (INRIA Paris)

000	00000	0000	000000	0000000				
Motivation	RkHSs	kSoS	Tropical	c-concavity	References			

Optimizing over RKHSs: representer theorem

Typical representer theorem e.g. B. Schölkopf, R. Herbrich, and A. J. Smola. "A Generalized Representer Theorem". In: *Computational Learning Theory (CoLT)*. 2001, pp. 416–426

Let $L : \mathbb{R}^N \to \mathbb{R} \cup \{\infty\}$, strictly increasing $\Omega : \mathbb{R}_+ \to \mathbb{R}$, and assume there exists

$$ar{f} \in \operatorname{argmin}_{f \in \mathcal{H}_k} L\left(\left(f(x_n) \right)_{n \in [N]} \right) + \Omega\left(\|f\|_k
ight)$$

Then
$$\exists (a_n)_{n \in [N]} \in \mathbb{R}^N$$
 s.t. $\overline{f}(\cdot) = \sum_{n \in [N]} a_n k(\cdot, x_n)$

 \hookrightarrow Actually even for $\Omega = 0$, existence of \overline{f} , gives existence of optimal $\overline{f}_0(\cdot) = \sum_{n \in [N]} a_n k(\cdot, x_n)$.

 \hookrightarrow All <u>vs some</u> optimal solutions lie in a finite dimensional subspace of \mathcal{H}_k .

Finite number of evaluations \implies finite number of coefficients

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
				optimal control	

The Linear-Quadratic (LQ) optimal control is defined over

$$\mathcal{S}_{[t_0,\,\mathcal{T}]} \coloneqq \{x(\cdot)\,|\,x(t_0)=0,\,\exists\,u(\cdot)\in L^2(t_0,\,\mathcal{T}) ext{ s.t. } x'(t)=Ax(t)+Bu(t) ext{ a.e. }\}$$

a vector space of controlled trajectories $x(\cdot) : [t_0, T] \to \mathbb{R}^Q$.

LQ optimal control

$$\min_{\substack{x(\cdot)\in\mathcal{S}_{[t_0,T]}u(\cdot)\in L^2}}g(x(T)) + \int_{t_0}^T \|u(\tau)\|^2 \mathrm{d}\tau$$
with $u(t) = B^{\ominus}[x'(t) - Ax(t)]$

$\Lambda/h = \pm \frac{1}{2} \pm \frac{1}{2} + \frac{1}{2$:- ··· -	DKUC2 Find and	E	in antical control	
000	00000	0000	000000	0000000	
Motivation	RkHSs	kSoS	Tropical	<i>c</i> -concavity	References

What if there is no RKHS? Find one! Example in optimal control

The Linear-Quadratic (LQ) optimal control is defined over

$$\mathcal{S}_{[t_0, \mathcal{T}]} := \{x(\cdot) \,|\, x(t_0) = 0, \, \exists \, u(\cdot) \in L^2(t_0, \, \mathcal{T}) \,\, ext{s.t.} \,\, x'(t) = Ax(t) + Bu(t) \,\, ext{a.e.} \,\, \}$$

a vector space of controlled trajectories $x(\cdot) : [t_0, T] \to \mathbb{R}^Q$.

LQ optimal control	"KRR" (Kernel Ridge Regression)
$\min_{\boldsymbol{x}(\cdot)\in\mathcal{S}_{[t_0,T]}\boldsymbol{u}(\cdot)\in L^2}g(\boldsymbol{x}(T))+\int_{t_0}^T\ \boldsymbol{u}(\tau)\ ^2\mathrm{d}\tau$	$\min_{x(\cdot)\in\mathcal{S}_{[t_0,T]}}g(x(\mathcal{T}))+\ x(\cdot)\ ^2_{\mathcal{S}_{[t_0,T]}}$
with $u(t) = B^{\ominus}[x'(t) - Ax(t)]$	with $ x(\cdot) ^2_{\mathcal{S}_{[t_0,T]}} = \mathbf{B}^{\ominus}[x'(\cdot) - Ax(\cdot)] ^2_{L^2(t_0,T)}$

The corresponding kernel has the form of a Gramian:

$$K(s,t) = \int_{t_0}^{\min(s,t)} e^{A(s-\tau)} B(\tau) B(\tau)^{\top} e^{A^{\top}(t-\tau)} \mathrm{d}\tau.$$

and the optimal solution is of the form $\bar{x}(\cdot) = K(\cdot, T)p_T$ for some $p_T \in \mathbb{R}^Q$.

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00●00	0000	000000	0000000	

#1 Where's Waldo/Charlie the kernel? For Kalman estimation

Continuous-time estimation problem (smoothing/filtering) over GPs with linear SDE

$$dx(t) = Fx(t)dt + Gdw(t), x(t_0) = \xi, (1) dy(t) = Hx(t)dt + db(t), y(t_0) = 0. (2)$$

Problem: Estimate x(s) with the σ -algebra $\mathcal{Y}^T = \sigma(y(\tau), 0 \le \tau \le T)$ by (linear) minimum mean square estimator, a.k.a. the minimum variance linear estimator

$$\hat{x}(s|T) = \mathbb{E}[x(s)|\mathcal{Y}^{T}] = x_{S}(s|T) := \bar{x}(s) + \int_{t_{0}}^{T} S_{s}(t|T) dy(t).$$
(3)

Motivation	RkHSs	k SoS	Tropical	c-concavity	References
000	00●00	0000	000000	0000000	

#1 Where's Waldo/Charlie the kernel? For Kalman estimation

Continuous-time estimation problem (smoothing/filtering) over GPs with linear SDE

$$dx(t) = Fx(t)dt + Gdw(t), x(t_0) = \xi, (1) dy(t) = Hx(t)dt + db(t), y(t_0) = 0. (2)$$

Problem: Estimate x(s) with the σ -algebra $\mathcal{Y}^T = \sigma(y(\tau), 0 \le \tau \le T)$ by (linear) minimum mean square estimator, a.k.a. the minimum variance linear estimator

$$\widehat{\kappa}(s|T) = \mathbb{E}[x(s)|\mathcal{Y}^T] = x_S(s|T) := \overline{x}(s) + \int_{t_0}^T S_s(t|T) dy(t).$$
(3)

$$\epsilon_{S}(s|T) := x(s) - x_{S}(s|T) = x(s) - \int_{t_{0}}^{T} S_{s}(t|T) dy(t).$$
(4)

$$\hat{\mathcal{S}}_{s}(\cdot|T) \in \operatorname{argmin}_{\mathcal{S}(\cdot|T)} \Gamma_{\mathcal{S}}(s|T) = \mathbb{E}[\epsilon_{\mathcal{S}}(s|T)(\epsilon_{\mathcal{S}}(s|T))^{*}].$$
(5)

The kernel is the covariance of $\epsilon_{\hat{S}_s}(\cdot|T)$ and we have $\hat{S}_s(t|T) = K(s,t|T)H^*R^{-1}$, $K(s,t|T) = \mathbb{E}[\epsilon_{\hat{S}_s}(s|T)(\epsilon_{\hat{S}_s}(t|T))^*] \in \mathcal{L}(\mathbb{R}^{n,*},\mathbb{R}^n)$

(6)

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	000●0	0000	000000	0000000	
110 141					

#2 Where's Waldo/Charlie the kernel? For least squares estimation

Using least squares formulation of the estimation problem

$$L_{x}(x(\cdot)) := \int_{t_{0}}^{T} \|y(t) - H_{x}(t)\|_{R^{-1}}^{2} dt + \|G^{\ominus}(x'(t) - F_{x}(t))\|_{Q^{\ominus}}^{2} dt + \left\langle \Pi_{0}^{\ominus}x(t_{0}), x(t_{0}) \right\rangle + \left\langle \Sigma_{T}x(T), x(T) \right\rangle$$

 $\text{Introduce the RKHS } \mathcal{S}_{[t_0,\,T]} = \{x(\cdot) \in H^1 \,|\, \exists \, u(\cdot) \in L^2 \; \text{ s.t. } x'(\tau) = Fx(\tau) + GQ^{\frac{1}{2}}u(\tau)\}.$

$$\|x(\cdot)\|_{\mathcal{S}_{[t_0,T]}}^2 = \left\langle \Pi_0^{-1} x(t_0), x(t_0) \right\rangle + \left\langle \Sigma_T x(T), x(T) \right\rangle + \int_{t_0}^T \|u(\tau)\|^2 d\tau + \int_{t_0}^T \left\langle H^* R^{-1} H x(\tau), x(\tau) \right\rangle d\tau$$

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	000●0	0000	000000	0000000	

#2 Where's Waldo/Charlie the kernel? For least squares estimation

Using least squares formulation of the estimation problem

$$L_{x}(x(\cdot)) := \int_{t_{0}}^{T} \|y(t) - Hx(t)\|_{R^{-1}}^{2} dt + \|G^{\ominus}(x'(t) - Fx(t))\|_{Q^{\ominus}}^{2} dt + \left\langle \Pi_{0}^{\ominus}x(t_{0}), x(t_{0}) \right\rangle + \left\langle \Sigma_{T}x(T), x(T) \right\rangle$$

Introduce the RKHS $\mathcal{S}_{[t_0, T]} = \{x(\cdot) \in H^1 \mid \exists u(\cdot) \in L^2 \text{ s.t. } x'(\tau) = Fx(\tau) + GQ^{\frac{1}{2}}u(\tau)\}.$

$$\|x(\cdot)\|_{\mathcal{S}_{[t_0,\tau]}}^2 = \left\langle \Pi_0^{-1} x(t_0), x(t_0) \right\rangle + \left\langle \Sigma_T x(T), x(T) \right\rangle + \int_{t_0}^T \|u(\tau)\|^2 d\tau + \int_{t_0}^T \left\langle H^* R^{-1} H x(\tau), x(\tau) \right\rangle d\tau$$

Taking Fréchet derivative (rather than representer theorem)

$$\int_{t_0}^{T} K(\cdot, t|T) H^* R^{-1} y(t) dt = \operatorname{argmin}_{x(\cdot) \in \mathcal{S}} \|R^{-1/2} y(\cdot)\|_{L^2}^2 + \|x(\cdot)\|_{\mathcal{S}}^2 - 2 \left\langle H^*(\cdot) R^{-1}(\cdot) y(\cdot), x(\cdot) \right\rangle_{L^2([t_0, T])}$$

and the kernel has the explicit form (based on Riccati matrices and some semi-groups)

$$\mathcal{K}(s,t|T) = \Phi_{F,\Sigma}(s,t_0)(\Pi_0^{-1} + \Sigma(t_0))^{-1}\Phi_{F,\Sigma}^*(t,t_0) + \int_{t_0}^{\min(s,t)} \Phi_{F,\Sigma}(s,\tau) GQG^*\Phi_{F,\Sigma}^*(t,\tau) d\tau \quad (7)$$

Motivation	RkHSs	kSoS	Tropical	<i>c</i> -concavity	References
000	0000●	0000	000000	0000000	
	· DI/				

What if there is no RKHS? Find one!

- finding an RKHS somewhere allows for simpler computations (representer theorems + kernel trick)
- in LQ optimal control, RKHSs come from vector spaces of trajectories¹

LQ optimal control \subset kernel methods

• in linear estimation, kernels come from covariances of optimal errors²

New formulas for the covariances of GPs induced by linear SDEs!

Now back to minimizing functions rather than over functions.

¹Pierre-Cyril Aubin-Frankowski. "Linearly Constrained Linear Quadratic Regulator from the Viewpoint of Kernel Methods". In: *SIAM Journal on Control and Optimization* 59.4 (2021), pp. 2693–2716. ²Pierre-Cyril Aubin-Frankowski and Alain Bensoussan. "The reproducing kernel Hilbert spaces underlying linear SDE Estimation, Kalman filtering and their relation to optimal control". In: *Pure and Applied Functional Analysis* (2022).

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	●ooo	000000	0000000	
Optimizing	a smooth fu	nction in a R	RKHS: kernel S	Sum-of-Squares	

Take $F \in \mathcal{H}_k$ with $k \in C^{s_k}(X \times X, \mathbb{R})$, $s_k \ge 0$, $X \subset \mathbb{R}^d$ bounded open. Global optimization of

 $\min_{x\in X}F(x)$

is in general **<u>non-convex</u>**. BUT it can be rewritten as

 $\sup_{\substack{c \in \mathbb{R} \\ F(x) - c \ge 0, \, \forall x \in X}} c$

This convex problem has an infinite number of affine constraints... Lets sample them!

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	●000	000000	0000000	
Optimizing	a smooth fu	nction in a F	RKHS: kernel S	Sum-of-Squares	

Take $F \in \mathcal{H}_k$ with $k \in C^{s_k}(X \times X, \mathbb{R})$, $s_k \ge 0$, $X \subset \mathbb{R}^d$ bounded open. Global optimization of

 $\min_{x\in X}F(x)$

is in general **<u>non-convex</u>**. BUT it can be rewritten as

 $\sup_{\substack{c \in \mathbb{R} \\ F(x) - c \ge 0, \forall x \in X}} c$

This convex problem has an infinite number of affine constraints... Lets sample them! However, we would get $\hat{c} = \min_{m \in [M]} F(x_m)$ and in the worst case

$$|\hat{c} - \min F| \propto \operatorname{Lip}(F) \cdot h_M$$
 where $h_M = \sup_{x \in X} \min_{m \in [M]} ||x - x_m||$ (fill distance) (8)

BUT $h_M \propto \frac{1}{M^d} \rightarrow$ curse of dimensionality. Can we do better by leveraging the smoothness?

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	⊙●○○	000000	0000000	
Optimizing	a smooth fu	unction in a F	RKHS: kernel S	Sum-of-Squares	

We want to do global zero-th order optimization of smooth functions. Scattering inequalities tell us that if $f(x_m) - g(x_m) = 0$ with $f, g \in C^s$, then on a small neighborhood of size r

$$|f(x)-g(x)|\leq C\cdot r^s$$

Question: Can we find a "nice" function $g(x) \ge 0$, $g \in C^2$ such that

$$\sup_{\substack{c \in \mathbb{R} \\ F(x) - c = g(x), \forall x \in X}} C$$

Yes... but that's not trivial because of the nonnegativity constraint.

We want to do global zero-th order optimization of smooth functions. Scattering inequalities tell us that if $f(x_m) - g(x_m) = 0$ with $f, g \in C^s$, then on a small neighborhood of size r

$$|f(x)-g(x)|\leq C\cdot r^s$$

Question: Can we find a "nice" function $g(x) \ge 0$, $g \in C^2$ such that

 $\sup_{\substack{c \in \mathbb{R} \\ F(x) - c = g(x), \forall x \in X}} c$

Yes... but that's not trivial because of the nonnegativity constraint. Can we set $g = h^2$ for some function h? Yes, if $F \in C^2$ has a strictly positive Hessian at a unique global minimum. BUT we don't know how to compute it.

Can we look for h in a RKHS? Yes but non convex equality constraint...

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	oo●o	000000	0000000	
A nice class of	f nonnegative	functions:	kernel Sum	n-of-Squares/F	SD models

How to build a nonnegative function given an embedding $\phi: X \to \mathcal{H}_{\phi}$? Square it!

$$f: x \mapsto \langle \phi(x), \phi(x)
angle_{\mathcal{H}_{\phi}} = k_{\phi}(x, x) \geq 0$$

More generally take a positive semidefinite operator $A \in S^+(\mathcal{H}_\phi)$,

$$\begin{aligned} f_{A}: x \mapsto \langle \phi(x), A\phi(x) \rangle_{\mathcal{H}_{\phi}} &\geq 0 \\ (\mathsf{PSD model}) \quad & A = \sum_{i,j=1}^{N} a_{ij}\phi(x_{i}) \otimes \phi(x_{j}) \implies f_{A}(x) = \sum_{i,j=1}^{N} a_{ij}k_{\phi}(x,x_{i})k_{\phi}(x,x_{j}) \\ (\mathsf{kernel SoS}) \quad & [a_{ij}]_{i,j} = \sum_{i} u_{i}u_{i}^{\top} (\mathsf{SVD}) \implies f_{A}(x) = \sum_{i=1}^{N} (\sum_{j=1}^{N} u_{i,j}k_{\phi}(x,x_{j}))^{2} \end{aligned}$$

Note that in general $f_A \notin \mathcal{H}_{\phi}$ but $f_A \in \mathcal{H}_{\phi} \odot \mathcal{H}_{\phi}$ (Hadamard product). If span($\{k_{\phi}(\cdot, x)\}_{x \in X}$) is dense in continuous functions, so are the $\{f_A\}_{A \in S^+(\mathcal{H}_{\phi})}$ in nonnegative functions.

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	ooo●	000000	0000000	

Optimization with kernel Sum-of-Squares/PSD models

We can consider the convex problem and approximate it through sampling+regularization³

$$\begin{array}{ccc} \sup & c & \longrightarrow & \sup & c - \lambda \operatorname{Tr}(A) \\ c \in \mathbb{R}, A \in S^{+}(\mathcal{H}_{\phi}) & & c \in \mathbb{R}, A \in S^{+}(\mathcal{H}_{\phi}) \\ F(x) - c = \langle \phi(x), A \phi(x) \rangle_{\mathcal{H}_{\phi}}, \forall x \in X & & F(x_{m}) - c = \langle \phi(x_{m}), A \phi(x_{m}) \rangle_{\mathcal{H}_{\phi}}, \forall m \in [M] \end{array}$$

We do have a representer theorem! Two cases^{*a*} for $F \in C^s$:

- if $\exists A^* \in S^+(\mathfrak{H}_{\phi}), F(x) \min F = \langle \phi(x), A^*\phi(x) \rangle_{\mathfrak{H}_{\phi}}$ then $|\hat{c} \min F| \leq C_0(F) \cdot h^s_M \propto \frac{1}{M^{\frac{d}{s}}}$
- otherwise, $|\hat{c} \min F| \leq C_0(F) \cdot h_M \propto \frac{1}{M^d}$.

^aPierre-Cyril Aubin-Frankowski and Alessandro Rudi. "Approximation of optimization problems with constraints through kernel Sum-Of-Squares". In: (2022). https://arxiv.org/abs/2301.06339.

Now back to minimizing over functions rather than functions.

³Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding Global Minima via Kernel Approximations. 2020. arXiv: 2012.11978 [math.OC].

Motivation	RkH5s	k505	Tropical	<i>c</i> -concavity	References		
000	00000	0000	00000	0000000			
Ontimination on transical function and and							

Optimization on tropical function spaces

Take a (max-plus) kernel $b: X \times Y \rightarrow \mathbb{R}$, and recall what is the *range*

$$\mathsf{Rg}(B) := \{ \sup_{y \in Y} b(\cdot, y) + a_y \mid a_y \in \mathbb{R} \cup \{-\infty\} \}.$$

Given a subset $\hat{X} = \{x_m\}_{m \in \mathcal{I}}$, define

$$\operatorname{Rg}_{\partial \cdot \hat{X}}(B) := \Big\{ f \in \operatorname{Rg}(B) \, | \, \forall \, m \in \mathcal{I}, \, \exists \, p_m \in Y \text{ maximizing:} \Big\}$$

$$f(x_m) = \sup_{p \in Y} b(x_m, p) - \sup_{x' \in X} (b(x', p) - f(x')) \Big\}.$$

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	0000	●00000	0000000	
Optimizati	on on tropica	I function sp	baces		

Take a (max-plus) kernel $b: X \times Y \to \mathbb{R}$, and recall what is the *range*

$$\mathsf{Rg}(B) := \{\sup_{y \in Y} b(\cdot, y) + a_y \mid a_y \in \mathbb{R} \cup \{-\infty\}\}.$$

Given a subset $\hat{X} = \{x_m\}_{m \in \mathcal{I}}$, define

$$\mathsf{Rg}_{\partial -\hat{X}}(B) := \Big\{ f \in \mathsf{Rg}(B) \, | \, \forall \, m \in \mathcal{I}, \, \exists \, p_m \in Y \text{ maximizing:} \\ f(x_m) = \sup_{p \in Y} b(x_m, p) - \sup_{x' \in X} (b(x', p) - f(x')) \Big\}.$$

When $b = \langle \cdot, \cdot \rangle$, each p_m can be interpreted as a subgradient at x_m . There is a well-known property in convex regression, (Boyd and Vandenberghe, *Convex Optimization*[Section 6.5.5])

$$\min_{T \in \mathsf{CVEX}} \sum |f(x_m) - \bar{y}_m|^2 \quad \Leftrightarrow \quad \min_{\substack{(p_m, y_m)_{m \in \mathcal{I}} \in (\mathbb{R}^d \times \mathbb{R})^M, \\ y_n - y_m \ge (x_n, p_m)_2 - (x_m, p_m)_2}} \sum |y_m - \bar{y}_m|^2.$$

Question: Can we do the same for more general tropical kernels b?

lotivation	RkHSs	kSoS	Tropical	c-concavity	References
00	00000	0000	00000	0000000	

Optimization on tropical function spaces: interpolation theorem

Proposition (Tropical interpolation)

Let \mathcal{I} be a nonempty index set, given $(x_m, y_m)_{m \in \mathcal{I}} \in (X \times \mathbb{R})^{\mathcal{I}}$, setting $\hat{X} = \{x_m\}_{m \in \mathcal{I}}$, the three following statements are equivalent:

- i) there exists $f \in \operatorname{Rg}_{\partial \hat{X}}(B)$ such that $y_m = f(x_m)$ for all $m \in \mathcal{I}$;
- ii) there exists $(p_m)_{m\in\mathcal{I}}\in (Y)^\mathcal{I}$ such that $y_m=f^0(x_m)$ for all $m\in\mathcal{I}$, for

$$f^0(\cdot) := \max_{m \in \mathcal{I}} b(\cdot, p_m) - b(x_m, p_m) + y_m;$$

iii) there exists $(p_m)_{m\in\mathcal{I}}\in (Y)^{\mathcal{I}}$ such that $y_n-y_m\geq b(x_n,p_m)-b(x_m,p_m)$ for all $n,m\in\mathcal{I}$.

Motivation	RkHSs	kSoS	Tropical	<i>c</i> -concavity	References
000	00000	0000	00000	0000000	

Optimization on tropical function spaces: representer theorem

Corollary (Representer theorem)

Given points $(x_m)_{m \in \mathcal{I}} \in X^{\mathcal{I}}$ and a function $\mathcal{L} : \mathbb{R}^{\mathcal{I}} \to \mathbb{R}$, fix $\hat{X} = \{x_m\}_{m \in \mathcal{I}}$. Then, if the problem

$$\min_{f \in \operatorname{Rg}(B)} \mathcal{L}((f(x_m))_{m \in \mathcal{I}})$$
(9)

has a solution $\overline{f} \in \operatorname{Rg}_{\partial-\hat{\chi}}(B)$ with finite values $(f(x_m))_{m \in \mathcal{I}} \in \mathbb{R}^{\mathcal{I}}$, it also has a solution f^0 as in Proposition 1-ii) which can be obtained solving

$$\min_{\substack{(p_m, y_m)_{m \in \mathcal{I}} \in (Y \times \mathbb{R})^M \\ \text{s.t. } y_n - y_m \ge b(x_n, p_m) - b(x_m, p_m), \ \forall \ n, m \in \mathcal{I}.}$$
(10)

Conversely, if (10) has a solution, then it is also a solution in $\operatorname{Rg}_{\partial - \hat{X}}(B)$ of (9).

WE DO NOT NEED ANY PROPERTY OF THE KERNEL b!

Motivation	RkHSs	kSoS	Tropical	<i>c</i> -concavity	References
000	00000	0000	000●00	0000000	
Recall Arc	onszajn's theo	rem			

Theorem

Given a kernel $k : X \times X \rightarrow \mathbb{R}$, the three following properties are equivalent:

i) k is a positive semidefinite kernel, i.e. a kernel being both:

- symmetric:
$$orall x,y\in X,\;k(x,y)=k(y,x)$$
, and

- positive:
$$orall \, M \in \mathbb{N}^*, \, orall \, (a_m, x_m) \in \left(\mathbb{R} imes X
ight)^M, \sum_{n,m=1}^M a_n a_m k(x_n, x_m) \geq 0;$$

ii) there exists a Hilbert space $(\mathcal{H}, (\cdot, \cdot)_{\mathcal{H}})$ and a feature map $\Phi : X \to \mathcal{H}$ such that $- \forall x, y \in X, \ k(x, y) = (\Phi(x), \Phi(y))_{\mathcal{H}};$

iii) k is the reproducing kernel of the Hilbert space (RKHS) of functions H_k := H_{k,0}, the completion for the pre-scalar product (k(⋅,x), k(⋅,y))_{k,0} = k(x,y) of the space H_{k,0} := span({k(⋅,x)}_{x∈X}), in the sense that
∀x ∈ X, k(⋅,x) ∈ H_k and ∀f ∈ H, f(x) = (f, k(⋅,x))_H.

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	0000	0000●0	0000000	
Main ((informal) theorem:	Aronsza	ajn's analogue		

Theorem (Tropical analogue of Aronszajn theorem)

Given a kernel $b: X \times X \to \mathbb{R} \cup \{-\infty\}$, the three following properties are equivalent

- i) b is a tropically positive semidefinite kernel, i.e. symmetric and $b(x,x) + b(y,y) \ge b(x,y) + b(y,x)$;
- ii) there exists a factorization of b by a feature map $\psi : X \to \mathbb{R}^{\mathbb{Z}}_{\max}$ for some set \mathbb{Z} , $b(x, y) = \sup_{z \in \mathbb{Z}} \psi(x, z) + \psi(y, z);$
- iii) b is the sesquilinear reproducing kernel of a max-plus space of functions Rg(B), the max-plus completion of $\{\sup_{n \in \{1,...,N\}} a_n + b(\cdot, x_n) \mid N \in \mathbb{N}^*, a_n \in \mathbb{R}, x_n \in X\}$, and b defines a tropical Cauchy-Schwarz inequality over \mathbb{R}^X .

Some kernels b exhibit analogue properties to RKHSs! Are they useful? TBC

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	0000	000000	0000000	

Full analogy between Hilbertian and tropical kernels

Dedicated to kernel lovers:⁴

Concept	Hilbertian kernel	Tropical kernel
symmetry	k(x,y) = k(y,x)	b(x,y) = b(y,x)
positivity	$\sum_{i,j} a_i a_j k(x_i, x_j) \ge 0$	$b(x,x) + b(y,y) \ge b(x,y) + b(y,x)$
feature map	$k(x,y) = (\Phi(x), \Phi(y))_{\mathcal{H}}$	$b(x,y) = \sup_{z \in \mathcal{Z}} \psi(x,z) + \psi(y,z)$
duality bracket	$\langle \mu, f \rangle_{\mathbb{R}^{X,*} imes \mathbb{R}^{X}} = \int_{X} f(y) \mathrm{d} \mu(y)$	$\langle \hat{g}, f angle = \sup_{x \in X} f(x) - \hat{g}(x)$
kernel operator	$K(\mu)(x) = \int_X k(x, y) \mathrm{d}\mu(y)$	$\bar{B}(\hat{f})(x) = \sup_{y \in X} b(x, y) - \hat{f}(y)$
monotone operator	$\langle \mu, \mathcal{K}(\mu) angle_{\mathbb{R}^{X, *} imes \mathbb{R}^{X}} \geq 0$	$\langle \hat{f},ar{B}\hat{f} angle + \langle \hat{g},ar{B}\hat{g} angle \geq \langle \hat{f},ar{B}\hat{g} angle + \langle \hat{g},ar{B}\hat{f} angle$
function space	$\mathcal{H}_k = \overline{span(\{k(\cdot, x)\}_{x \in X})}$	$Rg(B) = \{\sup_{x \in X} [a_x + b(\cdot, x)] \mid a_x \in \mathbb{R}\}$
reproducing property	$f(x) = (k(\cdot, x), f(\cdot))_{\mathcal{H}_k}$	$\hat{g}(x) = \langle ar{B}\hat{g}, ar{B}\delta_x^ op angle = (ar{B}\hat{g})(x)$

Now back to minimizing functions rather than over functions.

⁴Pierre-Cyril Aubin-Frankowski and Stéphane Gaubert. "Tropical reproducing kernels and optimization". In: Integral Equations and Operator Theory (2023). (to be published). 19/

Motivation	RkHSs	kSoS	Tropical	<i>c</i> -concavity	References
000	00000	0000	000000	●000000	
<i>c</i> -concavity					

Definition (*c*-concavity)

We say that a function $f: X \to \mathbb{R}$ is *c*-concave if there exists a function $h: Y \to \mathbb{R}$ such that

$$f(x) = \inf_{y \in Y} c(x, y) + h(y),$$
(11)

for all $x \in X$. If f is c-concave, then we can take $h(y) = f^c(y) = \sup_{x' \in X} f(x') - c(x', y)$.

NB: Costs *c* are the opposite of the tropical kernels *b* (sign convention problem).

For
$$c = rac{L}{2} \|x - y\|^2$$
, *c*-concave $\Leftrightarrow
abla^2 f \leq L$.

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	0000	000000	○●○○○○○	
Maiorizati	ion–minimizati	ion			

Let $f: X \to \mathbb{R}$ where X is any set. Choose another set Y and a function c(x, y). Define the upperbound

$$f(x) \le \phi(x,y) \coloneqq c(x,y) + f^c(y) \coloneqq c(x,y) + \sup_{x' \in X} f(x') - c(x',y)$$
(12)

Do alternating minimization (AM) of the surrogate

$$y_{n+1} = \operatorname{argmin}_{y \in Y} c(x_n, y) + f^c(y), \tag{13}$$

$$x_{n+1} = \operatorname{argmin}_{x \in X} c(x, y_{n+1}) + f^c(y_{n+1}).$$
(14)

Motivation	RkHSs	kSoS	Tropical	<i>c</i> -concavity	References
000	00000	0000	000000	○●○○○○○	
Maiorizati	on–minimizat	ion			

Let $f: X \to \mathbb{R}$ where X is any set. Choose another set Y and a function c(x, y). Define the upperbound

$$f(x) \le \phi(x, y) \coloneqq c(x, y) + f^{c}(y) \coloneqq c(x, y) + \sup_{x' \in X} f(x') - c(x', y)$$
(12)

Do alternating minimization (AM) of the surrogate

$$y_{n+1} = \operatorname{argmin}_{y \in Y} c(x_n, y) + f^c(y), \tag{13}$$

$$x_{n+1} = \operatorname{argmin}_{x \in X} c(x, y_{n+1}) + f^c(y_{n+1}).$$
(14)

If we can differentiate and $f(x) = \inf_{y} c(x, y) + f^{c}(y)$ (*c*-concavity) then we can write (applying the envelope theorem $\nabla f(x) = \nabla_1 \phi(x, \bar{y}(x))$)

$$\begin{aligned} -\nabla_x c(x_n, y_{n+1}) &= -\nabla f(x_n), \\ \nabla_x c(x_{n+1}, y_{n+1}) &= 0. \end{aligned}$$
 (15)

Motivation	RkHSs	kSoS	Tropical	<i>c</i> -concavity	References
000	00000	0000	000000	000€000	
Gradient d	escent with a	general cos	t - Examples		

$$\begin{aligned} -\nabla_x c(x_n, y_{n+1}) &= -\nabla f(x_n), \\ \nabla_x c(x_{n+1}, y_{n+1}) &= 0. \end{aligned}$$

In the following: Y = X, and c is minimal on the diagonal $\{x = y\}$, so $x_{n+1} = y_{n+1}$

i) Gradient descent: $c(x,y) = \frac{L}{2} ||x - y||^2$ and $x_{n+1} - x_n = -\frac{1}{L} \nabla f(x_n)$.

ii) Mirror descent: c(x, y) = u(x|y), so $\nabla u(x_{n+1}) - \nabla u(x_n) = -\nabla f(x_n)$.

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	0000	000000	000●000	
Gradient d	escent with a	general cos	t - Examples		

$$\begin{aligned} -\nabla_x c(x_n, y_{n+1}) &= -\nabla f(x_n), \\ \nabla_x c(x_{n+1}, y_{n+1}) &= 0. \end{aligned}$$

In the following: Y = X, and c is minimal on the diagonal $\{x = y\}$, so $x_{n+1} = y_{n+1}$ i) Gradient descent: $c(x, y) = \frac{L}{2} ||x - y||^2$ and $x_{n+1} - x_n = -\frac{1}{L} \nabla f(x_n)$.

- ii) Mirror descent: c(x,y) = u(x|y), so $\nabla u(x_{n+1}) \nabla u(x_n) = -\nabla f(x_n)$.
- iii) Natural gradient descent: c(x, y) = u(y|x), so $x_{n+1} x_n = -(\nabla^2 u(x_n))^{-1} \nabla f(x_n)$.
- iv) A nonlinear gradient descent: $c(x,y) = \ell(x-y)$, so $x_{n+1} x_n = -\nabla \ell^* (\nabla f(x_n))$.
- v) Riemannian gradient descent: (M, g) a Riemannian manifold. Take X = Y = M and $c(x, y) = \frac{L}{2}d^2(x, y)$, so $x_{n+1} = \exp_{x_n}(-\frac{1}{L}\nabla f(x_n))$,

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	0000	000000	000€000	
Gradient de	escent with a	general cos	t - Examples		

$$\begin{aligned} -\nabla_x c(x_n, y_{n+1}) &= -\nabla f(x_n), \\ \nabla_x c(x_{n+1}, y_{n+1}) &= 0. \end{aligned}$$

In the following: Y = X, and c is minimal on the diagonal $\{x = y\}$, so $x_{n+1} = y_{n+1}$ i) Gradient descent: $c(x, y) = \frac{L}{2} ||x - y||^2$ and $x_{n+1} - x_n = -\frac{1}{L} \nabla f(x_n)$.

- ii) Mirror descent: c(x,y) = u(x|y), so $\nabla u(x_{n+1}) \nabla u(x_n) = -\nabla f(x_n)$.
- iii) Natural gradient descent: c(x, y) = u(y|x), so $x_{n+1} x_n = -(\nabla^2 u(x_n))^{-1} \nabla f(x_n)$.
- iv) A nonlinear gradient descent: $c(x,y) = \ell(x-y)$, so $x_{n+1} x_n = -\nabla \ell^* (\nabla f(x_n))$.
- v) Riemannian gradient descent: (M, g) a Riemannian manifold. Take X = Y = M and $c(x, y) = \frac{L}{2}d^2(x, y)$, so $x_{n+1} = \exp_{x_n}(-\frac{1}{L}\nabla f(x_n))$,

Cool, but what do you need to converge? \hookrightarrow Something like L-smoothness and $\mu\text{-strong convexity}$

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	0000	000000	0000€00	
c-cross-cor	nvexity				

Consider the sequence of AM iterates, starting from any x_0 ,

 $y_n \rightarrow x_n \rightarrow y_{n+1}$

We say that f is λ -strongly c-cross-convex for $\lambda \ge 0$ if, for all $x, y_n \in X \times Y$,

$$f(x) - f(x_n) \ge c(x, y_{n+1}) - c(x, y_n) + c(x_n, y_n) - c(x_n, y_{n+1}) + \lambda(c(x, y_n) - c(x_n, y_n)).$$

c-concavity $(f(x) = \inf_{y} c(x, y) + f^{c}(y))$ implies, since $f^{c}(y_{n+1}) = f(x_{n}) - c(x_{n}, y_{n+1})$,

$$f(x) - f(x_n) \leq c(x, y_{n+1}) - c(x_n, y_{n+1}).$$

These conditions extend *L*-smoothness and (strong) convexity when $c(x, y) = \frac{L}{2} ||x - y||^2$.⁵

⁵Flavien Léger and Pierre-Cyril Aubin-Frankowski. "Gradient descent with a general cost". In: (2023). https://arxiv.org/abs/2305.04917.

$$f(x_n) \le f(x) + \frac{\lambda \left(c(x, y_0) - c(x_0, y_0) \right)}{\Lambda^n - 1}.$$
 (18)

XA/I . I	2 14/				
000	00000	K505 0000	000000	000000	References
Motivation	RkHSs	1505	Tropical	c-concavity	Deferences

What have we seen? What can you see more in the articles?

Linear optimal control/estimation duality

LQ optimal control \subset kernel methods. New formulas for the covariances of GPs induced by linear SDEs!

Global optimization of smooth functions

Kernel Sum-of-Squares use smoothness against curse of dimensionality!

Tropical kernels

Representer theorems still hold in max-plus settings! There are also analogies with Hilbertian framework and applications to value functions.

c-concavity for revisiting optimization algorithms!

c-concavity and *c*-cross-convexity generalize smoothness and convexity and encompass many algorithms! New assumptions for global convergence of natural gradient descent/Newton

Linear optimal control/estimation duality

LQ optimal control \subset kernel methods. New formulas for the covariances of GPs induced by linear SDEs!

Global optimization of smooth functions

Kernel Sum-of-Squares use smoothness against curse of dimensionality! Tropical kernels ank you for your attention!

Representer theorems still hold in max-plus settings! There are also analogies with Hilbertian framework and applications to value functions.

c-concavity for revisiting optimization algorithms!

c-concavity and c-cross-convexity generalize smoothness and convexity and encompass many algorithms! New assumptions for global convergence of natural gradient descent/Newton

Motivation	RkHSs	kSoS	Tropical	<i>c</i> -concavity	References
000	00000	0000	000000	0000000	
References I					

- Aubin-Frankowski, Pierre-Cyril. "Linearly Constrained Linear Quadratic Regulator from the Viewpoint of Kernel Methods". In: *SIAM Journal on Control and Optimization* 59.4 (2021), pp. 2693–2716.
- Aubin-Frankowski, Pierre-Cyril and Alain Bensoussan. "The reproducing kernel Hilbert spaces underlying linear SDE Estimation, Kalman filtering and their relation to optimal control". In: *Pure and Applied Functional Analysis* (2022).
- Aubin-Frankowski, Pierre-Cyril and Stéphane Gaubert. "Tropical reproducing kernels and optimization". In: Integral Equations and Operator Theory (2023). (to be published).
- Aubin-Frankowski, Pierre-Cyril and Alessandro Rudi. "Approximation of optimization problems with constraints through kernel Sum-Of-Squares". In: (2022).

https://arxiv.org/abs/2301.06339.

Boyd, Stephen and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004. DOI: 10.1017/CB09780511804441.

Motivation	RkHSs	kSoS	Tropical	c-concavity	References
000	00000	0000	000000	0000000	
References II					

- Léger, Flavien and Pierre-Cyril Aubin-Frankowski. "Gradient descent with a general cost". In: (2023). https://arxiv.org/abs/2305.04917.
- Rudi, Alessandro, Ulysse Marteau-Ferey, and Francis Bach. Finding Global Minima via Kernel Approximations. 2020. arXiv: 2012.11978 [math.OC].
- Schölkopf, B., R. Herbrich, and A. J. Smola. "A Generalized Representer Theorem". In: Computational Learning Theory (CoLT). 2001, pp. 416–426.