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A very natural problem

Let X be a set, and F = {f : X → R} a function class. For F ∈ F and L : F → R

min
x∈X

F (x) VS min
f ∈F

L(f ) = L(f (x1), . . . , f (xN))

Typical examples of F in this talk
F is a RKHS Hk with kernel k
F is CVEX(Rd), the set of convex lower semicontinuous functions over Rd

F is Lip(X ), the set of 1-Lipschitz functions over a metric space X
Questions:

can we minimize a given F through function evaluations?
can we minimize over F when L involves a finite number of evaluations?
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Some very special function spaces, the ones generated by a kernel
RKHSs and convex functions have the common property of having clear generators:

Hk = {f (·) = Σy∈X ay k(·, y) | (ay )y finite} + completion
CVEX(Rd) = {f (·) = sup

y∈Rd
(·, y) + ay | (ay )y ⊂ R ∪ {−∞}}

More generally take a (max-plus) kernel b : X × Y → R, and define its range
Rg(B) := {sup

y∈Y
b(·, y) + ay | ay ∈ R ∪ {−∞}}

Take X = Y for now:
i) For X = Rd , b(x , y) = −∥x − y∥2 gives the 1-semiconvex l.s.c. functions,

Rg(B) = {f l.s.c. | f + ∥ · ∥2 is convex}.
ii) For (X , d) a metric space, p ∈ (0, 1], b(x , y) = −d(x , y)p gives the (1, p)-Hölder

continuous functions,
Rg(B) = {f | ∀x , y , |f (x) − f (y)| ≤ 1 · d(x , y)p}.
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What are we going to see?

If F = Hk is a RKHS,

(minimize over Hk): known → representer theorems
↪→ (new cases in optimal control/estimation)

(minimize F ∈ Hk): new → kernel Sum-of-Squares

If F = Rg(B) is a tropical kernel space,

(minimize over Rg(B)): new → tropical representer theorems

(minimize F ∈ Rg(B)): new → F c-concave and alternating minimization

Separate works with Alain Bensoussan (UT Dallas), Alessandro Rudi (INRIA Paris), Stéphane
Gaubert (INRIA Polytechnique), Flavien Léger (INRIA Paris)
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Optimizing over RKHSs: representer theorem

Typical representer theorem e.g. B. Schölkopf, R. Herbrich, and A. J. Smola. “A Generalized
Representer Theorem”. In: Computational Learning Theory (CoLT). 2001, pp. 416–426

Let L : RN → R ∪ {∞}, strictly increasing Ω : R+ → R, and assume there exists

f̄ ∈ argminf ∈Hk L
(
(f (xn))n∈[N]

)
+ Ω (∥f ∥k)

Then ∃ (an)n∈[N] ∈ RN s.t. f̄ (·) =
∑

n∈[N] ank(·, xn)

↪→ Actually even for Ω = 0, existence of f̄ , gives existence of optimal f̄0(·) =
∑

n∈[N] ank(·, xn).

↪→ All vs some optimal solutions lie in a finite dimensional subspace of Hk .

Finite number of evaluations =⇒ finite number of coefficients
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What if there is no RKHS? Find one! Example in optimal control
The Linear-Quadratic (LQ) optimal control is defined over

S[t0,T ] := {x(·) | x(t0) = 0, ∃ u(·) ∈ L2(t0,T ) s.t. x ′(t) = Ax(t) + Bu(t) a.e. }

a vector space of controlled trajectories x(·) : [t0,T ] → RQ.

LQ optimal control

min
x(·)∈S[t0,T ]u(·)∈L2

g(x(T )) +
∫ T

t0
∥u(τ)∥2dτ

with u(t) = B⊖[x ′(t) − Ax(t)]

“KRR“ (Kernel Ridge Regression)

min
x(·)∈S[t0,T ]

g(x(T )) + ∥x(·)∥2
S[t0,T ]

with ∥x(·)∥2
S[t0,T ]

= ∥B⊖[x ′(·) − Ax(·)]∥2
L2(t0,T )

The corresponding kernel has the form of a Gramian:

K (s, t) =
∫ min(s,t)

t0
eA(s−τ)B(τ)B(τ)⊤eA⊤(t−τ)dτ .

and the optimal solution is of the form x̄(·) = K (·,T )pT for some pT ∈ RQ.
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#1 Where’s Waldo/Charlie the kernel? For Kalman estimation
Continuous-time estimation problem (smoothing/filtering) over GPs with linear SDE

dx(t) = Fx(t)dt + Gdw(t), x(t0) = ξ, (1)
dy(t) = Hx(t)dt + db(t), y(t0) = 0. (2)

Problem: Estimate x(s) with the σ-algebra YT = σ(y(τ), 0 ≤ τ ≤ T ) by (linear) minimum
mean square estimator, a.k.a. the minimum variance linear estimator

x̂(s|T ) = E[x(s)|YT ] = xS(s|T ) := x̄(s) +
∫ T

t0
Ss(t|T )dy(t). (3)

ϵS(s|T ) := x(s) − xS(s|T ) = x(s) −
∫ T

t0
Ss(t|T )dy(t). (4)

Ŝs(·|T ) ∈ argminS(·|T ) ΓS(s|T ) = E[ϵS(s|T )(ϵS(s|T ))∗]. (5)

The kernel is the covariance of ϵŜs
(·|T ) and we have Ŝs(t|T ) = K (s, t|T )H∗R−1,

K (s, t|T ) = E[ϵŜs
(s|T )(ϵŜt

(t|T ))∗] ∈ L(Rn,∗,Rn) (6)
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#2 Where’s Waldo/Charlie the kernel? For least squares estimation
Using least squares formulation of the estimation problem

Lx (x(·)) :=
∫ T

t0

∥y(t) − Hx(t)∥2
R−1dt+∥G⊖ (x ′(t) − Fx(t))∥2

Q⊖dt+
〈
Π⊖

0 x(t0), x(t0)
〉
+⟨ΣT x(T ), x(T )⟩

Introduce the RKHS S[t0,T ] = {x(·) ∈ H1 | ∃ u(·) ∈ L2 s.t. x ′(τ) = Fx(τ) + GQ 1
2 u(τ)}.

∥x(·)∥2
S[t0,T ]

=
〈
Π−1

0 x(t0), x(t0)
〉
+⟨ΣT x(T ), x(T )⟩+

∫ T

t0

∥u(τ)∥2dτ+
∫ T

t0

〈
H∗R−1Hx(τ), x(τ)

〉
dτ

Taking Fréchet derivative (rather than representer theorem)∫ T

t0

K (·, t|T )H∗R−1y(t)dt = argminx(·)∈S∥R−1/2y(·)∥2
L2+∥x(·)∥2

S−2
〈
H∗(·)R−1(·)y(·), x(·)

〉
L2([t0,T ])

and the kernel has the explicit form (based on Riccati matrices and some semi-groups)

K (s, t|T ) = ΦF ,Σ(s, t0)(Π−1
0 + Σ(t0))−1Φ∗

F ,Σ(t, t0) +
∫ min(s,t)

t0

ΦF ,Σ(s, τ)GQG∗Φ∗
F ,Σ(t, τ)dτ (7)
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What if there is no RKHS? Find one!
finding an RKHS somewhere allows for simpler computations (representer theorems +
kernel trick)

in LQ optimal control, RKHSs come from vector spaces of trajectories1

LQ optimal control ⊂ kernel methods

in linear estimation, kernels come from covariances of optimal errors2

New formulas for the covariances of GPs induced by linear SDEs!

Now back to minimizing functions rather than over functions.
1Pierre-Cyril Aubin-Frankowski. “Linearly Constrained Linear Quadratic Regulator from the Viewpoint of

Kernel Methods”. In: SIAM Journal on Control and Optimization 59.4 (2021), pp. 2693–2716.
2Pierre-Cyril Aubin-Frankowski and Alain Bensoussan. “The reproducing kernel Hilbert spaces underlying

linear SDE Estimation, Kalman filtering and their relation to optimal control”. In: Pure and Applied Functional
Analysis (2022).
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Optimizing a smooth function in a RKHS: kernel Sum-of-Squares

Take F ∈ Hk with k ∈ C sk (X × X ,R), sk ≥ 0, X ⊂ Rd bounded open. Global optimization of

min
x∈X

F (x)

is in general non-convex. BUT it can be rewritten as

sup
c∈R

F (x)−c≥0, ∀x∈X

c

This convex problem has an infinite number of affine constraints. . . Lets sample them!

However, we would get ĉ = minm∈[M] F (xm) and in the worst case

|ĉ − min F | ∝ Lip(F ) · hM where hM = sup
x∈X

min
m∈[M]

∥x − xm∥ (fill distance) (8)

BUT hM ∝ 1
Md → curse of dimensionality. Can we do better by leveraging the smoothness?
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Optimizing a smooth function in a RKHS: kernel Sum-of-Squares

We want to do global zero-th order optimization of smooth functions. Scattering inequalities
tell us that if f (xm) − g(xm) = 0 with f , g ∈ C s , then on a small neighborhood of size r

|f (x) − g(x)| ≤ C · r s

Question: Can we find a “nice” function g(x) ≥ 0, g ∈ C2 such that

sup
c∈R

F (x)−c=g(x), ∀x∈X

c

Yes. . . but that’s not trivial because of the nonnegativity constraint.

Can we set g = h2 for some function h? Yes, if F ∈ C2 has a strictly positive Hessian at a
unique global minimum. BUT we don’t know how to compute it.

Can we look for h in a RKHS? Yes but non convex equality constraint. . .
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A nice class of nonnegative functions: kernel Sum-of-Squares/PSD models

How to build a nonnegative function given an embedding ϕ : X → Hϕ? Square it!

f : x 7→ ⟨ϕ(x), ϕ(x)⟩Hϕ
= kϕ(x , x) ≥ 0

More generally take a positive semidefinite operator A ∈ S+(Hϕ),

fA : x 7→ ⟨ϕ(x),Aϕ(x)⟩Hϕ
≥ 0

(PSD model) A =
N∑

i ,j=1
aijϕ(xi) ⊗ ϕ(xj) =⇒ fA(x) =

N∑
i ,j=1

aijkϕ(x , xi)kϕ(x , xj)

(kernel SoS) [aij ]i ,j =
∑

i
uiu⊤

i (SVD) =⇒ fA(x) =
N∑

i=1
(

N∑
j=1

ui ,jkϕ(x , xj))2

Note that in general fA /∈ Hϕ but fA ∈ Hϕ ⊙ Hϕ (Hadamard product). If span({kϕ(·, x)}x∈X )
is dense in continuous functions, so are the {fA}A∈S+(Hϕ) in nonnegative functions.
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Optimization with kernel Sum-of-Squares/PSD models
We can consider the convex problem and approximate it through sampling+regularization3

sup
c∈R,A∈S+(Hϕ)

F (x)−c=⟨ϕ(x),Aϕ(x)⟩Hϕ
, ∀x∈X

c −→ sup
c∈R,A∈S+(Hϕ)

F (xm)−c=⟨ϕ(xm),Aϕ(xm)⟩Hϕ
, ∀m∈[M]

c − λTr(A)

We do have a representer theorem! Two casesa for F ∈ C s :
if ∃A∗ ∈ S+(Hϕ), F (x) − min F = ⟨ϕ(x),A∗ϕ(x)⟩Hϕ

then |ĉ − min F | ≤ C0(F ) · hs
M ∝ 1

M
d
s

otherwise, |ĉ − min F | ≤ C0(F ) · hM ∝ 1
Md .

aPierre-Cyril Aubin-Frankowski and Alessandro Rudi. “Approximation of optimization problems
with constraints through kernel Sum-Of-Squares”. In: (2022).
https://arxiv.org/abs/2301.06339.

Now back to minimizing over functions rather than functions.
3Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding Global Minima via Kernel

Approximations. 2020. arXiv: 2012.11978 [math.OC].

https://arxiv.org/abs/2301.06339
https://arxiv.org/abs/2012.11978
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Optimization on tropical function spaces
Take a (max-plus) kernel b : X × Y → R, and recall what is the range

Rg(B) := {sup
y∈Y

b(·, y) + ay | ay ∈ R ∪ {−∞}}.

Given a subset X̂ = {xm}m∈I , define

Rg∂-X̂ (B) :=
{

f ∈ Rg(B) | ∀ m ∈ I, ∃ pm ∈ Y maximizing:

f (xm) = sup
p∈Y

b(xm, p) − sup
x ′∈X

(b(x ′, p) − f (x ′))
}
.

When b = ⟨·, ·⟩, each pm can be interpreted as a subgradient at xm. There is a well-known
property in convex regression, (Stephen Boyd and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, 2004. doi: 10.1017/CBO9780511804441[Section 6.5.5])

min
f ∈CVEX

∑
|f (xm) − ȳm|2 ⇔ min

(pm,ym)m∈I∈(Rd ×R)M ,
yn−ym≥(xn,pm)2−(xm,pm)2

∑
|ym − ȳm|2.

Question: Can we do the same for more general tropical kernels b?

https://doi.org/10.1017/CBO9780511804441
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Optimization on tropical function spaces: interpolation theorem

Proposition (Tropical interpolation)

Let I be a nonempty index set, given (xm, ym)m∈I ∈ (X × R)I , setting X̂ = {xm}m∈I , the
three following statements are equivalent:

i) there exists f ∈ Rg∂-X̂ (B) such that ym = f (xm) for all m ∈ I;

ii) there exists (pm)m∈I ∈ (Y )I such that ym = f 0(xm) for all m ∈ I, for

f 0(·) := max
m∈I

b(·, pm) − b(xm, pm) + ym;

iii) there exists (pm)m∈I ∈ (Y )I such that yn − ym ≥ b(xn, pm) − b(xm, pm) for all n,m ∈ I.
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Optimization on tropical function spaces: representer theorem

Corollary (Representer theorem)

Given points (xm)m∈I ∈ XI and a function L : RI → R, fix X̂ = {xm}m∈I . Then, if the
problem

min
f ∈Rg(B)

L((f (xm))m∈I) (9)

has a solution f̄ ∈ Rg∂-X̂ (B) with finite values (f (xm))m∈I ∈ RI , it also has a solution f 0 as
in Proposition 1-ii) which can be obtained solving

min
(pm,ym)m∈I∈(Y ×R)M

L((ym))m∈I) (10)

s.t. yn − ym ≥ b(xn, pm) − b(xm, pm), ∀ n,m ∈ I.

Conversely, if (10) has a solution, then it is also a solution in Rg∂-X̂ (B) of (9).

WE DO NOT NEED ANY PROPERTY OF THE KERNEL b!
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Recall Aronszajn’s theorem

Theorem

Given a kernel k : X × X → R, the three following properties are equivalent:
i) k is a positive semidefinite kernel, i.e. a kernel being both:

- symmetric: ∀ x , y ∈ X , k(x , y) = k(y , x), and
- positive: ∀ M ∈ N∗, ∀ (am, xm) ∈ (R × X )M ,

∑M
n,m=1 anamk(xn, xm) ≥ 0;

ii) there exists a Hilbert space (H, (·, ·)H) and a feature map Φ : X → H such that
- ∀ x , y ∈ X , k(x , y) = (Φ(x),Φ(y))H;

iii) k is the reproducing kernel of the Hilbert space (RKHS) of functions Hk := Hk,0, the
completion for the pre-scalar product (k(·, x), k(·, y))k,0 = k(x , y) of the space
Hk,0 := span({k(·, x)}x∈X ), in the sense that
- ∀ x ∈ X , k(·, x) ∈ Hk and ∀ f ∈ H, f (x) = (f , k(·, x))H.
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Main (informal) theorem: Aronszajn’s analogue

Theorem (Tropical analogue of Aronszajn theorem)

Given a kernel b : X × X → R ∪ {−∞}, the three following properties are equivalent

i) b is a tropically positive semidefinite kernel, i.e. symmetric and
b(x , x) + b(y , y) ≥ b(x , y) + b(y , x);

ii) there exists a factorization of b by a feature map ψ : X → RZ
max for some set Z,

b(x , y) = supz∈Z ψ(x , z) + ψ(y , z);

iii) b is the sesquilinear reproducing kernel of a max-plus space of functions Rg(B), the
max-plus completion of {supn∈{1,...,N} an + b(·, xn) | N ∈ N∗, an ∈ R, xn ∈ X}, and b
defines a tropical Cauchy-Schwarz inequality over RX .

Some kernels b exhibit analogue properties to RKHSs! Are they useful? TBC
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Full analogy between Hilbertian and tropical kernels

Dedicated to kernel lovers:4

Concept Hilbertian kernel Tropical kernel
symmetry k(x , y) = k(y , x) b(x , y) = b(y , x)
positivity

∑
i,j ai aj k(xi , xj ) ≥ 0 b(x , x) + b(y , y) ≥ b(x , y) + b(y , x)

feature map k(x , y) = (Φ(x),Φ(y))H b(x , y) = supz∈Z ψ(x , z) + ψ(y , z)
duality
bracket ⟨µ, f ⟩RX,∗×RX =

∫
X f (y)dµ(y) ⟨ĝ , f ⟩ = supx∈X f (x) − ĝ(x)

kernel
operator K(µ)(x) =

∫
X k(x , y)dµ(y) B̄(f̂ )(x) = supy∈X b(x , y) − f̂ (y)

monotone
operator ⟨µ,K(µ)⟩RX,∗×RX ≥ 0 ⟨f̂ , B̄f̂ ⟩ + ⟨ĝ , B̄ĝ⟩ ≥ ⟨f̂ , B̄ĝ⟩ + ⟨ĝ , B̄f̂ ⟩

function
space Hk = span({k(·, x)}x∈X ) Rg(B) = {sup

x∈X
[ax + b(·, x)] | ax ∈ R}

reproducing
property f (x) = (k(·, x), f (·))Hk ĝ(x) = ⟨B̄ĝ , B̄δ⊤

x ⟩ = (B̄ĝ)(x)

Now back to minimizing functions rather than over functions.
4Pierre-Cyril Aubin-Frankowski and Stéphane Gaubert. “Tropical reproducing kernels and optimization”. In:

Integral Equations and Operator Theory (2023). (to be published).
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c-concavity

Definition (c-concavity)

We say that a function f : X → R is c-concave if there exists a function h : Y → R such that

f (x) = inf
y∈Y

c(x , y) + h(y), (11)

for all x ∈ X . If f is c-concave, then we can take h(y) = f c(y) = supx ′∈X f (x ′) − c(x ′, y).

f (x)
x 7→ c(x , y) + f c(y)

x 7→ c(x , y) + α

NB: Costs c are the opposite of the tropical
kernels b (sign convention problem).

For c = L
2 ∥x − y∥2, c-concave ⇔ ∇2f ≤ L.
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Majorization–minimization
Let f : X → R where X is any set. Choose another set Y and a function c(x , y). Define the
upperbound

f (x) ≤ ϕ(x , y) := c(x , y) + f c(y) := c(x , y) + sup
x ′∈X

f (x ′) − c(x ′, y) (12)

Do alternating minimization (AM) of the surrogate

yn+1 = argminy∈Y c(xn, y) + f c(y), (13)
xn+1 = argminx∈X c(x , yn+1) + f c(yn+1). (14)

If we can differentiate and f (x) = infy c(x , y) + f c(y) (c-concavity) then we can write
(applying the envelope theorem ∇f (x) = ∇1ϕ(x , ȳ(x)))

−∇xc(xn, yn+1) = −∇f (xn), (15)
∇xc(xn+1, yn+1) = 0. (16)
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−∇xc(xn, yn+1) = −∇f (xn), (15)
∇xc(xn+1, yn+1) = 0. (16)



22/28

Motivation RkHSs kSoS Tropical c-concavity References

Sketch of alternating minimization

yn+1 = argminy∈Y c(xn, y) + f c(y),
xn+1 = argminx∈X c(x , yn+1) + f c(yn+1).

xnxn+1

f (x)
x 7→ c(x , yn+1) + f c(yn+1)
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Gradient descent with a general cost - Examples

−∇xc(xn, yn+1) = −∇f (xn),
∇xc(xn+1, yn+1) = 0.

In the following: Y = X , and c is minimal on the diagonal {x = y}, so xn+1 = yn+1

i) Gradient descent: c(x , y) = L
2 ∥x − y∥2 and xn+1 − xn = − 1

L∇f (xn).

ii) Mirror descent: c(x , y) = u(x |y), so ∇u(xn+1) − ∇u(xn) = −∇f (xn).

iii) Natural gradient descent: c(x , y) = u(y |x), so xn+1 − xn = −(∇2u(xn))−1∇f (xn).

iv) A nonlinear gradient descent: c(x , y) = ℓ(x − y), so xn+1 − xn = −∇ℓ∗(∇f (xn)).

v) Riemannian gradient descent: (M, g) a Riemannian manifold. Take X = Y = M and
c(x , y) = L

2 d2(x , y), so xn+1 = expxn(− 1
L∇f (xn)),

Cool, but what do you need to converge?
↪→ Something like L-smoothness and µ-strong convexity
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c-cross-convexity

Consider the sequence of AM iterates, starting from any x0,

yn → xn → yn+1

We say that f is λ-strongly c-cross-convex for λ ≥ 0 if, for all x , yn ∈ X × Y ,

f (x) − f (xn) ≥ c(x , yn+1) − c(x , yn) + c(xn, yn) − c(xn, yn+1) + λ(c(x , yn) − c(xn, yn))..

c-concavity (f (x) = infy c(x , y) + f c(y)) implies, since f c(yn+1) = f (xn) − c(xn, yn+1),

f (x) − f (xn) ≤ c(x , yn+1) − c(xn, yn+1).

These conditions extend L-smoothness and (strong) convexity when c(x , y) = L
2 ∥x − y∥2.5

5Flavien Léger and Pierre-Cyril Aubin-Frankowski. “Gradient descent with a general cost”. In: (2023).
https://arxiv.org/abs/2305.04917.

https://arxiv.org/abs/2305.04917
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Theorem (Convergence rates for gradient descent with general cost)

i) Suppose that f is c-concave. Then we have the descent property+stopping criterion

f (xn+1) ≤ f (xn) − [c(xn, yn+1) − c(xn+1, yn+1)] ≤ f (xn),

min
0≤k≤n−1

[c(xk , yk+1) − c(xk+1, yk+1)] ≤ f (x0) − f∗
n .

ii) Suppose in addition that f is c-cross-convex. Then for any x ∈ X , n ≥ 1,

f (xn) ≤ f (x) + c(x , y0) − c(x0, y0)
n . (17)

iii) Suppose in addition that f is λ-strongly c-cross-convex for some λ ∈ (0, 1). Then for any
x ∈ X , n ≥ 1, setting Λ := (1 − λ)−1 > 1

f (xn) ≤ f (x) + λ (c(x , y0) − c(x0, y0))
Λn − 1 . (18)
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What have we seen? What can you see more in the articles?

Linear optimal control/estimation duality
LQ optimal control ⊂ kernel methods. New formulas for the covariances of GPs induced by
linear SDEs!

Global optimization of smooth functions
Kernel Sum-of-Squares use smoothness against curse of dimensionality!

Tropical kernels
Representer theorems still hold in max-plus settings! There are also analogies with Hilbertian
framework and applications to value functions.

c-concavity for revisiting optimization algorithms!
c-concavity and c-cross-convexity generalize smoothness and convexity and encompass many
algorithms! New assumptions for global convergence of natural gradient descent/Newton

Thank you for your attention!
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