Kernels and optimization:
Hilbert vs tropical, kernel Sum-of-Squares, optimal control, c-concavity and representer theorems

Pierre-Cyril Aubin-Frankowski
INRIA SIERRA, Paris, France
Moving to TU Wien for postdoc in Sept 23

LIKE 2023

June 29, 2023, Bern

A very natural problem

Let X be a set, and $\mathcal{F}=\{f: X \rightarrow \mathbb{R}\}$ a function class. For $F \in \mathcal{F}$ and $L: \mathcal{F} \rightarrow \mathbb{R}$

$$
\min _{x \in X} F(x) \quad \text { VS } \min _{f \in \mathcal{F}} \mathcal{L}(f)=L\left(f\left(x_{1}\right), \ldots, f\left(x_{N}\right)\right)
$$

Typical examples of \mathcal{F} in this talk

- \mathcal{F} is a RKHS \mathcal{H}_{k} with kernel k
- \mathcal{F} is $\operatorname{CVEX}\left(\mathbb{R}^{d}\right)$, the set of convex lower semicontinuous functions over \mathbb{R}^{d}
- \mathcal{F} is $\operatorname{Lip}(X)$, the set of 1-Lipschitz functions over a metric space X

Questions:

- can we minimize a given F through function evaluations?
- can we minimize over \mathcal{F} when \mathcal{L} involves a finite number of evaluations?

Some very special function spaces, the ones generated by a kernel
RKHSs and convex functions have the common property of having clear generators:

$$
\begin{aligned}
\mathcal{H}_{k} & =\left\{f(\cdot)=\Sigma_{y \in X} a_{y} k(\cdot, y) \mid\left(a_{y}\right)_{y} \text { finite }\right\}+\text { completion } \\
\operatorname{CVEX}\left(\mathbb{R}^{d}\right) & =\left\{f(\cdot)=\sup _{y \in \mathbb{R}^{d}}(\cdot, y)+a_{y} \mid\left(a_{y}\right)_{y} \subset \mathbb{R} \cup\{-\infty\}\right\}
\end{aligned}
$$

Some very special function spaces, the ones generated by a kernel
RKHSs and convex functions have the common property of having clear generators:

$$
\begin{aligned}
\mathcal{H}_{k} & =\left\{f(\cdot)=\Sigma_{y \in X} a_{y} k(\cdot, y) \mid\left(a_{y}\right)_{y} \text { finite }\right\}+\text { completion } \\
\operatorname{CVEX}\left(\mathbb{R}^{d}\right) & =\left\{f(\cdot)=\sup _{y \in \mathbb{R}^{d}}(\cdot, y)+a_{y} \mid\left(a_{y}\right)_{y} \subset \mathbb{R} \cup\{-\infty\}\right\}
\end{aligned}
$$

More generally take a (max-plus) kernel $b: X \times Y \rightarrow \mathbb{R}$, and define its range

$$
\operatorname{Rg}(B):=\left\{\sup _{y \in Y} b(\cdot, y)+a_{y} \mid a_{y} \in \mathbb{R} \cup\{-\infty\}\right\}
$$

Take $X=Y$ for now:
i) For $X=\mathbb{R}^{d}, b(x, y)=-\|x-y\|^{2}$ gives the 1-semiconvex I.s.c. functions,

$$
\operatorname{Rg}(B)=\left\{f \text { I.s.c. } \mid f+\|\cdot\|^{2} \text { is convex }\right\}
$$

ii) For (X, d) a metric space, $p \in(0,1], b(x, y)=-d(x, y)^{p}$ gives the $(1, p)$-Hölder continuous functions,

$$
\operatorname{Rg}(B)=\left\{f\left|\forall x, y,|f(x)-f(y)| \leq 1 \cdot d(x, y)^{p}\right\}\right.
$$

What are we going to see?

If $\mathcal{F}=\mathcal{H}_{k}$ is a RKHS,

- (minimize over \mathcal{H}_{k}): known \rightarrow representer theorems \hookrightarrow (new cases in optimal control/estimation)
- (minimize $F \in \mathcal{H}_{k}$): new \rightarrow kernel Sum-of-Squares

If $\mathcal{F}=\operatorname{Rg}(B)$ is a tropical kernel space,

- (minimize over $\operatorname{Rg}(B))$: new \rightarrow tropical representer theorems
- (minimize $F \in \operatorname{Rg}(B)$): new $\rightarrow F$ c-concave and alternating minimization

Separate works with Alain Bensoussan (UT Dallas), Alessandro Rudi (INRIA Paris), Stéphane Gaubert (INRIA Polytechnique), Flavien Léger (INRIA Paris)

Optimizing over RKHSs: representer theorem

Typical representer theorem e.g. B. Schölkopf, R. Herbrich, and A. J. Smola. "A Generalized Representer Theorem". In: Computational Learning Theory (CoLT). 2001, pp. 416-426

Let $L: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{\infty\}$, strictly increasing $\Omega: \mathbb{R}_{+} \rightarrow \mathbb{R}$, and assume there exists

$$
\bar{f} \in \operatorname{argmin}_{f \in \mathcal{H}_{k}} L\left(\left(f\left(x_{n}\right)\right)_{n \in[N]}\right)+\Omega\left(\|f\|_{k}\right)
$$

Then $\exists\left(a_{n}\right)_{n \in[N]} \in \mathbb{R}^{N}$ s.t. $\bar{f}(\cdot)=\sum_{n \in[N]} a_{n} k\left(\cdot, x_{n}\right)$
\hookrightarrow Actually even for $\Omega=0$, existence of \bar{f}, gives existence of optimal $\bar{f}_{0}(\cdot)=\sum_{n \in[N]} a_{n} k\left(\cdot, x_{n}\right)$.
\hookrightarrow All vs some optimal solutions lie in a finite dimensional subspace of \mathcal{H}_{k}.
Finite number of evaluations \Longrightarrow finite number of coefficients

What if there is no RKHS? Find one! Example in optimal control

The Linear-Quadratic (LQ) optimal control is defined over

$$
\mathcal{S}_{\left[t_{0}, T\right]}:=\left\{x(\cdot) \mid x\left(t_{0}\right)=0, \exists u(\cdot) \in L^{2}\left(t_{0}, T\right) \text { s.t. } x^{\prime}(t)=A x(t)+B u(t) \text { a.e. }\right\}
$$

a vector space of controlled trajectories $x(\cdot):\left[t_{0}, T\right] \rightarrow \mathbb{R}^{Q}$.
LQ optimal control

$$
\min _{x(\cdot) \in \mathcal{S}_{\left[t_{0}, T\right]} u(\cdot) \in L^{2}} g(x(T))+\int_{t_{0}}^{T}\|u(\tau)\|^{2} \mathrm{~d} \tau
$$

with $u(t)=B^{\ominus}\left[x^{\prime}(t)-A x(t)\right]$

What if there is no RKHS? Find one! Example in optimal control

The Linear-Quadratic (LQ) optimal control is defined over

$$
\mathcal{S}_{\left[t_{0}, T\right]}:=\left\{x(\cdot) \mid x\left(t_{0}\right)=0, \exists u(\cdot) \in L^{2}\left(t_{0}, T\right) \text { s.t. } x^{\prime}(t)=A x(t)+B u(t) \text { a.e. }\right\}
$$

a vector space of controlled trajectories $x(\cdot):\left[t_{0}, T\right] \rightarrow \mathbb{R}^{Q}$.

LQ optimal control

with $u(t)=B^{\ominus}\left[x^{\prime}(t)-A x(t)\right]$

"KRR" (Kernel Ridge Regression)

$$
\min _{x(\cdot) \in \mathcal{S}_{\left[t_{0}, T\right]}} g(x(T))+\|x(\cdot)\|_{\mathcal{S}_{\left[t_{0}, T\right]}}^{2}
$$

with $\|x(\cdot)\|_{S_{\left[t_{0}, T\right]}}^{2}=\left\|\mathbf{B}^{\ominus}\left[x^{\prime}(\cdot)-A x(\cdot)\right]\right\|_{L^{2}\left(t_{0}, T\right)}^{2}$

The corresponding kernel has the form of a Gramian:

$$
K(s, t)=\int_{t_{0}}^{\min (s, t)} e^{A(s-\tau)} B(\tau) B(\tau)^{\top} e^{A^{\top}(t-\tau)} \mathrm{d} \tau
$$

and the optimal solution is of the form $\bar{x}(\cdot)=K(\cdot, T) p_{T}$ for some $p_{T} \in \mathbb{R}^{Q}$.

\#1 Where's Waldo/Charlie the kernel? For Kalman estimation

Continuous-time estimation problem (smoothing/filtering) over GPs with linear SDE

$$
\begin{array}{ll}
d x(t)=F x(t) d t+G d w(t), & x\left(t_{0}\right)=\xi \\
d y(t)=H x(t) d t+d b(t), & y\left(t_{0}\right)=0
\end{array}
$$

Problem: Estimate $x(s)$ with the σ-algebra $\mathcal{Y}^{T}=\sigma(y(\tau), 0 \leq \tau \leq T$) by (linear) minimum mean square estimator, a.k.a. the minimum variance linear estimator

$$
\begin{equation*}
\hat{x}(s \mid T)=\mathbb{E}\left[x(s) \mid \mathcal{Y}^{T}\right]=x_{S}(s \mid T):=\bar{x}(s)+\int_{t_{0}}^{T} S_{s}(t \mid T) d y(t) \tag{3}
\end{equation*}
$$

\#1 Where's Waldo/Charlie the kernel? For Kalman estimation

Continuous-time estimation problem (smoothing/filtering) over GPs with linear SDE

$$
\begin{array}{ll}
d x(t)=F x(t) d t+G d w(t), & x\left(t_{0}\right)=\xi \\
d y(t)=H x(t) d t+d b(t), & y\left(t_{0}\right)=0 \tag{2}
\end{array}
$$

Problem: Estimate $x(s)$ with the σ-algebra $\mathcal{Y}^{T}=\sigma(y(\tau), 0 \leq \tau \leq T$) by (linear) minimum mean square estimator, a.k.a. the minimum variance linear estimator

$$
\begin{gather*}
\hat{x}(s \mid T)=\mathbb{E}\left[x(s) \mid \mathcal{Y}^{T}\right]=x_{S}(s \mid T):=\bar{x}(s)+\int_{t_{0}}^{T} S_{s}(t \mid T) d y(t) . \tag{3}\\
\epsilon_{S}(s \mid T):=x(s)-x_{S}(s \mid T)=x(s)-\int_{t_{0}}^{T} S_{s}(t \mid T) d y(t) \tag{4}\\
\hat{S}_{s}(\cdot \mid T) \in \operatorname{argmin}_{S(\cdot \mid T)} \Gamma_{S}(s \mid T)=\mathbb{E}\left[\epsilon_{S}(s \mid T)\left(\epsilon_{S}(s \mid T)\right)^{*}\right] . \tag{5}
\end{gather*}
$$

The kernel is the covariance of $\epsilon_{\hat{S}_{s}}(\cdot \mid T)$ and we have $\hat{S}_{s}(t \mid T)=K(s, t \mid T) H^{*} R^{-1}$,

$$
\begin{equation*}
K(s, t \mid T)=\mathbb{E}\left[\epsilon_{\hat{S}_{s}}(s \mid T)\left(\epsilon_{\hat{S}_{t}}(t \mid T)\right)^{*}\right] \in \mathcal{L}\left(\mathbb{R}^{n, *}, \mathbb{R}^{n}\right) \tag{6}
\end{equation*}
$$

\#2 Where's Waldo/Charlie the kernel? For least squares estimation
Using least squares formulation of the estimation problem

$$
L_{x}(x(\cdot)):=\int_{t_{0}}^{T}\|y(t)-H x(t)\|_{R^{-1}}^{2} d t+\left\|G^{\ominus}\left(x^{\prime}(t)-F x(t)\right)\right\|_{Q \ominus}^{2} d t+\left\langle\Pi_{0}^{\ominus} x\left(t_{0}\right), x\left(t_{0}\right)\right\rangle+\left\langle\Sigma_{T} x(T), x(T)\right\rangle
$$

Introduce the RKHS $\mathcal{S}_{\left[t_{0}, T\right]}=\left\{x(\cdot) \in H^{1} \mid \exists u(\cdot) \in L^{2}\right.$ s.t. $\left.x^{\prime}(\tau)=F_{x}(\tau)+G Q^{\frac{1}{2}} u(\tau)\right\}$.

$$
\|x(\cdot)\|_{\mathcal{S}_{\left[t_{0}, \tau\right]}}^{2}=\left\langle\Pi_{0}^{-1} x\left(t_{0}\right), x\left(t_{0}\right)\right\rangle+\left\langle\Sigma_{T} x(T), x(T)\right\rangle+\int_{t_{0}}^{T}\|u(\tau)\|^{2} d \tau+\int_{t_{0}}^{T}\left\langle H^{*} R^{-1} H x(\tau), x(\tau)\right\rangle d \tau
$$

\#2 Where's Waldo/Charlie the kernel? For least squares estimation

Using least squares formulation of the estimation problem

$$
L_{x}(x(\cdot)):=\int_{t_{0}}^{T}\|y(t)-H x(t)\|_{R^{-1}}^{2} d t+\left\|G^{\ominus}\left(x^{\prime}(t)-F_{x}(t)\right)\right\|_{Q \ominus}^{2} d t+\left\langle\Pi_{0}^{\ominus} x\left(t_{0}\right), x\left(t_{0}\right)\right\rangle+\left\langle\Sigma_{T} x(T), x(T)\right\rangle
$$

Introduce the RKHS $\mathcal{S}_{\left[t_{0}, T\right]}=\left\{x(\cdot) \in H^{1} \mid \exists u(\cdot) \in L^{2}\right.$ s.t. $\left.x^{\prime}(\tau)=F_{x}(\tau)+G Q^{\frac{1}{2}} u(\tau)\right\}$.

$$
\|x(\cdot)\|_{\mathcal{S}_{\left[t_{0}, \tau\right]}}^{2}=\left\langle\Pi_{0}^{-1} x\left(t_{0}\right), x\left(t_{0}\right)\right\rangle+\left\langle\Sigma_{T} x(T), x(T)\right\rangle+\int_{t_{0}}^{T}\|u(\tau)\|^{2} d \tau+\int_{t_{0}}^{T}\left\langle H^{*} R^{-1} H x(\tau), x(\tau)\right\rangle d \tau
$$

Taking Fréchet derivative (rather than representer theorem)

$$
\int_{t_{0}}^{T} K(\cdot, t \mid T) H^{*} R^{-1} y(t) d t=\operatorname{argmin}_{x(\cdot) \in \mathcal{S}}\left\|R^{-1 / 2} y(\cdot)\right\|_{L^{2}}^{2}+\|x(\cdot)\|_{\mathcal{S}}^{2}-2\left\langle H^{*}(\cdot) R^{-1}(\cdot) y(\cdot), x(\cdot)\right\rangle_{L^{2}\left(\left[t_{0}, T\right]\right)}
$$

and the kernel has the explicit form (based on Riccati matrices and some semi-groups)

$$
\begin{equation*}
K(s, t \mid T)=\Phi_{F, \Sigma}\left(s, t_{0}\right)\left(\Pi_{0}^{-1}+\Sigma\left(t_{0}\right)\right)^{-1} \Phi_{F, \Sigma}^{*}\left(t, t_{0}\right)+\int_{t_{0}}^{\min (s, t)} \Phi_{F, \Sigma}(s, \tau) G Q G^{*} \Phi_{F, \Sigma}^{*}(t, \tau) d \tau \tag{7}
\end{equation*}
$$

What if there is no RKHS? Find one!

- finding an RKHS somewhere allows for simpler computations (representer theorems + kernel trick)
- in LQ optimal control, RKHSs come from vector spaces of trajectories ${ }^{1}$

LQ optimal control \subset kernel methods

- in linear estimation, kernels come from covariances of optimal errors ${ }^{2}$

New formulas for the covariances of GPs induced by linear SDEs!
Now back to minimizing functions rather than over functions.

[^0]
Optimizing a smooth function in a RKHS: kernel Sum-of-Squares

Take $F \in \mathcal{H}_{k}$ with $k \in C^{s_{k}}(X \times X, \mathbb{R})$, $s_{k} \geq 0, X \subset \mathbb{R}^{d}$ bounded open. Global optimization of

$$
\min _{x \in X} F(x)
$$

is in general non-convex. BUT it can be rewritten as

$$
\sup _{\substack{c \in \mathbb{R} \\ F(x)-c \geq 0, \forall x \in X}} c
$$

This convex problem has an infinite number of affine constraints... Lets sample them!

Optimizing a smooth function in a RKHS: kernel Sum-of-Squares

Take $F \in \mathcal{H}_{k}$ with $k \in C^{s_{k}}(X \times X, \mathbb{R})$, $s_{k} \geq 0, X \subset \mathbb{R}^{d}$ bounded open. Global optimization of

$$
\min _{x \in X} F(x)
$$

is in general non-convex. BUT it can be rewritten as

$$
\sup _{\substack{c \in \mathbb{R} \\ F(x)-c \geq 0, \forall x \in X}} c
$$

This convex problem has an infinite number of affine constraints... Lets sample them! However, we would get $\hat{c}=\min _{m \in[M]} F\left(x_{m}\right)$ and in the worst case

$$
\begin{equation*}
|\hat{c}-\min F| \propto \operatorname{Lip}(F) \cdot h_{M} \quad \text { where } \quad h_{M}=\sup _{x \in X} \min _{m \in[M]}\left\|x-x_{m}\right\| \text { (fill distance) } \tag{8}
\end{equation*}
$$

BUT $h_{M} \propto \frac{1}{M^{d}} \rightarrow$ curse of dimensionality. Can we do better by leveraging the smoothness?

Optimizing a smooth function in a RKHS: kernel Sum-of-Squares

We want to do global zero-th order optimization of smooth functions. Scattering inequalities tell us that if $f\left(x_{m}\right)-g\left(x_{m}\right)=0$ with $f, g \in C^{s}$, then on a small neighborhood of size r

$$
|f(x)-g(x)| \leq C \cdot r^{s}
$$

Question: Can we find a "nice" function $g(x) \geq 0, g \in C^{2}$ such that

$$
\sup _{\substack{c \in \mathbb{R} \\ F(x)-c=g(x), \forall x \in X}} c
$$

Yes. . . but that's not trivial because of the nonnegativity constraint.

Optimizing a smooth function in a RKHS: kernel Sum-of-Squares

We want to do global zero-th order optimization of smooth functions. Scattering inequalities tell us that if $f\left(x_{m}\right)-g\left(x_{m}\right)=0$ with $f, g \in C^{s}$, then on a small neighborhood of size r

$$
|f(x)-g(x)| \leq C \cdot r^{s}
$$

Question: Can we find a "nice" function $g(x) \geq 0, g \in C^{2}$ such that

$$
\sup _{\substack{c \in \mathbb{R} \\ F(x)-c=g(x), \forall x \in X}} c
$$

Yes. . . but that's not trivial because of the nonnegativity constraint.
Can we set $g=h^{2}$ for some function h ? Yes, if $F \in C^{2}$ has a strictly positive Hessian at a unique global minimum. BUT we don't know how to compute it.

Can we look for h in a RKHS? Yes but non convex equality constraint. . .

A nice class of nonnegative functions: kernel Sum-of-Squares/PSD models

How to build a nonnegative function given an embedding $\phi: X \rightarrow \mathcal{H}_{\phi}$? Square it!

$$
f: x \mapsto\langle\phi(x), \phi(x)\rangle_{\mathcal{H}_{\phi}}=k_{\phi}(x, x) \geq 0
$$

More generally take a positive semidefinite operator $A \in S^{+}\left(\mathcal{H}_{\phi}\right)$,

$$
f_{A}: x \mapsto\langle\phi(x), A \phi(x)\rangle_{\mathcal{H}_{\phi}} \geq 0
$$

(PSD model) $\quad A=\sum_{i, j=1}^{N} a_{i j} \phi\left(x_{i}\right) \otimes \phi\left(x_{j}\right) \Longrightarrow f_{A}(x)=\sum_{i, j=1}^{N} a_{i j} k_{\phi}\left(x, x_{i}\right) k_{\phi}\left(x, x_{j}\right)$
(kernel SoS) $\left[a_{i j}\right]_{i, j}=\sum_{i} u_{i} u_{i}^{\top}(S V D) \Longrightarrow f_{A}(x)=\sum_{i=1}^{N}\left(\sum_{j=1}^{N} u_{i, j} k_{\phi}\left(x, x_{j}\right)\right)^{2}$
Note that in general $f_{A} \notin \mathcal{H}_{\phi}$ but $f_{A} \in \mathcal{H}_{\phi} \odot \mathcal{H}_{\phi}$ (Hadamard product). If $\operatorname{span}\left(\left\{k_{\phi}(\cdot, x)\right\}_{x \in X}\right)$ is dense in continuous functions, so are the $\left\{f_{A}\right\}_{A \in S^{+}\left(\mathcal{H}_{\phi}\right)}$ in nonnegative functions.

Optimization with kernel Sum-of-Squares/PSD models

We can consider the convex problem and approximate it through sampling+regularization ${ }^{3}$

$$
\begin{aligned}
& \sup c \quad \sup ^{c} \quad c-\lambda \operatorname{Tr}(A) \\
& c \in \mathbb{R}, A \in S^{+}\left(\mathcal{H}_{\phi}\right) \\
& F(x)-c=\langle\phi(x), A \phi(x)\rangle_{\mathcal{H}_{\phi}}, \forall x \in X \\
& \begin{array}{c}
c \in \mathbb{R}, A \in S^{+}\left(\mathcal{H}_{\phi}\right) \\
F\left(x_{m}\right)-c=\left\langle\phi\left(x_{m}\right), A \phi\left(x_{m}\right)\right\rangle_{\mathcal{H}_{\phi}}, \forall m \in[M]
\end{array}
\end{aligned}
$$

We do have a representer theorem! Two cases ${ }^{a}$ for $F \in C^{s}$:

- if $\exists A^{*} \in S^{+}\left(\mathcal{H}_{\phi}\right), F(x)-\min F=\left\langle\phi(x), A^{*} \phi(x)\right\rangle_{\mathcal{H}_{\phi}}$ then $|\hat{c}-\min F| \leq C_{0}(F) \cdot h_{M}^{s} \propto \frac{1}{M^{\frac{d}{s}}}$
- otherwise, $|\hat{c}-\min F| \leq C_{0}(F) \cdot h_{M} \propto \frac{1}{M^{d}}$.

[^1]https://arxiv.org/abs/2301.06339.
Now back to minimizing over functions rather than functions.
${ }^{3}$ Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding Global Minima via Kernel Approximations. 2020. arXiv: 2012.11978 [math.OC].

Optimization on tropical function spaces

Take a (max-plus) kernel $b: X \times Y \rightarrow \mathbb{R}$, and recall what is the range

$$
\operatorname{Rg}(B):=\left\{\sup _{y \in Y} b(\cdot, y)+a_{y} \mid a_{y} \in \mathbb{R} \cup\{-\infty\}\right\} .
$$

Given a subset $\hat{X}=\left\{x_{m}\right\}_{m \in \mathcal{I}}$, define

$$
\begin{aligned}
& \operatorname{Rg}_{\partial-\hat{x}}(B):=\left\{f \in \operatorname{Rg}(B) \mid \forall m \in \mathcal{I}, \exists p_{m} \in Y\right. \text { maximizing: } \\
& \left.\qquad f\left(x_{m}\right)=\sup _{p \in Y} b\left(x_{m}, p\right)-\sup _{x^{\prime} \in X}\left(b\left(x^{\prime}, p\right)-f\left(x^{\prime}\right)\right)\right\} .
\end{aligned}
$$

Optimization on tropical function spaces

Take a (max-plus) kernel $b: X \times Y \rightarrow \mathbb{R}$, and recall what is the range

$$
\operatorname{Rg}(B):=\left\{\sup _{y \in Y} b(\cdot, y)+a_{y} \mid a_{y} \in \mathbb{R} \cup\{-\infty\}\right\} .
$$

Given a subset $\hat{X}=\left\{x_{m}\right\}_{m \in \mathcal{I}}$, define

$$
\begin{aligned}
& \operatorname{Rg}_{\partial-\hat{x}}(B):=\left\{f \in \operatorname{Rg}(B) \mid \forall m \in \mathcal{I}, \exists p_{m} \in Y\right. \text { maximizing: } \\
& \left.\qquad f\left(x_{m}\right)=\sup _{p \in Y} b\left(x_{m}, p\right)-\sup _{x^{\prime} \in X}\left(b\left(x^{\prime}, p\right)-f\left(x^{\prime}\right)\right)\right\} .
\end{aligned}
$$

When $b=\langle\cdot, \cdot\rangle$, each p_{m} can be interpreted as a subgradient at x_{m}. There is a well-known property in convex regression, (Boyd and Vandenberghe, Convex Optimization[Section 6.5.5])

$$
\min _{f \in \mathrm{CVEX}} \sum\left|f\left(x_{m}\right)-\bar{y}_{m}\right|^{2} \Leftrightarrow \min _{\substack{\left(p_{m}, y_{m}\right)_{m \in \mathcal{I}} \in\left(\mathbb{R}^{d} \times \mathbb{R}\right)^{M}, y_{n}-y_{m} \geq\left(x_{n}, p_{m}\right)_{2}-\left(x_{m}, p_{m}\right)_{2}}} \sum\left|y_{m}-\bar{y}_{m}\right|^{2}
$$

Question: Can we do the same for more general tropical kernels b ?

Optimization on tropical function spaces: interpolation theorem

Proposition (Tropical interpolation)

Let \mathcal{I} be a nonempty index set, given $\left(x_{m}, y_{m}\right)_{m \in \mathcal{I}} \in(X \times \mathbb{R})^{\mathcal{I}}$, setting $\hat{X}=\left\{x_{m}\right\}_{m \in \mathcal{I}}$, the three following statements are equivalent:
i) there exists $f \in \operatorname{Rg}_{\partial-\hat{x}}(B)$ such that $y_{m}=f\left(x_{m}\right)$ for all $m \in \mathcal{I}$;
ii) there exists $\left(p_{m}\right)_{m \in \mathcal{I}} \in(Y)^{\mathcal{I}}$ such that $y_{m}=f^{0}\left(x_{m}\right)$ for all $m \in \mathcal{I}$, for

$$
f^{0}(\cdot):=\max _{m \in \mathcal{I}} b\left(\cdot, p_{m}\right)-b\left(x_{m}, p_{m}\right)+y_{m} ;
$$

iii) there exists $\left(p_{m}\right)_{m \in \mathcal{I}} \in(Y)^{\mathcal{I}}$ such that $y_{n}-y_{m} \geq b\left(x_{n}, p_{m}\right)-b\left(x_{m}, p_{m}\right)$ for all $n, m \in \mathcal{I}$.

Optimization on tropical function spaces: representer theorem

Corollary (Representer theorem)

Given points $\left(x_{m}\right)_{m \in \mathcal{I}} \in X^{\mathcal{I}}$ and a function $\mathcal{L}: \mathbb{R}^{\mathcal{I}} \rightarrow \mathbb{R}$, fix $\hat{X}=\left\{x_{m}\right\}_{m \in \mathcal{I}}$. Then, if the problem

$$
\begin{equation*}
\min _{f \in \operatorname{Rg}(B)} \mathcal{L}\left(\left(f\left(x_{m}\right)\right)_{m \in \mathcal{I}}\right) \tag{9}
\end{equation*}
$$

has a solution $\bar{f} \in \operatorname{Rg}_{\partial-\hat{x}}(B)$ with finite values $\left(f\left(x_{m}\right)\right)_{m \in \mathcal{I}} \in \mathbb{R}^{\mathcal{I}}$, it also has a solution f^{0} as in Proposition 1-ii) which can be obtained solving

$$
\begin{equation*}
\min _{\left.\left(p_{m}, y_{m}\right)_{m \in \mathcal{I} \in(Y \times \mathbb{R})^{M}} \mathcal{L}\left(\left(y_{m}\right)\right)_{m \in \mathcal{I}}\right) .} \tag{10}
\end{equation*}
$$

s.t. $y_{n}-y_{m} \geq b\left(x_{n}, p_{m}\right)-b\left(x_{m}, p_{m}\right), \forall n, m \in \mathcal{I}$.

Conversely, if (10) has a solution, then it is also a solution in $\operatorname{Rg}_{\partial-\hat{X}}(B)$ of (9).

Recall Aronszajn's theorem

Theorem

Given a kernel $k: X \times X \rightarrow \mathbb{R}$, the three following properties are equivalent:
i) k is a positive semidefinite kernel, i.e. a kernel being both:

- symmetric: $\forall x, y \in X, k(x, y)=k(y, x)$, and
- positive: $\forall M \in \mathbb{N}^{*}, \forall\left(a_{m}, x_{m}\right) \in(\mathbb{R} \times X)^{M}, \sum_{n, m=1}^{M} a_{n} a_{m} k\left(x_{n}, x_{m}\right) \geq 0$;
ii) there exists a Hilbert space $\left(\mathcal{H},(\cdot, \cdot)_{\mathcal{H}}\right)$ and a feature map $\Phi: X \rightarrow \mathcal{H}$ such that $-\forall x, y \in X, k(x, y)=(\Phi(x), \Phi(y))_{\mathcal{H}} ;$
iii) k is the reproducing kernel of the Hilbert space (RKHS) of functions $\mathcal{H}_{k}:=\overline{\mathcal{H}_{k, 0}}$, the completion for the pre-scalar product $(k(\cdot, x), k(\cdot, y))_{k, 0}=k(x, y)$ of the space $\mathcal{H}_{k, 0}:=\operatorname{span}\left(\{k(\cdot, x)\}_{x \in X}\right)$, in the sense that
- $\forall x \in X, k(\cdot, x) \in \mathcal{H}_{k}$ and $\forall f \in \mathcal{H}, f(x)=(f, k(\cdot, x))_{\mathcal{H}}$.

Main (informal) theorem: Aronszajn's analogue

Theorem (Tropical analogue of Aronszajn theorem)

Given a kernel $b: X \times X \rightarrow \mathbb{R} \cup\{-\infty\}$, the three following properties are equivalent
i) b is a tropically positive semidefinite kernel, i.e. symmetric and

$$
b(x, x)+b(y, y) \geq b(x, y)+b(y, x)
$$

ii) there exists a factorization of b by a feature $\operatorname{map} \psi: X \rightarrow \mathbb{R}_{\max }^{\mathcal{Z}}$ for some set \mathcal{Z}, $b(x, y)=\sup _{z \in \mathcal{Z}} \psi(x, z)+\psi(y, z) ;$
iii) b is the sesquilinear reproducing kernel of a max-plus space of functions $\operatorname{Rg}(B)$, the max-plus completion of $\left\{\sup _{n \in\{1, \ldots, N\}} a_{n}+b\left(\cdot, x_{n}\right) \mid N \in \mathbb{N}^{*}, a_{n} \in \mathbb{R}, x_{n} \in X\right\}$, and b defines a tropical Cauchy-Schwarz inequality over \mathbb{R}^{X}.

Some kernels b exhibit analogue properties to RKHSs! Are they useful? TBC

000

Full analogy between Hilbertian and tropical kernels

Dedicated to kernel lovers: ${ }^{4}$

Concept	Hilbertian kernel	Tropical kernel
symmetry	$k(x, y)=k(y, x)$	$b(x, y)=b(y, x)$
positivity	$\sum_{i, j} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0$	$b(x, x)+b(y, y) \geq b(x, y)+b(y, x)$
feature map	$k(x, y)=(\Phi(x), \Phi(y))_{\mathcal{H}}$	$b(x, y)=\sup _{z \in \mathcal{Z}} \psi(x, z)+\psi(y, z)$
duality bracket	$\langle\mu, f\rangle_{\mathbb{R}^{x, *} \times \mathbb{R}^{x}}=\int_{X} f(y) \mathrm{d} \mu(y)$	$\langle\hat{g}, f\rangle=\sup _{x \in X} f(x)-\hat{g}(x)$
kernel operator	$K(\mu)(x)=\int_{X} k(x, y) \mathrm{d} \mu(y)$	$\bar{B}(\hat{f})(x)=\sup _{y \in X} b(x, y)-\hat{f}(y)$
monotone operator	$\langle\mu, K(\mu)\rangle_{\mathbb{R}^{x}, * \times \mathbb{R}^{x}} \geq 0$	$\langle\hat{f}, \bar{B} \hat{f}\rangle+\langle\hat{g}, \bar{B} \hat{g}\rangle \geq\langle\hat{f}, \bar{B} \hat{g}\rangle+\langle\hat{g}, \bar{B} \hat{f}\rangle$
function space	$\mathcal{H}_{k}=\overline{\operatorname{span}\left(\{k(\cdot, x)\}_{x \in X}\right)}$	$\operatorname{Rg}(B)=\left\{\sup _{x \in X}\left[a_{x}+b(\cdot, x)\right] \mid a_{x} \in \mathbb{R}\right\}$
reproducing property	$f(x)=(k(\cdot, x), f(\cdot))_{\mathcal{H}_{k}}$	$\hat{g}(x)=\left\langle\bar{B} \hat{g}, \bar{B} \delta_{x}^{\top}\right\rangle=(\bar{B} \hat{g})(x)$

Now back to minimizing functions rather than over functions.
${ }^{4}$ Pierre-Cyril Aubin-Frankowski and Stéphane Gaubert. "Tropical reproducing kernels and optimization". In: Integral Equations and Operator Theory (2023). (to be published).

c-concavity

Definition (c-concavity)

We say that a function $f: X \rightarrow \mathbb{R}$ is c-concave if there exists a function $h: Y \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
f(x)=\inf _{y \in Y} c(x, y)+h(y) \tag{11}
\end{equation*}
$$

for all $x \in X$. If f is c-concave, then we can take $h(y)=f^{c}(y)=\sup _{x^{\prime} \in X} f\left(x^{\prime}\right)-c\left(x^{\prime}, y\right)$.

NB: Costs c are the opposite of the tropical kernels b (sign convention problem).

For $c=\frac{L}{2}\|x-y\|^{2}, c$-concave $\Leftrightarrow \nabla^{2} f \leq L$.

Majorization-minimization

Let $f: X \rightarrow \mathbb{R}$ where X is any set. Choose another set Y and a function $c(x, y)$. Define the upperbound

$$
\begin{equation*}
f(x) \leq \phi(x, y):=c(x, y)+f^{c}(y):=c(x, y)+\sup _{x^{\prime} \in X} f\left(x^{\prime}\right)-c\left(x^{\prime}, y\right) \tag{12}
\end{equation*}
$$

Do alternating minimization (AM) of the surrogate

$$
\begin{align*}
& y_{n+1}=\operatorname{argmin}_{y \in Y} c\left(x_{n}, y\right)+f^{c}(y), \tag{13}\\
& x_{n+1}=\operatorname{argmin}_{x \in X} c\left(x, y_{n+1}\right)+f^{c}\left(y_{n+1}\right) . \tag{14}
\end{align*}
$$

Majorization-minimization

Let $f: X \rightarrow \mathbb{R}$ where X is any set. Choose another set Y and a function $c(x, y)$. Define the upperbound

$$
\begin{equation*}
f(x) \leq \phi(x, y):=c(x, y)+f^{c}(y):=c(x, y)+\sup _{x^{\prime} \in X} f\left(x^{\prime}\right)-c\left(x^{\prime}, y\right) \tag{12}
\end{equation*}
$$

Do alternating minimization (AM) of the surrogate

$$
\begin{align*}
& y_{n+1}=\operatorname{argmin}_{y \in Y} c\left(x_{n}, y\right)+f^{c}(y), \tag{13}\\
& x_{n+1}=\operatorname{argmin}_{x \in X} c\left(x, y_{n+1}\right)+f^{c}\left(y_{n+1}\right) . \tag{14}
\end{align*}
$$

If we can differentiate and $f(x)=\inf _{y} c(x, y)+f^{c}(y)$ (c-concavity) then we can write (applying the envelope theorem $\nabla f(x)=\nabla_{1} \phi(x, \bar{y}(x))$)

$$
\begin{gather*}
-\nabla_{x} c\left(x_{n}, y_{n+1}\right)=-\nabla f\left(x_{n}\right) \tag{15}\\
\nabla_{x} c\left(x_{n+1}, y_{n+1}\right)=0 \tag{16}
\end{gather*}
$$

Sketch of alternating minimization

$$
\begin{aligned}
& y_{n+1}=\operatorname{argmin}_{y \in Y} c\left(x_{n}, y\right)+f^{c}(y), \\
& x_{n+1}=\operatorname{argmin}_{x \in X} c\left(x, y_{n+1}\right)+f^{c}\left(y_{n+1}\right) .
\end{aligned}
$$

Gradient descent with a general cost - Examples

$$
\begin{gathered}
-\nabla_{x} c\left(x_{n}, y_{n+1}\right)=-\nabla f\left(x_{n}\right), \\
\nabla_{x} c\left(x_{n+1}, y_{n+1}\right)=0 .
\end{gathered}
$$

In the following: $Y=X$, and c is minimal on the diagonal $\{x=y\}$, so $x_{n+1}=y_{n+1}$
i) Gradient descent: $c(x, y)=\frac{L}{2}\|x-y\|^{2}$ and $x_{n+1}-x_{n}=-\frac{1}{L} \nabla f\left(x_{n}\right)$.
ii) Mirror descent: $c(x, y)=u(x \mid y)$, so $\nabla u\left(x_{n+1}\right)-\nabla u\left(x_{n}\right)=-\nabla f\left(x_{n}\right)$.

Gradient descent with a general cost - Examples

$$
\begin{gathered}
-\nabla_{x} c\left(x_{n}, y_{n+1}\right)=-\nabla f\left(x_{n}\right) \\
\nabla_{x} c\left(x_{n+1}, y_{n+1}\right)=0
\end{gathered}
$$

In the following: $Y=X$, and c is minimal on the diagonal $\{x=y\}$, so $x_{n+1}=y_{n+1}$
i) Gradient descent: $c(x, y)=\frac{L}{2}\|x-y\|^{2}$ and $x_{n+1}-x_{n}=-\frac{1}{L} \nabla f\left(x_{n}\right)$.
ii) Mirror descent: $c(x, y)=u(x \mid y)$, so $\nabla u\left(x_{n+1}\right)-\nabla u\left(x_{n}\right)=-\nabla f\left(x_{n}\right)$.
iii) Natural gradient descent: $c(x, y)=u(y \mid x)$, so $x_{n+1}-x_{n}=-\left(\nabla^{2} u\left(x_{n}\right)\right)^{-1} \nabla f\left(x_{n}\right)$.
iv) A nonlinear gradient descent: $c(x, y)=\ell(x-y)$, so $x_{n+1}-x_{n}=-\nabla \ell^{*}\left(\nabla f\left(x_{n}\right)\right)$.
v) Riemannian gradient descent: (M, g) a Riemannian manifold. Take $X=Y=M$ and $c(x, y)=\frac{L}{2} d^{2}(x, y)$, so $x_{n+1}=\exp _{x_{n}}\left(-\frac{1}{L} \nabla f\left(x_{n}\right)\right)$,

Gradient descent with a general cost - Examples

$$
\begin{gathered}
-\nabla_{x} c\left(x_{n}, y_{n+1}\right)=-\nabla f\left(x_{n}\right) \\
\nabla_{x} c\left(x_{n+1}, y_{n+1}\right)=0
\end{gathered}
$$

In the following: $Y=X$, and c is minimal on the diagonal $\{x=y\}$, so $x_{n+1}=y_{n+1}$
i) Gradient descent: $c(x, y)=\frac{L}{2}\|x-y\|^{2}$ and $x_{n+1}-x_{n}=-\frac{1}{L} \nabla f\left(x_{n}\right)$.
ii) Mirror descent: $c(x, y)=u(x \mid y)$, so $\nabla u\left(x_{n+1}\right)-\nabla u\left(x_{n}\right)=-\nabla f\left(x_{n}\right)$.
iii) Natural gradient descent: $c(x, y)=u(y \mid x)$, so $x_{n+1}-x_{n}=-\left(\nabla^{2} u\left(x_{n}\right)\right)^{-1} \nabla f\left(x_{n}\right)$.
iv) A nonlinear gradient descent: $c(x, y)=\ell(x-y)$, so $x_{n+1}-x_{n}=-\nabla \ell^{*}\left(\nabla f\left(x_{n}\right)\right)$.
v) Riemannian gradient descent: (M, g) a Riemannian manifold. Take $X=Y=M$ and $c(x, y)=\frac{L}{2} d^{2}(x, y)$, so $x_{n+1}=\exp _{x_{n}}\left(-\frac{1}{L} \nabla f\left(x_{n}\right)\right)$,

Cool, but what do you need to converge?
\hookrightarrow Something like L-smoothness and μ-strong convexity

c-cross-convexity

Consider the sequence of $A M$ iterates, starting from any x_{0},

$$
y_{n} \rightarrow x_{n} \rightarrow y_{n+1}
$$

We say that f is λ-strongly c-cross-convex for $\lambda \geq 0$ if, for all $x, y_{n} \in X \times Y$,

$$
f(x)-f\left(x_{n}\right) \geq c\left(x, y_{n+1}\right)-c\left(x, y_{n}\right)+c\left(x_{n}, y_{n}\right)-c\left(x_{n}, y_{n+1}\right)+\lambda\left(c\left(x, y_{n}\right)-c\left(x_{n}, y_{n}\right)\right) . .
$$

c-concavity $\left(f(x)=\inf _{y} c(x, y)+f^{c}(y)\right)$ implies, since $f^{c}\left(y_{n+1}\right)=f\left(x_{n}\right)-c\left(x_{n}, y_{n+1}\right)$,

$$
f(x)-f\left(x_{n}\right) \leq c\left(x, y_{n+1}\right)-c\left(x_{n}, y_{n+1}\right)
$$

These conditions extend L-smoothness and (strong) convexity when $c(x, y)=\frac{L}{2}\|x-y\|^{2} .{ }^{5}$

[^2]
Theorem (Convergence rates for gradient descent with general cost)

i) Suppose that f is c-concave. Then we have the descent property+stopping criterion

$$
\begin{gathered}
f\left(x_{n+1}\right) \leq f\left(x_{n}\right)-\left[c\left(x_{n}, y_{n+1}\right)-c\left(x_{n+1}, y_{n+1}\right)\right] \leq f\left(x_{n}\right) \\
\min _{0 \leq k \leq n-1}\left[c\left(x_{k}, y_{k+1}\right)-c\left(x_{k+1}, y_{k+1}\right)\right] \leq \frac{f\left(x_{0}\right)-f_{*}}{n}
\end{gathered}
$$

ii) Suppose in addition that f is c-cross-convex. Then for any $x \in X, n \geq 1$,

$$
\begin{equation*}
f\left(x_{n}\right) \leq f(x)+\frac{c\left(x, y_{0}\right)-c\left(x_{0}, y_{0}\right)}{n} \tag{17}
\end{equation*}
$$

iii) Suppose in addition that f is λ-strongly c-cross-convex for some $\lambda \in(0,1)$. Then for any $x \in X, n \geq 1$, setting $\wedge:=(1-\lambda)^{-1}>1$

$$
\begin{equation*}
f\left(x_{n}\right) \leq f(x)+\frac{\lambda\left(c\left(x, y_{0}\right)-c\left(x_{0}, y_{0}\right)\right)}{\Lambda^{n}-1} \tag{18}
\end{equation*}
$$

What have we seen? What can you see more in the articles?

Linear optimal control/estimation duality

LQ optimal control \subset kernel methods. New formulas for the covariances of GPs induced by linear SDEs!

Global optimization of smooth functions
Kernel Sum-of-Squares use smoothness against curse of dimensionality!

Tropical kernels

Representer theorems still hold in max-plus settings! There are also analogies with Hilbertian framework and applications to value functions.
c-concavity for revisiting optimization algorithms!
c-concavity and c-cross-convexity generalize smoothness and convexity and encompass many algorithms! New assumptions for global convergence of natural gradient descent/Newton

What have we seen? What can you see more in the articles?

Linear optimal control/estimation duality

LQ optimal control \subset kernel methods. New formulas for the covariances of GPs induced by linear SDEs!

Global optimization of smooth functions
Kernel Sum-of-Squares use smoothness against curse of dimensionality!

Tropical kernels

Representer theorems still hold in max-plus settings! There are also analogies with Hilbertian framework and applications to value functions.
c-concavity for revisiting optimization algorithms!
c-concavity and c-cross-convexity generalize smoothness and convexity and encompass many algorithms! New assumptions for global convergence of natural gradient descent/Newton

References I

固 Aubin－Frankowski，Pierre－Cyril．＂Linearly Constrained Linear Quadratic Regulator from the Viewpoint of Kernel Methods＂．In：SIAM Journal on Control and Optimization 59.4 （2021），pp．2693－2716．
居 Aubin－Frankowski，Pierre－Cyril and Alain Bensoussan．＂The reproducing kernel Hilbert spaces underlying linear SDE Estimation，Kalman filtering and their relation to optimal control＂．In：Pure and Applied Functional Analysis（2022）．
目 Aubin－Frankowski，Pierre－Cyril and Stéphane Gaubert．＂Tropical reproducing kernels and optimization＂．In：Integral Equations and Operator Theory（2023）．（to be published）． Aubin－Frankowski，Pierre－Cyril and Alessandro Rudi．＂Approximation of optimization problems with constraints through kernel Sum－Of－Squares＂．In：（2022）． https：／／arxiv．org／abs／2301．06339．
Boyd，Stephen and Lieven Vandenberghe．Convex Optimization．Cambridge University Press，2004．Doi：10．1017／CB09780511804441．

References II

Léger, Flavien and Pierre-Cyril Aubin-Frankowski. "Gradient descent with a general cost". In: (2023). https://arxiv.org/abs/2305.04917.
囯 Rudi, Alessandro, Ulysse Marteau-Ferey, and Francis Bach. Finding Global Minima via Kernel Approximations. 2020. arXiv: 2012.11978 [math. OC].
Schölkopf, B., R. Herbrich, and A. J. Smola. "A Generalized Representer Theorem". In: Computational Learning Theory (CoLT). 2001, pp. 416-426.

[^0]: ${ }^{1}$ Pierre-Cyril Aubin-Frankowski. "Linearly Constrained Linear Quadratic Regulator from the Viewpoint of Kernel Methods". In: SIAM Journal on Control and Optimization 59.4 (2021), pp. 2693-2716.
 ${ }^{2}$ Pierre-Cyril Aubin-Frankowski and Alain Bensoussan. "The reproducing kernel Hilbert spaces underlying linear SDE Estimation, Kalman filtering and their relation to optimal control". In: Pure and Applied Functional Analysis (2022)

[^1]: ${ }^{\text {a }}$ Pierre-Cyril Aubin-Frankowski and Alessandro Rudi. "Approximation of optimization problems with constraints through kernel Sum-Of-Squares". In: (2022)

[^2]: ${ }^{5}$ Flavien Léger and Pierre-Cyril Aubin-Frankowski. "Gradient descent with a general cost". In: (2023). https://arxiv.org/abs/2305.04917.

