Characterizing order isomorphisms of sup-stable function spaces: continuous, Lipschitz, c-convex, and beyond.. via inf/sup irreducibility

Pierre-Cyril Aubin-Frankowski

Postdoc at TU Wien - VADOR

AKOR Seminar, TU Wien, April 11th 2024 Joint work with Stéphane Gaubert (INRIA, France)

Motivation and main results	Definitions	Characterization of iso $arphi$	Examples
•0000	00000	0000	00000000000
Why should one be inter	ested in character	izing transformations?	

nonlinear versions of the Banach-Stone theorem, used to study morphisms between sets in [Weaver, 1994, Leung and Tang, 2016]. As a reminder, linear Banach-Stone:
 Every linear surjective isometry on C(X, ℝ) is of the form (Jf)(x) = g(x) · f(φ(x));

Motivation ●0000	n and ma	in results		Definitions 00000		Char 000	 on of iso φ		Examples 00000000000
							~	~	

Why should one be interested in characterizing transformations?

- nonlinear versions of the Banach-Stone theorem, used to study morphisms between sets in [Weaver, 1994, Leung and Tang, 2016]. As a reminder, linear Banach-Stone:
 Every linear surjective isometry on C(X, ℝ) is of the form (Jf)(x) = g(x) · f(φ(x));
- Some transformations are quite exceptional, such as the Fenchel transform over convex l.s.c. functions [Artstein-Avidan and Milman, 2009]

Every order-reversing isomorphism on $Cvx(\mathbb{R}^d, \mathbb{R})$ is of the form $(Tf)(x) = \langle c, x \rangle + \delta + f^*(Ax + c);$

Motivatior ●0000	n and ma	in results		Definitions 00000	Characteriz 0000	zation of iso $arphi$		Examples 00000000000
						~	 -	

Why should one be interested in characterizing transformations?

- nonlinear versions of the Banach-Stone theorem, used to study morphisms between sets in [Weaver, 1994, Leung and Tang, 2016]. As a reminder, linear Banach-Stone:
 Every linear surjective isometry on C(X, ℝ) is of the form (Jf)(x) = g(x) · f(φ(x));
- Some transformations are quite exceptional, such as the Fenchel transform over convex l.s.c. functions [Artstein-Avidan and Milman, 2009]

Every order-reversing isomorphism on $Cvx(\mathbb{R}^d, \mathbb{R})$ is of the form $(Tf)(x) = \langle c, x \rangle + \delta + f^*(Ax + c);$

 order-reversing involutions are symmetries for some equations like the complex Monge-Ampère [Lempert, 2017, Berndtsson et al., 2020] and provide Blaschke-Santaló type inequalities [Artstein-Avidan et al., 2023]

Motivatior ●0000	n and ma	in results		Definitions 00000	Characteriz 0000	zation of iso $arphi$		Examples 00000000000
						~	 -	

Why should one be interested in characterizing transformations?

- nonlinear versions of the Banach-Stone theorem, used to study morphisms between sets in [Weaver, 1994, Leung and Tang, 2016]. As a reminder, linear Banach-Stone:
 Every linear surjective isometry on C(X, ℝ) is of the form (Jf)(x) = g(x) · f(φ(x));
- Some transformations are quite exceptional, such as the Fenchel transform over convex l.s.c. functions [Artstein-Avidan and Milman, 2009]

Every order-reversing isomorphism on $Cvx(\mathbb{R}^d, \mathbb{R})$ is of the form $(Tf)(x) = \langle c, x \rangle + \delta + f^*(Ax + c);$

 order-reversing involutions are symmetries for some equations like the complex Monge-Ampère [Lempert, 2017, Berndtsson et al., 2020] and provide Blaschke-Santaló type inequalities [Artstein-Avidan et al., 2023]

Motivation and main results	Definitions	Characterization of iso $arphi$	Examples
○●○○○	00000	0000	0000000000
The main idea: findin	g subsets invari	ant under J	

Linear Banach-Stone on compact \mathfrak{X} :

Every linear surjective isometry on $C(\mathfrak{X}, \mathbb{R})$ is of the form $(Jf)(x) = g(x) \cdot f(\phi(x))$.

The proof mainly consists in showing that the adjoint J^* maps the extreme points of the dual ball on themselves, which are the Dirac masses $\pm \delta_x$.

Then $(Jf)(x) = \langle \delta_x, Jf \rangle = \langle J^* \delta_x, f \rangle = \langle g(x) \delta_{\phi(x)}, f \rangle = g(x) \cdot f(\phi(x))$

What should be the analogue of the δ_x ? What is "extremality" in our setting?

Motivation	and	main	results
00000			

Definitions

 $\begin{array}{c} \text{Characterization of iso}\varphi\\ \text{0000} \end{array}$

Examples 00000000000

Theorem (Main theorem on (max,+)-isomorphisms)

Let \mathfrak{X} and \mathfrak{Y} be sets. Let \mathcal{G} (resp. \mathfrak{F}) be a subset of $\mathbb{R}^{\mathfrak{X}}$ (resp. $\mathbb{R}^{\mathfrak{Y}}$), with both \mathfrak{F} and \mathcal{G} being proper and separating, stable by arbitrary suprema and addition of scalars. Define

$$e_x = \sup_{u \in \mathcal{G}} u(\cdot) - u(x), \quad e'_y = \sup_{v \in \mathcal{F}} v(\cdot) - v(y)$$

Let J be a (max,+)-isomorphism from \mathfrak{F} onto \mathcal{G} , then the following statements are equivalent:

• for all $y \in \mathcal{Y}$, $J(e'_y) \in \{e_x + \lambda\}_{x \in \mathcal{X}, \lambda \in \overline{\mathbb{R}}}$;

2 there exists $g : \mathfrak{X} \to \mathbb{R}$ and a bijective $\phi : \mathfrak{X} \to \mathcal{Y}$ such that

$$Jf(x) = g(x) + f(\phi(x))$$
(1)

and for all $f \in \mathcal{F}$, $h \in \mathcal{G}$, $(g + f \circ \phi) \in \mathcal{G}$ and $(-g \circ \phi^{-1} + h \circ \phi^{-1}) \in \mathcal{F}$.

We will show that 1) actually holds for many sets. We also study the more general order isomorphisms for some sets of functions (Lipschitz, convex, l.s.c.).

Motivation and main results	Definitions	Characterization of iso φ	Examples
00000	00000	0000	00000000000

For many sets, every (max,+)-isomorphism is of the form:

 $Jf(x) = g(x) + f(\phi(x))$

Set ${\mathfrak X}$	Function space ${\mathcal G}$	Translation g	Reparametrization ϕ
Hausdorff topological space	l.s.c. functions	continuous	homeomorphism
complete metric space	1-Lipschitz functions	constant	isometry
complete metric space	Lipschitz functions	Lipschitz	bi-Lipschitz homeomorphism
locally convex Hausdorff topological	l.s.c. convex functions	continuous affine	continuous affine

(3) Characterization of $iso\varphi$

Definitions Characterization of iso Motivation and main results Examples 00000 Let $\overline{\mathbb{R}} = [-\infty, +\infty]$, fix a set \mathfrak{X} and $\mathcal{G} \subset \overline{\mathbb{R}}^{\mathfrak{X}}$ • \mathcal{G} is sup-stable if $\sup_{\alpha \in \mathcal{A}} g_{\alpha} \in \mathcal{G}$ for any $(h_{\alpha})_{\alpha \in \mathcal{A}} \subset \mathcal{G}$ • \mathcal{G} is a complete subspace of $\overline{\mathbb{R}}^{\chi}$ if \mathcal{G} is sup-stable and $(g + \lambda) \in \mathcal{G}$ for $g \in \mathcal{G}$ and $\lambda \in \overline{\mathbb{R}}$ • the sup-closure of \mathcal{G} is $\overline{\mathcal{G}}^{sup} := \{ \sup_{\alpha \in \mathcal{A}} h_{\alpha} | \mathcal{A} \text{ an index set}, \{ h_{\alpha} \}_{\alpha \in \mathcal{A}} \subset \mathcal{G} \}$ • the inf-closure of \mathcal{G} is $\overline{\mathcal{G}}^{inf} := \{\inf_{\alpha \in \mathcal{A}} h_{\alpha} | \mathcal{A} \text{ an index set. } \{h_{\alpha}\}_{\alpha \in \mathcal{A}} \subset \mathcal{G}\}$ • the infimum relatively to \mathcal{G} of a family $(g_{\alpha})_{\alpha \in \mathcal{A}} \in \mathcal{G}^{\mathcal{A}}$ is $\inf_{\alpha}^{\mathcal{G}} g_{\alpha} := \max\{h \in \mathcal{G} \mid \forall \alpha \in \mathcal{A}, h \leq g_{\alpha}\}, \quad \inf^{\mathcal{G}} g := \max\{h \in \mathcal{G} \mid h \leq g\}$

Characterization of iso Motivation and main results Definitions Examples 0000 Let $\overline{\mathbb{R}} = [-\infty, +\infty]$. fix a set \mathfrak{X} and $\mathcal{G} \subset \overline{\mathbb{R}}^{\mathfrak{X}}$ • \mathcal{G} is sup-stable if $\sup_{\alpha \in \mathcal{A}} g_{\alpha} \in \mathcal{G}$ for any $(h_{\alpha})_{\alpha \in \mathcal{A}} \subset \mathcal{G}$ • \mathcal{G} is a complete subspace of $\mathbb{R}^{\mathcal{X}}$ if \mathcal{G} is sup-stable and $(g + \lambda) \in \mathcal{G}$ for $g \in \mathcal{G}$ and $\lambda \in \mathbb{R}$ • the sup-closure of \mathcal{G} is $\overline{\mathcal{G}}^{sup} := \{ \sup_{\alpha \in \mathcal{A}} h_{\alpha} | \mathcal{A} \text{ an index set}, \{ h_{\alpha} \}_{\alpha \in \mathcal{A}} \subset \mathcal{G} \}$ • the inf-closure of \mathcal{G} is $\overline{\mathcal{G}}^{inf} := \{\inf_{\alpha \in \mathcal{A}} h_{\alpha} | \mathcal{A} \text{ an index set}, \{h_{\alpha}\}_{\alpha \in \mathcal{A}} \subset \mathcal{G}\}$ • the infimum relatively to \mathcal{G} of a family $(g_{\alpha})_{\alpha \in \mathcal{A}} \in \mathcal{G}^{\mathcal{A}}$ is $\inf_{\alpha}^{\mathcal{G}} g_{\alpha} := \max\{h \in \mathcal{G} \mid \forall \alpha \in \mathcal{A}, h \leq g_{\alpha}\}, \quad \inf^{\mathcal{G}} g := \max\{h \in \mathcal{G} \mid h \leq g\}$ • $f \in \mathcal{G}$ is sup-irreducible if, for all $g, h \in \mathcal{G}$, $f = \sup(g, h) \implies f = g$ or f = h• $f \in \mathcal{G}$ is inf-irreducible if, for all $g, h \in \mathcal{G}$, $f = \inf(g, h) \implies f = g$ or f = h• $f \in \mathcal{G}$ is \mathcal{G} -relatively-inf-irreducible if, for all $g, h \in \mathcal{G}$, $f = \inf^{\mathcal{G}}(g, h) \implies f = g$ or f = h**Remark:** *G*-relatively-inf-irreducible functions are inf-irreducible (converse is false). Set

$$\delta_x^{\perp}(y) := \begin{cases} 0 & \text{if } y = x, \\ -\infty & \text{otherwise,} \end{cases} \quad \delta_x^{\top}(y) := \begin{cases} 0 & \text{if } y = x, \\ +\infty & \text{otherwise.} \end{cases}$$
(2)

If $\delta_x^\top \in \mathcal{G}$, then it is \mathcal{G} -relatively-inf-irreducible, and if $\delta_x^\perp \in \mathcal{G}$, then it is sup-irreducible.

Motivation and main results	Definitions	Characterization of iso φ	Examples
00000	0000	0000	00000000000

A map $J : \mathfrak{F} \to \mathcal{G}$ where \mathfrak{F} and \mathcal{G} are partially ordered sets is (iso φ =isomorphism)

- an order isoφ if it is invertible and if this map and its inverse are both order preserving, i.e. for all f, g ∈ 𝔅, f ≥ g ⇔ Jf ≥ Jg
- a max-iso φ if it is invertible and if it commutes with suprema, i.e. $J(\sup(f,g)) = \sup(Jf, Jg)$, assuming that \mathcal{G} and \mathcal{F} are sup-stable;
- a (max,+)-isoφ if it is a max-isoφ and if we have J(f + λ) = Jf + λ for λ ∈ ℝ, assuming that G and F are complete subspaces of ℝ^X;

Motivation and main results	Definitions	Characterization of iso φ	Examples
00000	00000	0000	00000000000

A map $J : \mathfrak{F} \to \mathcal{G}$ where \mathfrak{F} and \mathcal{G} are partially ordered sets is (iso φ =isomorphism)

- an order isoφ if it is invertible and if this map and its inverse are both order preserving, i.e. for all f, g ∈ 𝔅, f ≥ g ⇔ Jf ≥ Jg
- a max-iso φ if it is invertible and if it commutes with suprema, i.e. $J(\sup(f,g)) = \sup(Jf, Jg)$, assuming that \mathcal{G} and \mathcal{F} are sup-stable;
- a (max,+)-isoφ if it is a max-isoφ and if we have J(f + λ) = Jf + λ for λ ∈ ℝ, assuming that G and F are complete subspaces of ℝ^X;
- order reversing if for all $f, g \in \mathcal{F}, f \geq g \implies Jf \leq Jg$
- an order anti-iso φ if it is invertible and if this map and its inverse are both order reversing;
- an anti-involution if $J : \mathcal{G} \to \mathcal{G}$, $JJ = Id_{\mathcal{G}}$ and J is order reversing.

Remark: Order iso φ are a more general notion than max-iso φ , but the two coincide when \mathcal{F} and \mathcal{G} are sup-stable.

Motivation and main results	Definitions	Characterization of iso φ	Examples
	00000	0000	0000000000
Some (max,+) conc	epts		

Definition

A map $B : \overline{\mathbb{R}}^{\mathcal{Y}} \to \overline{\mathbb{R}}^{\mathcal{X}}$ is said to be $\overline{\mathbb{R}}_{\max}$ -sesquilinear if $B(\inf\{f_i\}_{i \in I}) = \sup\{Bf_i\}_{i \in I}$ and $B(f + \lambda) = Bf - \lambda$, for any finite index set I and $\lambda \in \overline{\mathbb{R}}$; B is continuous if I can be taken infinite. The range of B is $\operatorname{Rg}(B) := \{g \in \overline{\mathbb{R}}^{\mathcal{X}} \mid \exists f \in \overline{\mathbb{R}}^{\mathcal{Y}}, g = Bf\}.$

Proposition (Theorem 3.1, [Singer, 1984])

A map $\overline{B}: \overline{\mathbb{R}}^{\mathcal{Y}} \to \overline{\mathbb{R}}^{\mathcal{X}}$ is $\overline{\mathbb{R}}_{max}$ -sesquilinear and continuous if and only if there exists a kernel $b: \mathcal{X} \times \mathcal{Y} \to \overline{\mathbb{R}}$ such that $\overline{B}f(x) = \sup_{y \in \mathcal{Y}} b(x, y) - f(y)$. Moreover in this case b is uniquely determined by \overline{B} as $b(\cdot, \overline{y}) = \overline{B}\delta_{\overline{y}}^{\top}$.

$$\operatorname{Rg}(B) = \{ \sup_{y \in \mathcal{Y}} a_y + b(\cdot, y) \mid a_y \in \mathbb{R}_{\perp} \}.$$
(3)

Motivation and main results	Definitions 000€0	Characterization of iso $arphi$ 0000	Examples 0000000000
Let $ar{B}: \overline{\mathbb{R}}^{\mathcal{Y}} o \overline{\mathbb{R}}^{\mathcal{X}}$ and it	ts transpose $ar{B}^\circ:\overline{\mathbb{R}}^{\mathfrak{X}} ightarrow$	$\cdot \overline{\mathbb{R}}^{artarrow}$ be defined by	

$$\overline{B}f(\cdot) := \sup_{y \in \mathcal{Y}} b(\cdot, y) - f(y), \quad \overline{B}^{\circ}h(\cdot) := \sup_{x \in \mathcal{X}} b(x, \cdot) - h(x), \, \forall f \in \overline{\mathbb{R}}^{\mathcal{Y}}, \, h \in \overline{\mathbb{R}}^{\mathcal{X}}$$
(4)

The key relation is that $\overline{B} = \overline{B}\overline{B}^{\circ}\overline{B}$, see e.g. [Akian et al., 2005]. So \overline{B} and \overline{B}° are anti-iso φ !

Motivation and main results			Definitions 00000			Characterization of $iso \varphi$	Examples 00000000000
	11	22		Ŷ	11		

Let $\overline{B}: \mathbb{R}^{\vartheta} \to \mathbb{R}^{\chi}$ and its transpose $\overline{B}^{\circ}: \mathbb{R}^{\chi} \to \mathbb{R}^{\vartheta}$ be defined by

$$\overline{B}f(\cdot) := \sup_{y \in \mathcal{Y}} b(\cdot, y) - f(y), \quad \overline{B}^{\circ}h(\cdot) := \sup_{x \in \mathcal{X}} b(x, \cdot) - h(x), \, \forall f \in \overline{\mathbb{R}}^{\mathcal{Y}}, \, h \in \overline{\mathbb{R}}^{\mathcal{X}}$$
(4)

The key relation is that $\overline{B} = \overline{B}\overline{B}^{\circ}\overline{B}$, see e.g. [Akian et al., 2005]. So \overline{B} and \overline{B}° are anti-iso φ !

Examples of b(x, y) and Rg(B) [Singer, 1997] (adding the constant functions $\pm \infty$):

• For $\mathfrak{X} = \mathfrak{Y} = \mathbb{R}^N$, $b(x, y) = (x, y)_2$ gives $\operatorname{Rg}(B)$ is the set of proper convex l.s.c. functions.

• For $\mathcal{X} = \mathcal{Y} = \mathbb{R}^N$, $b(x, y) = -\|x - y\|^2$ gives $\operatorname{Rg}(B)$ is the set of proper 1-semiconvex l.s.c. functions, i.e. $f + \| \cdot \|^2$ is convex.

Motivation an 00000	d main resi	ults	Definitions 000●0		Characterization of iso φ	Examples 0000000000
		0.0		0.1		

Let $\overline{B}: \overline{\mathbb{R}}^9 \to \overline{\mathbb{R}}^{\chi}$ and its transpose $\overline{B}^\circ: \overline{\mathbb{R}}^{\chi} \to \overline{\mathbb{R}}^9$ be defined by

$$\overline{B}f(\cdot) := \sup_{y \in \mathcal{Y}} b(\cdot, y) - f(y), \quad \overline{B}^{\circ}h(\cdot) := \sup_{x \in \mathcal{X}} b(x, \cdot) - h(x), \, \forall f \in \overline{\mathbb{R}}^{\mathcal{Y}}, \, h \in \overline{\mathbb{R}}^{\mathcal{X}}$$
(4)

The key relation is that $\overline{B} = \overline{B}\overline{B}^{\circ}\overline{B}$, see e.g. [Akian et al., 2005]. So \overline{B} and \overline{B}° are anti-iso φ !

Examples of b(x, y) and Rg(B) [Singer, 1997] (adding the constant functions $\pm \infty$):

- For $\mathfrak{X} = \mathfrak{Y} = \mathbb{R}^N$, $b(x, y) = (x, y)_2$ gives $\operatorname{Rg}(B)$ is the set of proper convex l.s.c. functions.
- For $\mathcal{X} = \mathcal{Y} = \mathbb{R}^N$, $b(x, y) = -\|x y\|^2$ gives $\operatorname{Rg}(B)$ is the set of proper 1-semiconvex l.s.c. functions, i.e. $f + \| \cdot \|^2$ is convex.
- - continuous functions w.r.t. the distance d (i.e. $|f(x) f(y)| \le 1 \cdot d(x, y)^p$).

Motivation and main results	Definitions	Characterization of iso φ	Examples
00000	00000	0000	00000000000

Theorem (Connection between kernels and anti-iso φ)

Let \mathcal{G} (resp. \mathfrak{F}) be a complete subspace of $\overline{\mathbb{R}}^{\mathcal{X}}$ (resp. $\overline{\mathbb{R}}^{\mathcal{Y}}$). Then TFAE:

- there exists a kernel $b : \mathfrak{X} \times \mathfrak{Y} \to \overline{\mathbb{R}}$ such that $\mathcal{G} = \mathsf{Rg}(B)$ and $\mathfrak{F} = \mathsf{Rg}(B^\circ)$;
- **2** there exists an order anti-iso $\varphi \ \overline{F} : \mathcal{F} \to \mathcal{G}$ commuting with the addition of scalars, i.e. $\overline{F}(f + \lambda) = \overline{F}f \lambda$, for any $\lambda \in \mathbb{R}$ and $f \in \mathcal{F}$.

In this case, \overline{F} can be taken as the restriction of \overline{B} to $\operatorname{Rg}(B)$. Moreover, for $\mathfrak{X} = \mathfrak{Y}$, there exists \overline{F} an anti-involution over \mathcal{G} iff there exists a symmetric b such that $\mathcal{G} = \operatorname{Rg}(B)$.

Motivation and main results	Definitions	Characterization of iso φ	Examples
00000	00000	\bullet 000	0000000000
Useful trivial lemmas			

Lemma

Let $A, B : \mathcal{F} \to \mathcal{G}$ be two order anti-iso φ . Set $J = A^{-1}B$. Then J is an order iso φ over \mathcal{F} , and we have that B = AJ and $A = BJ^{-1}$. In particular, if there exists an anti-involution $\overline{F} : \mathcal{G} \to \mathcal{G}$, every anti-involution over \mathcal{G} writes as $\overline{F}J$ with $J : \mathcal{G} \to \mathcal{G}$ an order iso φ satisfying $\overline{F}J\overline{F}J = \mathrm{Id}_{\mathcal{G}}$.

It is enough to study the order iso φ rather than the more arduous order anti-iso φ !

Lemma

Every order $iso_{\varphi} J : \mathfrak{F} \to \mathcal{G}$ over sets $\mathfrak{F} \subset \mathbb{R}^{\mathcal{Y}}$ and $\mathcal{G} \subset \mathbb{R}^{\mathcal{X}}$ sends sup-irreducible elements (resp. \mathfrak{F} -relatively-inf-irreducible) of \mathfrak{F} onto sup-irreducible elements (resp. \mathcal{G} -relatively-inf-irreducible) of \mathcal{G} . Every anti-involution T over \mathcal{G} sends \mathcal{G} -relatively-inf-irreducible elements of \mathcal{G} onto sup-irreducible elements of \mathcal{G} .

Motivation and main results	Definitions	Characterization of iso φ	Examples
00000	00000	0000	0000000000
Useful trivial lemmas ((cont.)		

Lemma

Let $J : \mathcal{F} \to \mathcal{G}$ be an order iso φ between $\mathcal{F} \subset \overline{\mathbb{R}}^{\mathcal{Y}}$ and $\mathcal{G} \subset \overline{\mathbb{R}}^{\mathcal{X}}$, such that \mathcal{F} (resp. \mathcal{G}) is pointwise dense in the sup-closure $\overline{\mathcal{F}}^{sup}$ of \mathcal{F} (resp. $\overline{\mathcal{G}}^{sup}$). Then J can be extended to an order iso φ between $\overline{\mathcal{F}}^{sup}$ and $\overline{\mathcal{G}}^{sup}$.

Define the Archimedean class of a function $f \in \mathcal{G}$ as

$$[f] := \{ g \in \mathcal{G} \mid \exists \alpha \in \mathbb{R}, \, f - \alpha \le g \le f + \alpha \}$$
(5)

Let us put an order on Archimedean classes, saying that $[f] \leq [g]$ if there exists $\alpha \in \mathbb{R}$ such that $f \leq g + \alpha$. A class [f] is maximal if $[f] \leq [g] \implies [f] \geq [g]$.

Lemma

Let \mathcal{G} (resp. \mathfrak{F}) be a complete subspace of $\mathbb{R}^{\mathfrak{X}}$ (resp. $\mathbb{R}^{\mathfrak{Y}}$). Let J be a (max,+)-iso φ from \mathfrak{F} onto \mathcal{G} . If $f \in \mathfrak{F}$ is such that [f] is maximal, then [Jf] is also maximal.

Motivation and main results	Definitions	Characterization of iso φ	Examples
00000	00000	0000	0000000000

The e_x , the Dirac-like inf-irreducible functions of \mathcal{G}

Let \mathcal{G} be a complete subspace of $\overline{\mathbb{R}}^{\mathfrak{X}}$. Define, for any $x \in \mathfrak{X}$, the function $e_x : \mathfrak{X} \to \overline{\mathbb{R}}$ by

$$e_{\mathsf{x}}(\cdot) := \sup\{u \in \mathcal{G} \mid u(\mathsf{x}) \le 0\}.$$
(6)

Then $e_x \in \mathcal{G}$, $e_x(x) = 0$ and e_x is inf-irreducible in \mathcal{G} . We also have

$$e_{x}(y) = \sup_{u \in \mathcal{G}} u(y) - u(x), \tag{7}$$

with $-\infty$ absorbing. Moreover, for any $f \in \mathcal{G}$, we have the representation (with $+\infty$ absorbing)

$$f = \inf_{x \in \text{Dom}(f)} e_x + f(x), \quad \text{and} \quad \overline{\mathcal{G}}^{\inf} = \{\inf_x e_x(\cdot) + w_x \mid w_x \in \overline{\mathbb{R}}\}.$$
(8)

If $f \in \mathcal{G}$ is such that [f] is maximal, then for all $x_0 \in \text{Dom}(f)$ we have $[e_{x_0}] = [f]$, i.e. we can fix $\lambda_0 \in \mathbb{R}$, such that $e_{x_0} + \lambda_0 \leq f$.

Motivation and main results	Definitions	Characterization of iso φ	Examples
00000	00000	0000	0000000000

Technical assumption to have $e_x \neq e_{x'} + \lambda$:

The set $\mathcal{G} \subset \mathbb{R}^{\mathcal{X}}$ is proper and point separating if for any $x, x' \in \mathcal{X}$ with $x \neq x'$, there exists $g_1, g_2 \in \mathcal{G}$ such that $g_1(x), g_2(x), g_1(x'), g_2(x') \in \mathbb{R}$ and $g_1(x) - g_1(x') \neq g_2(x) - g_2(x')$.

Theorem (Main theorem on (max,+)-iso φ)

Let \mathfrak{X} and \mathfrak{Y} be sets. Let \mathcal{G} (resp. \mathfrak{F}) be a complete subset of $\mathbb{R}^{\mathfrak{X}}$ (resp. $\mathbb{R}^{\mathfrak{Y}}$), with both \mathfrak{F} and \mathcal{G} being proper and separating. Set $e_x = \sup_{u \in \mathcal{G}} u(\cdot) - u(x)$. Let $J : \mathfrak{F} \to \mathcal{G}$ be a (max,+)-iso φ from \mathfrak{F} onto \mathcal{G} , then the following statements are equivalent:

• for all
$$y \in \mathcal{Y}$$
, $J(e'_y) \in \{e_x + \lambda\}_{x \in \mathcal{X}, \lambda \in \overline{\mathbb{R}}}$;

2 there exists $g: \mathcal{X} \to \mathbb{R}$ and a bijective $\phi: \mathcal{X} \to \mathcal{Y}$ such that

$$Jf(x) = g(x) + f(\phi(x))$$
(9)

and for all $f \in \mathfrak{F}$, $h \in \mathcal{G}$, $(g + f \circ \phi) \in \mathcal{G}$ and $(-g \circ \phi^{-1} + h \circ \phi^{-1}) \in \mathfrak{F}$.

If $\{\delta_y^{\top}\}_{y \in \mathcal{Y}} \subset \mathcal{F}$ and $\{\delta_x^{\top}\}_{x \in \mathcal{X}} \subset \mathcal{G}$, then the statements of Theorem 8 hold for all J!

Einst ann liastions I a a fu	المحينا المسم مسما النسم	the formations	
00000	00000	0000	0000000000
Motivation and main results	Definitions	Characterization of iso φ	Examples

First application: I.s.c. functions and Lipschitz functions

Let \mathcal{G} (resp. \mathcal{F}) be the space of l.s.c. functions over a Hausdorff topological space \mathcal{X} (resp. \mathcal{Y}). Then every (max,+)-iso φ J from \mathcal{F} onto \mathcal{G} is of the form

$$Jf(x) = g(x) + f(\phi(x)) \tag{10}$$

where $g : \mathfrak{X} \to \mathbb{R}$ is a continuous, function and $\phi : \mathfrak{X} \to \mathcal{Y}$ is a homeomorphism. The same holds if l.s.c. is replaced by continuous, or if the functions are restricted to be proper.

Let \mathcal{G} (resp. \mathcal{F}) be the set of Lipschitz functions over a complete metric space (\mathfrak{X}, d) (resp. (\mathfrak{Y}, d')). Then every (max,+)-iso φ J from \mathcal{F} onto \mathcal{G} is of the form

$$Jf(x) = g(x) + f(\phi(x)) \tag{11}$$

where $g : \mathcal{X} \to \mathbb{R}$ is a Lipschitz function and $\phi : \mathcal{X} \to \mathcal{Y}$ is a bi-Lipschitz homeomorphism, i.e. ϕ and ϕ^{-1} are both Lipschitz.

Motivation 00000	Motivation and main results		Definitions 00000	Characterization of iso $arphi$ 0000	Examples ⊙●○○○○○○○○		
~					<i>c</i>		

Second application: c-convex functions

A kernel $b: \mathfrak{X} \times \mathfrak{Y} \to \mathbb{R}$ is fully-reduced if, for all $x, y, b(x, \cdot)$ and $b(\cdot, y)$ are sup-irreducible and, for all $x_0, x_1, y_0, y_1, \lambda \in \mathbb{R}$, $b(\cdot, y_0) = b(\cdot, y_1) + \lambda \implies y_0 = y_1$ and $b(x_0, \cdot) = b(x_1, \cdot) + \lambda \implies x_0 = x_1$.

Let $\mathfrak{X}, \mathfrak{X}', \mathfrak{Y}, \mathfrak{Y}'$ be Hausdorff compact topological spaces, and $b : \mathfrak{X} \times \mathfrak{Y} \to \mathbb{R}$, $c : \mathfrak{X}' \times \mathfrak{Y}' \to \mathbb{R}$ be two continuous functions such that the kernels are fully-reduced. Then TFAE:

• there exists a $(\max,+)$ -iso $\varphi J : \operatorname{Rg}(B) \to \operatorname{Rg}(C)$;

② the two kernels satisfy that there exists two homeomorphisms $\tau : \mathfrak{X}' \to \mathfrak{X}$ and $\sigma : \mathfrak{Y}' \to \mathfrak{Y}$, and two continuous functions $\psi : \mathfrak{X}' \to \mathbb{R}$ and $\varphi : \mathfrak{Y}' \to \mathbb{R}$ such that

$$c(x', y') = \psi(x') + b(\tau(x'), \sigma(y')) + \varphi(y').$$
(12)

Solution all (max,+)-isoφ J : Rg(B) → Rg(C) are of the form Jf = ψ + f ∘ τ for some ψ : X' → ℝ and a bijective τ : X' → X, and there exists one such J.

Proof idea: show that the $b(\cdot, y) + \lambda$ are the only sup-irreducible functions.

Motivation and main results	Definitions	Characterization of iso φ	Examples
00000	00000	0000	0000000000

Csq: Values of dual problems don't depend on the anti-involution!

We have that $g \in \operatorname{Rg}(B)$ iff $g = \overline{B}\overline{B}^{\circ}g$. We can commute max and min, to obtain weak duality:

 $\inf_{x\in\mathcal{X}}f(x)+g(x)=\inf_{x\in\mathcal{X}}f(x)+\sup_{y\in\mathcal{Y}}b(x,y)-\bar{B}^{\circ}g(y)\geq \sup_{y\in\mathcal{Y}}-\bar{B}^{\circ}g(y)+\inf_{x\in\mathcal{X}}f(x)+b(x,y).$

Lemma (Unique dual value)

Let \mathcal{G} be a complete subspace of $\mathbb{R}^{\mathfrak{X}}$. Take $f, g \in \mathbb{R}^{\mathfrak{X}}$ with $g \in \mathcal{G}$ and assume that $\mathcal{G} = \operatorname{Rg}(B) = \operatorname{Rg}(C)$ for $b : \mathfrak{X} \times \mathcal{Y} \to \mathbb{R}$ and $c : \mathfrak{X} \times \mathcal{Y}' \to \mathbb{R}$. Assume furthermore that every $(\max, +)$ -iso $\varphi \ J : \operatorname{Rg}(\overline{B}^{\circ}) \to \operatorname{Rg}(\overline{C}^{\circ})$ is of the form $Jf = \psi + f \circ \tau$. Consider the primal problem $\inf_{x \in \mathfrak{X}} f(x) + g(x)$, then

$$v = \sup_{y \in \mathcal{Y}} [\inf_{z \in \mathcal{X}} [g(z) - b(z, y)] + \inf_{x \in \mathcal{X}} [f(x) + b(x, y)]] = \sup_{y' \in \mathcal{Y}'} [\inf_{z \in \mathcal{X}} [g(z) - c(z, y')] + \inf_{x \in \mathcal{X}} f(x) + c(x, y')],$$
(13)

in other words, the value v of the dual problem does not depend on the kernel generating \mathcal{G} .

Example on the board

Motivation and main results	Definitions 00000	Characterization of iso $arphi$ 0000	Examples 0000000000				
Definition							
A map $\delta: \mathfrak{X} \times \mathfrak{X} \to \mathbb{R}_{\geq 0}$ over a set \mathfrak{X} is a <i>weak metric</i> if, for all $x, y, z \in \mathfrak{X}$, $\delta(x, x) = 0$,							
$\delta(x,y) \ge 0$ and $\delta(x,z) \le \delta(x,y) + \delta(y,z)$, and if $\delta(x,y) = \delta(y,x) = 0$ implies that $x = y$.							
A map $f: \mathfrak{X} \to \mathbb{R}$ is none	A map $f : \mathfrak{X} \to \mathbb{R}$ is <i>nonexpansive</i> w.r.t. δ , or 1-Lipschitz, if $f(x) \leq \delta(x, y) + f(y)$ holds for all						
$x, y \in \mathfrak{X}$. The set of 1-Li	oschitz maps $f: \mathfrak{X} \to$	\mathbb{R} is Lip ₁ ($\mathfrak{X}, \delta; \mathbb{R}$).					

Showing, under some assumptions: Busemann points are not of maximal Archimedean class

Theorem

Let $\mathcal{G} = \operatorname{Lip}_1(\mathfrak{X}, \delta; \mathbb{R}) \ \mathfrak{F} = \operatorname{Lip}_1(\mathfrak{Y}, \delta'; \mathbb{R})$). Assume either i) that the balls of (\mathfrak{X}, δ_s) are compact or ii) that δ is symmetric and (\mathfrak{X}, δ_s) is complete, and that the same is true for (\mathfrak{Y}, δ') . Then every $(\max, +)$ -iso φ J from \mathfrak{F} onto \mathcal{G} is of the form

$$Jf(x) = g(x) + f(\phi(x)) \tag{14}$$

whith nonexpansive $g : \mathfrak{X} \to \mathbb{R}$ and $\phi : \mathfrak{X} \to \mathcal{Y}$ s.t. $g(x) - g(x') + \delta'(\phi(x), \phi(x')) = \delta(x, x')$ for all $x, x' \in \mathfrak{X}$. If either δ or δ' is a metric, then g is constant and $\delta'(\phi(x), \phi(x')) = \delta(x, x')$.

Motivation and main results	Definitions 00000	Characterization of iso φ 0000	Examples 00000000000
Order iso φ of l.s.c. funct			

Theorem

Let \mathcal{G} (resp. \mathfrak{F}) be the space of l.s.c. functions over a Hausdorff topological space \mathfrak{X} (resp. \mathfrak{Y}). Then every max-iso φ J from \mathfrak{F} onto \mathcal{G} is of the form

$$Jf(x) = g(x, f(\phi(x)))$$
(15)

where ϕ is a homeomorphism and $g : \mathfrak{X} \times \mathbb{R} \to \mathbb{R}$ is jointly l.s.c., and $g(x, \cdot)$ bijective and increasing for all $x \in \mathfrak{X}$ with inverse $g^1(x, \cdot)$ such that $g^1(\cdot, \cdot)$ is also jointly l.s.c. The same holds if l.s.c. is replaced by continuous.

More generally, if \mathcal{G} (resp. \mathfrak{F}) is a pointwise-dense subset of the l.s.c. functions over a Hausdorff topological space \mathfrak{X} (resp. \mathfrak{Y}) then (15) holds necessarily, with ϕ and g as above.

Actually for the structure (15) to hold, it suffices that $\{\delta_x^{\top}\}_{x\in\mathfrak{X}} \subset \mathcal{G}$ and $\{\delta_y^{\top}\}_{y\in\mathfrak{Y}} \subset \mathfrak{F}$.

Motivation and main results	Definitions 00000	Characterization of iso φ 0000	Examples 0000000000
Theorem			
- , ,	•	ions over a locally convex Hau	, 0
$\mathfrak X$ of dimension larger that	n two, then <mark>the max-i</mark>	so $arphi$ over ${\cal G}$ are affine, i.e. there	e exists a
weakly-weakly continuous	s linear map ${\sf A}:{\mathfrak X} o{\mathfrak I}$	C invertible with weakly-weakly	continuous

inverse, $c \in \mathfrak{X}$, $b \in \mathfrak{X}^*$, $d, \delta \in \mathbb{R}$ with d > 0 such that, for all $f \in \mathcal{G}$, we have

 $Jf(x) = \langle b, x \rangle + \delta + d \cdot f(Ax + c).$

(16)

Motivation and main results	Definitions 00000	Characterization of iso $arphi$ 0000	Examples 0000000000
Theorem			
- , , ,	•	ions over a locally convex Haus $\cos \varphi$ over \mathcal{G} are affine, i.e. there	, 0
weakly-weakly continuou	s linear map ${\mathcal A}:{\mathfrak X} o{\mathfrak I}$	invertible with weakly-weakly	continuous

inverse, $c \in \mathfrak{X}$, $b \in \mathfrak{X}^*$, $d, \delta \in \mathbb{R}$ with d > 0 such that, for all $f \in \mathcal{G}$, we have

 $Jf(x) = \langle b, x \rangle + \delta + d \cdot f(Ax + c).$

This is a consequence of

Proposition

The sup-irreducible points of the space of proper convex l.s.c. functions over a locally convex Hausdorff space \mathfrak{X} are the continuous affine maps $\langle p, \cdot \rangle + \lambda$ with $p \in \mathfrak{X}^*$ and $\lambda \in \mathbb{R}$.

and of a fundamental result of affine geometry:

In dimensions larger than 2, transformations preserving straight lines are affine.

(16)

Motivation and main results	Definitions	Characterization of iso $arphi$	Examples
	00000	0000	000000000000

Corollary

Let \mathcal{G} be the space of proper convex *l.s.c.* functions over a reflexive Banach space \mathfrak{X} of dimension larger than two, assumed to be linearly isomorphic to its dual \mathfrak{X}^* . Then the anti-involutions over \mathcal{G} are of the form

$$Tf(x) = \langle Kc, x \rangle + \delta + f^*(K(Ax + c)).$$
(17)

with $A \in \mathcal{L}(\mathfrak{X})$ invertible, $c \in \mathfrak{X}$, $\delta \in \mathbb{R}$, $K^{-1}A^{-\top}KA = Id_{\mathfrak{X}}$ and $(K - A^{\top}KA^{-1})c = 0$ where $K : \mathfrak{X} \to \mathfrak{X}^*$ is the duality operator.

This a generalization of [Artstein-Avidan and Milman, 2009] for which $\mathcal{X} = \mathbb{R}^d$, and of [lusem et al., 2015] for which \mathcal{X} is a Banach space.

Motivation and main results	Definitions	Characterization of $iso \varphi$	Examples
	00000	0000	○○○○○○●○○○
Conclusion			

For many sets, every (max,+)-isomorphism is of the form:

 $Jf(x) = g(x) + f(\phi(x))$

Set \mathfrak{X}	Function space ${\cal G}$	Translation g	Reparametrization ϕ
Hausdorff topological space	l.s.c. functions	continuous	homeomorphism
complete metric space	1-Lipschitz functions	constant	isometry
locally convex Hausdorff topological	l.s.c. convex functions	continuous affine	continuous affine

- For many other sets, orders isomorphisms are of the form $Jf(x) = g(x, f(\phi(x)))$.
- We encompass, simplify and extend a few previous works.
- When characterizing order isomorphisms, sup/inf-irreducible elements are nice invariants to focus on.

Motivation and main results	Definitions 00000	Characterization of iso φ	Examples 000000000000
Conclusion			

For many sets, every (max,+)-isomorphism is of the form:

 $Jf(x) = g(x) + f(\phi(x))$

Set \mathfrak{X}	Function space ${\cal G}$	Translation g	Reparametrization ϕ		
Hausdorff topological space	l.s.c.	continuous	homeomorphism		
——Thank you for your attention!					
metric space			l try		
https://arxiv.org/abs/2404.06857 with Stéphane Gaubert. Comments much appreciated :)					
topological	convex functions				

- For many other sets, orders isomorphisms are of the form $Jf(x) = g(x, f(\phi(x)))$.
- We encompass, simplify and extend a few previous works.
- When characterizing order isomorphisms, sup/inf-irreducible elements are nice invariants to focus on.

Motivation and main results	Definitions	Characterization of iso φ	Examples
00000	00000	0000	00000000●●●
References I			

- Akian, M., Gaubert, S., and Kolokoltsov, V. N. (2005).
 - Set coverings and invertibility of functional Galois connections.

In Litvinov, G. L. and Maslov, V. P., editors, *Idempotent Mathematics and Mathematical Physics*, Contemporary Mathematics, pages 19–51. American Mathematical Society.

📕 Artstein-Avidan, S. and Milman, V. (2009).

The concept of duality in convex analysis, and the characterization of the Legendre transform. *Annals of Mathematics*, 169(2):661–674.

Berndtsson, B., Cordero-Erausquin, D., Klartag, B., and Rubinstein, Y. A. (2020). Complex legendre duality.

American Journal of Mathematics, 142(1):323–339.

Motivation and main results	Definitions 00000	Characterization of iso φ	Examples 00000000●●●
References II			

Iusem, A. N., Reem, D., and Svaiter, B. F. (2015).

Order preserving and order reversing operators on the class of convex functions in Banach spaces. *Journal of Functional Analysis*, 268(1):73–92.

Lempert, L. (2017).

On complex legendre duality.

The Journal of Geometric Analysis, 30(3):2581–2592.

Leung, D. H. and Tang, W.-K. (2016).

Nonlinear order isomorphisms on function spaces.

Dissertationes Mathematicae, page 1–74.

Singer, I. (1984).

Conjugation operators.

In Lecture Notes in Economics and Mathematical Systems, pages 80-97. Springer Berlin Heidelberg.

Motivation	and	main	results
00000			

Definition 00000 $\begin{array}{c} \text{Characterization of iso}\varphi\\ \text{0000} \end{array}$

References III

Singer, I. (1997).

Abstract Convex Analysis.

Wiley-Interscience and Canadian Mathematics Series of Monographs and Texts. Wiley-Interscience, 1 edition.

Weaver, N. (1994).

Lattices of lipschitz functions.

Pacific Journal of Mathematics, 164(1):179–193.