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Why should one be interested in characterizing transformations?

1 nonlinear versions of the Banach-Stone theorem, used to study morphisms between sets in
[Weaver, 1994, Leung and Tang, 2016]. As a reminder, linear Banach-Stone:

Every linear surjective isometry on C(X,R) is of the form (Jf )(x) = g(x) · f (ϕ(x));

2 some transformations are quite exceptional, such as the Fenchel transform over convex
l.s.c. functions [Artstein-Avidan and Milman, 2009]

Every order-reversing isomorphism on Cvx(Rd ,R) is of the form
(Tf )(x) = ⟨c, x⟩ + δ + f ∗(Ax + c);

3 order-reversing involutions are symmetries for some equations like the complex
Monge-Ampère [Lempert, 2017, Berndtsson et al., 2020] and provide Blaschke-Santaló
type inequalities [Artstein-Avidan et al., 2023]
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The main idea: finding subsets invariant under J

Linear Banach-Stone on compact X:

Every linear surjective isometry on C(X,R) is of the form (Jf )(x) = g(x) · f (ϕ(x)).

The proof mainly consists in showing that the adjoint J∗ maps the extreme points of the dual
ball on themselves, which are the Dirac masses ±δx .

Then (Jf )(x) = ⟨δx , Jf ⟩ = ⟨J∗δx , f ⟩ = ⟨g(x)δϕ(x), f ⟩ = g(x) · f (ϕ(x))

What should be the analogue of the δx? What is “extremality” in our setting?
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Theorem (Main theorem on (max,+)-isomorphisms)

Let X and Y be sets. Let G (resp. F) be a subset of RX (resp. RY), with both F and G being
proper and separating, stable by arbitrary suprema and addition of scalars. Define

ex = sup
u∈G

u(·) − u(x), e′
y = sup

v∈F

v(·) − v(y)

Let J be a (max,+)-isomorphism from F onto G, then the following statements are equivalent:
1 for all y ∈ Y, J(e′

y ) ∈ {ex + λ}x∈X, λ∈R;

2 there exists g : X → R and a bijective ϕ : X → Y such that

Jf (x) = g(x) + f (ϕ(x)) (1)

and for all f ∈ F, h ∈ G, (g + f ◦ ϕ) ∈ G and (−g ◦ ϕ−1 + h ◦ ϕ−1) ∈ F.

We will show that 1) actually holds for many sets. We also study the more general order
isomorphisms for some sets of functions (Lipschitz, convex, l.s.c.).
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For many sets, every (max,+)-isomorphism is of the form:

Jf (x) = g(x) + f (ϕ(x))

Set X Function space G Translation g Reparametrization ϕ

Hausdorff topological space l.s.c.
functions continuous homeomorphism

complete
metric space 1-Lipschitz functions constant isometry

complete
metric space Lipschitz functions Lipschitz bi-Lipschitz

homeomorphism
locally convex Hausdorff

topological
l.s.c.

convex functions continuous affine continuous affine
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Let R = [−∞,+∞], fix a set X and G ⊂ RX

G is sup-stable if supα∈A gα ∈ G for any (hα)α∈A ⊂ G
G is a complete subspace of RX if G is sup-stable and (g + λ) ∈ G for g ∈ G and λ ∈ R
the sup-closure of G is Gsup := {supα∈A hα| A an index set, {hα}α∈A ⊂ G}
the inf-closure of G is G inf := {infα∈A hα| A an index set, {hα}α∈A ⊂ G}
the infimum relatively to G of a family (gα)α∈A ∈ GA is

infG
α gα := max{h ∈ G | ∀α ∈ A, h ≤ gα}, infG g := max{h ∈ G | h ≤ g}

f ∈ G is sup-irreducible if, for all g , h ∈ G, f = sup(g , h) =⇒ f = g or f = h
f ∈ G is inf-irreducible if, for all g , h ∈ G, f = inf(g , h) =⇒ f = g or f = h
f ∈ G is G-relatively-inf-irreducible if, for all g , h ∈ G, f = infG(g , h) =⇒ f = g or f = h

Remark: G-relatively-inf-irreducible functions are inf-irreducible (converse is false). Set

δ⊥
x (y) :=

{
0 if y = x ,
−∞ otherwise, δ⊤

x (y) :=
{

0 if y = x ,
+∞ otherwise. (2)

If δ⊤
x ∈ G, then it is G-relatively-inf-irreducible, and if δ⊥

x ∈ G, then it is sup-irreducible.
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A map J : F → G where F and G are partially ordered sets is (isoφ=isomorphism)
an order isoφ if it is invertible and if this map and its inverse are both order preserving, i.e.
for all f , g ∈ F, f ≥ g ⇔ Jf ≥ Jg
a max-isoφ if it is invertible and if it commutes with suprema, i.e.
J(sup(f , g)) = sup(Jf , Jg), assuming that G and F are sup-stable;
a (max,+)-isoφ if it is a max-isoφ and if we have J(f + λ) = Jf + λ for λ ∈ R, assuming
that G and F are complete subspaces of RX;

order reversing if for all f , g ∈ F, f ≥ g =⇒ Jf ≤ Jg
an order anti-isoφ if it is invertible and if this map and its inverse are both order reversing;
an anti-involution if J : G → G, JJ = IdG and J is order reversing.

Remark: Order isoφ are a more general notion than max-isoφ, but the two coincide when F

and G are sup-stable.
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Some (max,+) concepts

Definition

A map B : RY → RX is said to be Rmax-sesquilinear if B(inf{fi}i∈I) = sup{Bfi}i∈I and
B(f + λ) = Bf − λ, for any finite index set I and λ ∈ R; B is continuous if I can be taken
infinite. The range of B is Rg(B) := {g ∈ RX | ∃f ∈ RY

, g = Bf }.

Proposition (Theorem 3.1, [Singer, 1984])

A map B̄ : RY → RX is Rmax-sesquilinear and continuous if and only if there exists a kernel
b : X × Y → R such that B̄f (x) = supy∈Y b(x , y) − f (y). Moreover in this case b is uniquely
determined by B̄ as b(·, ȳ) = B̄δ⊤

ȳ .

Rg(B) = {sup
y∈Y

ay + b(·, y) | ay ∈ R⊥}. (3)
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Let B̄ : RY → RX and its transpose B̄◦ : RX → RY be defined by

B̄f (·) := sup
y∈Y

b(·, y) − f (y), B̄◦h(·) := sup
x∈X

b(x , ·) − h(x), ∀f ∈ RY
, h ∈ RX (4)

The key relation is that B̄ = B̄B̄◦B̄, see e.g. [Akian et al., 2005]. So B̄ and B̄◦ are anti-isoφ!

Examples of b(x , y) and Rg(B) [Singer, 1997] (adding the constant functions ±∞):
For X = Y = RN , b(x , y) = (x , y)2 gives Rg(B) is the set of proper convex l.s.c. functions.
For X = Y = RN , b(x , y) = −∥x − y∥2 gives Rg(B) is the set of proper 1-semiconvex l.s.c.

functions, i.e. f + ∥ · ∥2 is convex.

For any X and α ≥ 0, b(x , y) =
{

0 if y = x ,
−α otherwise, gives Rg(B) is the set of functions f

which difference f (x) − f (y) is smaller than α.
For (X, d) a metric space, b(x , y) = −d(x , y)p gives Rg(B) is the set of (1, p)-Hölder
continuous functions w.r.t. the distance d (i.e. |f (x) − f (y)| ≤ 1 · d(x , y)p).
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Theorem (Connection between kernels and anti-isoφ)

Let G (resp. F) be a complete subspace of RX (resp. RY). Then TFAE:
1 there exists a kernel b : X × Y → R such that G = Rg(B) and F = Rg(B◦);
2 there exists an order anti-isoφ F̄ : F → G commuting with the addition of scalars, i.e.

F̄ (f + λ) = F̄ f − λ, for any λ ∈ R and f ∈ F.
In this case, F̄ can be taken as the restriction of B̄ to Rg(B). Moreover, for X = Y, there exists
F̄ an anti-involution over G iff there exists a symmetric b such that G = Rg(B).
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Useful trivial lemmas

Lemma

Let A,B : F → G be two order anti-isoφ. Set J = A−1B. Then J is an order isoφ over F, and
we have that B = AJ and A = BJ−1. In particular, if there exists an anti-involution F̄ : G → G,
every anti-involution over G writes as F̄ J with J : G → G an order isoφ satisfying F̄ JF̄ J = IdG .

It is enough to study the order isoφ rather than the more arduous order anti-isoφ!

Lemma

Every order isoφ J : F → G over sets F ⊂ RY and G ⊂ RX sends sup-irreducible elements (resp.
F-relatively-inf-irreducible) of F onto sup-irreducible elements (resp. G-relatively-inf-irreducible)
of G. Every anti-involution T over G sends G-relatively-inf-irreducible elements of G onto
sup-irreducible elements of G.
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Useful trivial lemmas (cont.)

Lemma

Let J : F → G be an order isoφ between F ⊂ RY and G ⊂ RX, such that F (resp. G) is
pointwise dense in the sup-closure F

sup of F (resp. Gsup). Then J can be extended to an order
isoφ between F

sup and Gsup.

Define the Archimedean class of a function f ∈ G as

[f ] := {g ∈ G | ∃α ∈ R, f − α ≤ g ≤ f + α} (5)

Let us put an order on Archimedean classes, saying that [f ] ≤ [g ] if there exists α ∈ R such
that f ≤ g + α. A class [f ] is maximal if [f ] ≤ [g ] =⇒ [f ] ≥ [g ].

Lemma

Let G (resp. F) be a complete subspace of RX (resp. RY). Let J be a (max,+)-isoφ from F

onto G. If f ∈ F is such that [f ] is maximal, then [Jf ] is also maximal.
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The ex , the Dirac-like inf-irreducible functions of G

Let G be a complete subspace of RX. Define, for any x ∈ X, the function ex : X → R by

ex (·) := sup{u ∈ G | u(x) ≤ 0}. (6)

Then ex ∈ G, ex (x) = 0 and ex is inf-irreducible in G. We also have

ex (y) = sup
u∈G

u(y) − u(x), (7)

with −∞ absorbing. Moreover, for any f ∈ G, we have the representation (with +∞ absorbing)

f = inf
x∈Dom(f )

ex + f (x), and G inf = {inf
x

ex (·) + wx | wx ∈ R}. (8)

If f ∈ G is such that [f ] is maximal, then for all x0 ∈ Dom(f ) we have [ex0 ] = [f ], i.e. we can fix
λ0 ∈ R, such that ex0 + λ0 ≤ f .
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Technical assumption to have ex ̸= ex ′ + λ :

The set G ⊂ RX is proper and point separating if for any x , x ′ ∈ X with x ̸= x ′, there exists
g1, g2 ∈ G such that g1(x), g2(x), g1(x ′), g2(x ′) ∈ R and g1(x) − g1(x ′) ̸= g2(x) − g2(x ′).

Theorem (Main theorem on (max,+)-isoφ)

Let X and Y be sets. Let G (resp. F) be a complete subset of RX (resp. RY), with both F and
G being proper and separating. Set ex = supu∈G u(·) − u(x). Let J : F → G be a (max,+)-isoφ
from F onto G, then the following statements are equivalent:

1 for all y ∈ Y, J(e′
y ) ∈ {ex + λ}x∈X, λ∈R;

2 there exists g : X → R and a bijective ϕ : X → Y such that
Jf (x) = g(x) + f (ϕ(x)) (9)

and for all f ∈ F, h ∈ G, (g + f ◦ ϕ) ∈ G and (−g ◦ ϕ−1 + h ◦ ϕ−1) ∈ F.

If {δ⊤
y }y∈Y ⊂ F and {δ⊤

x }x∈X ⊂ G, then the statements of Theorem 8 hold for all J!
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First application: l.s.c. functions and Lipschitz functions

Let G (resp. F) be the space of l.s.c. functions over a Hausdorff topological space X (resp. Y).
Then every (max,+)-isoφ J from F onto G is of the form

Jf (x) = g(x) + f (ϕ(x)) (10)

where g : X → R is a continuous, function and ϕ : X → Y is a homeomorphism. The same
holds if l.s.c. is replaced by continuous, or if the functions are restricted to be proper.

Let G (resp. F) be the set of Lipschitz functions over a complete metric space (X, d) (resp.
(Y, d ′)). Then every (max,+)-isoφ J from F onto G is of the form

Jf (x) = g(x) + f (ϕ(x)) (11)

where g : X → R is a Lipschitz function and ϕ : X → Y is a bi-Lipschitz homeomorphism, i.e. ϕ
and ϕ−1 are both Lipschitz.
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Second application: c-convex functions

A kernel b : X × Y → R is fully-reduced if, for all x , y , b(x , ·) and b(·, y) are sup-irreducible and, for all
x0, x1, y0, y1, λ ∈ R, b(·, y0) = b(·, y1) + λ =⇒ y0 = y1 and b(x0, ·) = b(x1, ·) + λ =⇒ x0 = x1.

Let X,X′,Y,Y′ be Hausdorff compact topological spaces, and b : X × Y → R, c : X′ × Y′ → R
be two continuous functions such that the kernels are fully-reduced. Then TFAE:

1 there exists a (max,+)-isoφ J : Rg(B) → Rg(C);
2 the two kernels satisfy that there exists two homeomorphisms τ : X′ → X and σ : Y′ → Y,

and two continuous functions ψ : X′ → R and φ : Y′ → R such that

c(x ′, y ′) = ψ(x ′) + b(τ(x ′), σ(y ′)) + φ(y ′). (12)
3 all (max,+)-isoφ J : Rg(B) → Rg(C) are of the form Jf = ψ + f ◦ τ for some ψ : X′ → R

and a bijective τ : X′ → X, and there exists one such J .

Proof idea: show that the b(·, y) + λ are the only sup-irreducible functions.
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Csq: Values of dual problems don’t depend on the anti-involution!
We have that g ∈ Rg(B) iff g = B̄B̄◦g . We can commute max and min, to obtain weak duality:

inf
x∈X

f (x) + g(x) = inf
x∈X

f (x) + sup
y∈Y

b(x , y) − B̄◦g(y) ≥ sup
y∈Y

−B̄◦g(y) + inf
x∈X

f (x) + b(x , y).

Lemma (Unique dual value)

Let G be a complete subspace of RX. Take f , g ∈ RX with g ∈ G and assume that
G = Rg(B) = Rg(C) for b : X × Y → R and c : X × Y′ → R. Assume furthermore that every
(max,+)-isoφ J : Rg(B̄◦) → Rg(C̄◦) is of the form Jf = ψ+ f ◦ τ . Consider the primal problem
infx∈X f (x) + g(x), then

v = sup
y∈Y

[ inf
z∈X

[g(z) − b(z , y)] + inf
x∈X

[f (x) + b(x , y)]] = sup
y ′∈Y′

[ inf
z∈X

[g(z) − c(z , y ′)] + inf
x∈X

f (x) + c(x , y ′)],

(13)
in other words, the value v of the dual problem does not depend on the kernel generating G.

Example on the board
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Definition
A map δ : X × X → R≥0 over a set X is a weak metric if, for all x , y , z ∈ X, δ(x , x) = 0,
δ(x , y) ≥ 0 and δ(x , z) ≤ δ(x , y) + δ(y , z), and if δ(x , y) = δ(y , x) = 0 implies that x = y .
A map f : X → R is nonexpansive w.r.t. δ, or 1-Lipschitz, if f (x) ≤ δ(x , y) + f (y) holds for all
x , y ∈ X. The set of 1-Lipschitz maps f : X → R is Lip1(X, δ;R).

Showing, under some assumptions: Busemann points are not of maximal Archimedean class

Theorem

Let G = Lip1(X, δ;R) F = Lip1(Y, δ′;R)).Assume either i) that the balls of (X, δs) are compact
or ii) that δ is symmetric and (X, δs) is complete, and that the same is true for (Y, δ′). Then
every (max,+)-isoφ J from F onto G is of the form

Jf (x) = g(x) + f (ϕ(x)) (14)

whith nonexpansive g : X → R and ϕ : X → Y s.t. g(x) − g(x ′) + δ′(ϕ(x), ϕ(x ′)) = δ(x , x ′) for
all x , x ′ ∈ X. If either δ or δ′ is a metric, then g is constant and δ′(ϕ(x), ϕ(x ′)) = δ(x , x ′).
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Order isoφ of l.s.c. functions

Theorem

Let G (resp. F) be the space of l.s.c. functions over a Hausdorff topological space X (resp. Y).
Then every max-isoφ J from F onto G is of the form

Jf (x) = g(x , f (ϕ(x))) (15)

where ϕ is a homeomorphism and g : X × R → R is jointly l.s.c., and g(x , ·) bijective and
increasing for all x ∈ X with inverse g1(x , ·) such that g1(·, ·) is also jointly l.s.c. The same
holds if l.s.c. is replaced by continuous.

More generally, if G (resp. F) is a pointwise-dense subset of the l.s.c. functions over a Hausdorff
topological space X (resp. Y) then (15) holds necessarily, with ϕ and g as above.

Actually for the structure (15) to hold, it suffices that {δ⊤
x }x∈X ⊂ G and {δ⊤

y }y∈Y ⊂ F.
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Theorem

Let G be the space of proper convex l.s.c. functions over a locally convex Hausdorff topological
X of dimension larger than two, then the max-isoφ over G are affine, i.e. there exists a
weakly-weakly continuous linear map A : X → X invertible with weakly-weakly continuous
inverse, c ∈ X, b ∈ X∗, d , δ ∈ R with d > 0 such that, for all f ∈ G, we have

Jf (x) = ⟨b, x⟩ + δ + d · f (Ax + c). (16)

This is a consequence of

Proposition
The sup-irreducible points of the space of proper convex l.s.c. functions over a locally convex
Hausdorff space X are the continuous affine maps ⟨p, ·⟩ + λ with p ∈ X∗ and λ ∈ R.

and of a fundamental result of affine geometry:

In dimensions larger than 2, transformations preserving straight lines are affine.
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Corollary

Let G be the space of proper convex l.s.c. functions over a reflexive Banach space X of
dimension larger than two, assumed to be linearly isomorphic to its dual X∗. Then the
anti-involutions over G are of the form

Tf (x) = ⟨Kc, x⟩ + δ + f ∗(K (Ax + c)). (17)

with A ∈ L(X) invertible, c ∈ X, δ ∈ R, K−1A−⊤KA = IdX and (K − A⊤KA−1)c = 0 where
K : X → X∗ is the duality operator.

This a generalization of [Artstein-Avidan and Milman, 2009] for which X = Rd , and of
[Iusem et al., 2015] for which X is a Banach space.
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Conclusion
For many sets, every (max,+)-isomorphism is of the form:

Jf (x) = g(x) + f (ϕ(x))

Set X Function space G Translation g Reparametrization ϕ

Hausdorff topological space l.s.c.
functions continuous homeomorphism

complete
metric space 1-Lipschitz functions constant isometry

locally convex Hausdorff
topological

l.s.c.
convex functions continuous affine continuous affine

For many other sets, orders isomorphisms are of the form Jf (x) = g(x , f (ϕ(x))).
We encompass, simplify and extend a few previous works.
When characterizing order isomorphisms, sup/inf-irreducible elements are nice invariants to
focus on.

Thank you for your attention!
https://arxiv.org/abs/2404.06857 with Stéphane Gaubert. Comments much appreciated :)

https://arxiv.org/abs/2404.06857
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