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Motivation: gradient descent
Take f : R — R, L > 0 and consider gradient descent
1
Xp+1 — Xp = —ZVf(X,,). (1)

For convergence of the gradient norm ||V f(x,)||, we just need L-smoothness, expressed as a
“descent lemma”

f(x') < f(x)+ <Vf(x),x'—x>+§”x—x’||2. (2)

Gradient descent is just minimization of the upper bound!

To obtain (sub)linear convergence of f(x,), we need (strong) convexity to hold for a A > 0
A
F) + (VF(x), X" = x) + Sllx = X'[[* < F(x'). (3)

How to generalize these conditions when ||x — x||? is “replaced” by c(x, y)?
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Motivation: mirror descent

Take a convex u : R? — R and consider its Bregman divergence

u(x'|x) = u(x") — u(x) — (Vu(x),x" — x).
Assume f is smooth relatively to u [Bauschke et al., 2017] i.e.

f(x") < f(x)+ (VF(x),x" — x) + u(X'|x). (4)
which is equivalent to f(x’|x) < u(x'|x).

If £ is also A-strongly convex relatively to u [Lu et al., 2018], i.e. f(x’|x) > Au(x|x) for A >0,
we get (sub)linear convergence of f(x,) for the mirror descent scheme

Xp+1 = argmin £ (xp) + (VF(xn), x — xn) + u(x|xn). (5)
xeX
which is equivalent to
Vu(xnt1) — Vu(xn) = —V£(xpn). (6)

Already nice, but can we go further? To natural gradient descent and beyond?
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You see, in this world,
there 1s two kinds of
people, my friend: those
who mmimize and those
who take the gradient.

For simplicity, we assume that minimizers exist and are unique! Otherwise we need arguments
based on continuity, compactness. . . If we differentiate, then we work on open subsets of R9.
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Executive summary: majorization—minimization

Let f: X — R where X is any set. Choose another set Y and a function c(x, y). Define the
upperbound

) < 6(x.y) = coy) £ F(y) = cey) + sup F(X) — c(.y) (7)

Do alternating minimization (AM) of the surrogate

Yn+1 = argmin C(Xnuy) + fC(Y)v (8)
yey

Xpt1 = argn)w(in c(x, Yn+1) + F (Vnt1)- (9)
XE

If we can differentiate and f(x) = inf, c(x, y) + f°(y) (c-concavity) then we can write
(applying the envelope theorem Vf(x) = V¢(x, y(x)))
_VXC(XnaYn—H) = —Vf(x,,), (10)
Vxc(Xnt1, Ynt1) = 0. (11)
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Executive summary: convergence rates

Consider the sequence of AM iterates, starting from any xg,
Yn = Xn =7 Yn+1
We say that f is c-cross-convex if, for all x,y, € X x Y,
f(x) = f(xn) > c(x, Yn+1) = (X, ¥n) + c(Xns ¥n) = c(Xn, Yn+1)-
c-concavity (f(x) = inf, c(x,y) + f<(y)) implies, since f(ynt1) = f(xn) — c(Xn, Ynt1),
F(x) = f(xn) < c(x, ¥nt1) = c(Xn, Yns1)-

These conditions extend L-smoothness and (strong) convexity when c(x,y) = éHx —y|?

Suppose that f is c-concave and c-cross-convex, and x, = argminy f. Then

f(Xn) - f(X*) < C(X*ayO) ; C(X07y0). (12)

Linear rates and local caracterization of c-concavity and c-cross-convexity given later.
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Formal algorithm

INPUT: a set X, a point xg € X and a function f : X — R, N a number of steps
CHOOSE: a set Y and a cost c(x,y)
DO: For ¢(x,y) = c(x,y) +supycx f(x") — c(x’, ¥), N steps of alternating minimization of ¢

Ynt1 = argmin ¢(xp, y)
yey

Xn+1 = argmin ¢(X7 ynJrl)a
xeX

CHECK: convergence conditions for x € {xp,...xy}, n€ {0... N}
f(X) - f(X,,) > C(XaynJrl) - C(Xa)/n) + C(Xna)/n) - C(Xna)/n+1)a
f(X) - f(X,,) < C(Xa)/n+1) - C(Xna)/nJrl)'

OUTPUT: (xn, yn)n iterates.



Motivation Alternating minimization GradDesc with GenCost Examples Conclusion
000000 ©0000 0000000000 000000000000 000

Alternating minimization

Let ¢(x,y): X x Y — R where X, Y are any sets. Perform an alternating minimization
Ynt1 = argmin ¢(xn, y)
yey

Xn+1 = argmin (;S(Xv ynJrl)a
xeX

(13)

Inspired by [Csiszar and Tusnady, 1984], we define:
Definition (Five-point property (FPP))

We say that ¢ satisfies the FPP if for all x € X, y,yp € Y, with yp — xg = »1
P(x, y1) + B(x0, ¥0) < B(x,¥) + d(x, y0)- (FP)
For A > 0, ¢ has the A-strong FPP if for all x € X, y,yp € Y

d(x,y1) + (1 = A)d(x0, o) < o(x,y) + (1 — A)o(x, y0). (A-FP)

Wy




Motivation Alternating minimization GradDesc with GenCost Examples Conclusion
000000 0®000 0000000000 000000000000 000

Alternating minimization - Remarks on FPP

Let ¢(x,y) = c(x,y) + g(x) + h(y). Recall

d(x,y1) + (1 = N)d(x0, o) < d(x,y) + (1 — N)o(x, y0). (A-FP)

@ Five points, but actually only x, y, yo are free.
@ Actually 0 < A < 1 is enough, otherwise we converge in two steps for A > 1.
@ Setting F(x) = inf,cy ¢(x,y), (A-FP) can be written

F(x) > F(x0) 4 d¢(x, yo; X0, y1) + A[(x, y0) — ¢(x0, ¥0)]- (14)

where 6c(x', ¥ x,y) = c(x,y") + c(X',y) — c(x,y) — c(x', ¥') is the cross-difference and
we have d4 = dc.
o Later we define through (A-FP) the cross-convexity of ¢(x,y) = c(x,y) + f<(y).
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d(x,y1) + (1 = A)d(x0, o) < o(x,y) + (1 — A)o(x, y0)- (A-FP)

Theorem (Convergence rates for alternating minimization)

Suppose that ¢ has a minimizer. Then:

1. Forall'n >0, ¢(Xn+17.yn+1) < ¢(Xn7yn+1) < ¢(Xn7yn)'
2. If ¢ satisfies (FP). Then for any x € X,y € Y and any n > 1,

(e yi) < B, y) + B(x, y0) — ¢(Xo7)/o)7 5 e ) — s = B )

n
3. If ¢ satisfies (\-FP) for some A € (0,1). Then for any x € X,y € Y and any n > 1,

Ao(x, y0) — ¢(x0, y0)]

¢(X,,,y,,)§q§(x,y)+ /\n_l ’

where A := (1 — X)L > 1. In particular ¢(xn, yn) — ¢« = O((1 — \)").
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Proof of convergence rate

(D): d(xnt+1, ¥nt1) < @(Xns Y1) < ¢(xn, yn) by definition of the iterates.
(ii): After rearranging terms, (FP) can be written as

(Xn+1, Yn+1) < B(x, y) + [0(x, ¥n) — d(Xn, ¥n)] — [6(X, Ynt1) — d(Xn+1, Yar1)]-

The last terms inside the brackets are nonnegative. Sum from 0 to n — 1 and use (i):
n—1

nd(Xn, yn) < D S(xks1, Yir1) < np(x,y) + [(x, y0) — ¢(x0, y0)] = [6(X, ¥n) = &(Xn, yn)],
k=0
(iii): Similarly to (ii), (A\-FP) can be written as

i), (
G(Xn+1, Ynr1) < O(x,¥) + (L = A)[@(x, ¥n) = 630, ya)] = [G(x; Yni1) = ¢(Xa+1, Yar1)]-
y (1-

Divide both sides b A)™1 and sum from 0 to n — 1

(iA"“)qﬁ(wn _(ZA"“) 6(x.y) + [8(x.y0) — 60, 30)];
k=0
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Semi-local criterion for the five-point property

d(x,y1) + (1 = N)d(x0, o) < d(x,y) + (1 — N)o(x, y0). (A-FP)

There exists a (rather involved) semi-local characterization if X, Y C RY,

Theorem (Sufficient conditions for the five-point property)

Suppose that ¢(x,y) = c(x,y) + g(x) + h(y) has a minimizer, c € C*(X x Y) has nonnegative
cross-curvature, V2 c(x, y) is everywhere invertible, X and Y have c-segments. Assume
further that F(x) = inf,cy ¢(x,y) is differentiable on X.
e Ift— F(x(t)) is convex on every c-segment t — (x(t),y) satisfying V¢(x(0),y) =0,
then ¢ satisfies the five-point property (FP).
o Let A\ >0. Ift — F(x(t)) — Ap(x(t),y) is convex on the same c-segments as for (i), then
¢ satisfies the strong five-point property (A-FP).

v
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Gradient descent with a general cost

Start with

Fix) < cboy) +Fy) 3= el y) + sup F(x') = c(x,y)

Do alternate minimization
Vo1 = argmin c(xa, y) + F(y),
yeyY

Xp1 = argmin c(x, Yp+1) + £ (Ynt1)-
xeX

If f(x) =inf, c(x,y) + f(y) (c-concavity), then it is equivalent to

_VXC(Xn7Yn+1) = —Vf(Xn),
Vxc(Xnt1, Ynt1) = 0.

Conclusion
000

(17)
(18)
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Gradient descent with a general cost - Examples

_vxC(Xna)/n—H) = _Vf(xn),
vxC(Xn—i-la}’n—l—l) =0.

In the following: Y = X, and c is minimal on the diagonal {x = y}, so xp4+1 = ynt+1 (x-update)

1.

ok W

Gradient descent: c(x,y) = 5[lx — y[|? and xp41 — xo = = VF(xp).

Mirror descent: c(x,y) = u(x|y), so Vu(xnt+1) — Vu(xn) = =V £(xy).

Natural gradient descent: c(x,y) = u(y|x), 50 Xpt1 — Xn = —(V2u(x1)) "1V F(xn).
A nonlinear gradient descent: ¢(x,y) = (x — y), 50 xp+1 — xp = —V(VI(xy)).
Riemannian gradient descent: (M, g) a Riemannian manifold. Take X = Y = M and
c(x,y) = édz(x,y), SO Xpi1 = expxn(—%Vf(x,,)),

Cool, but what do you need to converge?
— Something like L-smoothness and p-strong convexity
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c-concavity

Definition (c-concavity)

We say that a function f: X — R is c-concave if there exists a function h: Y — R such that

() = inf c(x.) + h(y) (19)

for all x € X. If f is c-concave, then we can take h(y) = f°(y) = sup,rcx f(X') — c(x', y).

x = c(x,y) +an ,

x = c(x,y)+7(y)




Motivation Alternating minimization GradDesc with GenCost Examples Conclusion
000000 00000 000®000000 000000000000 000

C-Cross-convexity

We want f(x) — f(x,) > c(X, Ynt1) — c(X, ¥n) + c(Xn, ¥n) — ¢(Xn, Ynt+1) With
—V(Xn, Ynt1) = =V (xn) and Vc(xn, yn) = 0.

Recall the cross-difference of ¢ defined by
be(x,y'ix,y) = el y) + e(xy) = clxy) = e(xy).

Definition (cross-convexity)

Suppose that f and c are differentiable. We say that f is c-cross-convex if for all x,x € X and
any y,y € Y verifying Vyc(x,y) =0 and —V,c(x, y) = —VF(x) we have

f(x) = f(X) + dc(x, ¥: %, 9). (20)

In addition let A > 0. We say that f is A-strongly c-cross-convex if we have

f(x) > f(xX)+0c(x,y; %, 9) + Mc(x,y) — c(x,¥)). (21)
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Sketch of alternating minimization

Figure: The dashed functions represent some surrogates x — ¢(x, y) + f¢(y) for various values of y. The
solid line surrogate is the one for which the value at x, is minimized, i.e. y = ypi1.

Let ¢(x,y) = c(x,y) + f<(y) and A > 0. If f is c-concave and A-strongly c-cross-convex then
¢ satisfies (A-FP).
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Local criteria

If X, Y Cc R? then we have a local criterion:

Theorem (Local criterion for c-concavity [Villani, 2009, Theorem 12.46])

Suppose that ¢ € C*(X x Y) has nonnegative cross-curvature, V3,c(x,y) is everywhere
invertible, X and Y have c-segments. Let f be a twice-differentiable function. Suppose that for
all x € X, there exists y € Y satisfying —Vxc(x,y) = —Vf(X) and such that

V(%) < Vice(x, 7).

Then f is c-concave. (Converse is also true)

If f is c-cross-convex then, whenever V,c(x,y) =0 and —Vc(x,9) = —Vf(x), we have
V(%) 2 Vie(%,9) = Vie(%,7). (22)

(Converse is maybe true, a semi-local condition with c-segments does exist though)
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Theorem (Corollary/Convergence rates for GD with general cost)

1. Suppose that f is c-concave. Then we have the descent property—+stopping criterion

f(xnt1) < F(xa) = [c(Xn, Ynt1) — c(Xng1, Yntr1)] < F(xn),

_ f(xo0) — f
_ < —
Ogg%lg—l[c(xk’yk—i_l) C(Xk—i-l,}/k—i-l)] = -

2. Suppose in addition that f is c-cross-convex. Then for any x € X,n > 1,

c(x, vo) — c(xo,
Flon) < )+ SC20) = 0v0), (23)
3. Suppose in addition that f is A\-strongly c-cross-convex for some A € (0,1). Then for any
x€X,n>1, setting A= (1 -\t >1

A (c(x, y0) — c(x0, o))

F(x) < Flox) + 000 = S20000)

(24)
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Forward—backward splitting

)r(nei)rg F(x) = f(x)+ g(x) < o(x,y) = c(x,y) + f(y) + g(x)

Additional assumption: for each x € X, inf,cy c(x,y) = 0.

Ynt1l = argnr;in c(xn,y) + f(y) + g(xn),
ye

Xnt1 = argrr;(in c(x, Yni1) + £ (¥Ynt1) + g(x).
xXe

If f is c-concave, then equivalent to

_vxc(xna)/n+1) = —Vf(Xn),
_VXC(XH+17)/H+1) = Vg(xn+1)‘

Conclusion
000
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Forward—backward splitting: cross-concavity

Definition (cross-concavity)

We say that a differentiable function f: X — R is c-cross-concave if for all x,x € X and any
¥,y € Y verifying Vyc(x,y) =0 and —Vc(X,y) = —VF(Xx) we have

f(x) < f(X)+ dc(x, ¥ %, 7).

In addition let A > 0. We say that f is A-strongly c-cross-concave if under the same conditions
as above we have

f(x) < £(X) + de(x, ¥: X, §) — Mc(x, ¥) — c(%,7))-

Caveat: f c-cross-concave is not in general equivalent to (—f) c-cross-convex.
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Theorem (Convergence rates for Forward—backward splitting)

Take yo € argmin, oy c(xo, ).
1. Suppose that f is c-concave. Then we have the descent property
f(xnt1) + 8(xnt1) < F(xn) + g(xn)-

2. Suppose in addition that f is c-cross-convex and that —g is c-cross-concave. Then for any
xeX,n>1,

c(x,y
Floxn) + £0m) < F0) + ) + ST
3. Suppose in addition that f is A-strongly c-cross-convex and that —g is u-strongly

c-cross-concave for some A\, pu € [0,1) with A+ > 0. Then for any x € X, n>1,

A y 1
o)+ £0xm) < Fx) + g0x) + +A“n)f(f’y°), with A — %
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Mirror descent

We take
c(x,y) = ulxly) = u(x) — u(y) = (Vu(y),x — y),
We love it because
@ it generalizes the square of Euclidean distances;
@ it characterizes convexity, since u(x|y) > 0 iff u is convex.
Recall our scheme

—Vxc(Xn, Ynt1) = —V(xn),
Vx€(Xnt1, Ynt1) = 0.
Our gradient descent thus gives

Vu(yn—i-l) - VU(Xn) = _Vf(xn)7
Vu(xnt1) = Vu(ynt1).

Combining, we get mirror descent in gradient form Vu(x,11) — Vu(xp) = =V (xp).

Conclusion
000
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Definition (Relative smoothness and convexity)

Let L > 0, A > 0, and consider a twice differentiable function f: X — R.

1. f is smooth relatively to u if u— f is convex [Bauschke et al., 2017]. Equivalently, if
V2f < V2u, or if f(xX'|x) < u(xX|x), i.e. F(x') < F(x)+ (VF(x),x" —x) + u(x'|x).

2. f is A-strongly convex relatively to u [Lu et al., 2018] if f — Au is convex. Equivalently, if
V2f > AV2u, or if f(xX'|x) > Au(x'|x).

Naturally we want to minimize the upperbound given 1.:

Xpt1 = arxger’r;(in qg(x,x,,) = f(xn) + (VF(xn), x — xn) + u(x|xn) = f(x) + (v — )(x|xs). (31)

Buy we can also do
¢(x,y) = u(xly) + ().
Actually we have ¢(x, 7) = ¢(x, y) when Vu(y) = Vu(y) — V£(7) (just a reparameterization).
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Mirror descent: c-concavity and cross-convexity

Proposition (c-concavity is relative smoothness)

Suppose that Vu is surjective as a map from X to X*. Then f is c-concave for
c(x,y) = u(x|y) if and only if f is smooth relatively to u.

Proposition (cross-convexity is convexity)

Take c(x,y) = u(x|y). Then f is c-cross-convex if and only if f is convex. More generally, let
A > 0. Then f is A\-strongly c-cross-convex if and only if f is \-strongly convex relatively to u.

We recover the classical convergence rates:
@ sublinear when f is convex and smooth relatively to u [Bauschke et al., 2017]

e linear if in addition f is A-strongly convex relatively to v [Lu et al., 2018].
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Natural gradient descent

Take Y = X and consider the cost

c(x,y) = ulylx) = u(y) — u(x) = (Vu(x),y = x).

Consequently
—Vxe(x,y) = V2u(x)(y — X).

Our gradient descent thus gives
Vi1 = xn — V2u(x,) 1V (xn),
VXC(X,H_]_,_)/,H_]_) =0.

Combining, we get natural gradient descent: xp11 — X, = —V2u(xp) "1V F(xp).
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Lemma (Natural gradient descent: c-concavity and cross-convexity)

Let f: X — R be twice differentiable.

1. f is c-concave if and only if for all x, &,
V2 (x)(€.€) < V3u(x)(V2u(x) I VF(x), €, €) + V2u(x)(€, €); (32)

2. Let A > 0. f is A-strongly c-cross-convex if and only if, for all x,¢&,

V2F(x)(€,€) > V3u(x) (V2u(x) IV F(x), £, €) + AV2u(x)(£, £). (33)

These assumptions give new global rates for NGD!
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Newton
Let Y = X and consider the cost
c(x,y) = fylx) = f(y) = f(x) = (VF(x),y = x).
Then gradient descent with general cost reads
Xpi1 — Xn = —V2F(xn) "1V F(xp). (34)

This is Newton'’s method. The smoothness and convexity assumptions on f can be combined as
follows. Let 0 < A < 1 and consider the (affine-invariant!) property: for all x, ¢,

0 < VPF(x)((V2)TH(x)VF(x),€,€) < (1= N VF(x)(€,9). (35)

This is not self-concordance (check €* and log(x)), i.e.

IV3F(x)(,6,€)| < 2M(V2F(x)(£,€)) 7, x,€ € X. (36)

and our property gives global rates (which self-concordance doesn't)!
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Riemannian gradient descent

For c(x,y) = %dz(x,y) on a manifold M away from the cut locus, the relation £ = —Vc(x,y)
defines a tangent vector £ € T, M, i.e. for exp the (Riemannian) exponential map

y = exp,(&/L).

We obtain as before x,,1 = exp, ( - %Vf(x,,)).

Proposition

Let c(x,y) = £d?(x,y). Suppose that (M,g) has nonnegative sectional curvature. Then

1. f geodesically convex —> f c-cross-convex.
2. —g c-cross-concave —> g geodesically convex.
Suppose that (M, g) has nonpositive sectional curvature. Then

1. f c-cross-convex — f geodesically convex.

2. g geodesically convex =—> —g c-cross-concave.
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Riemannian gradient descent

f is c-concave;

f has L-Lipschitz gradients;

Vi < Lg;

f(x) < f(X) + (VF(X),&) + 5d?(x, ), where x = expg(£).

Sl A

Proposition

The following statements hold.
0 314
@ Suppose that (M, g) has nonnegative curvature. Then 1 —> 3.
@ Suppose that (M, g) has nonpositive curvature. Then 3—> 1.
e 2—3
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POCS (Projection Onto Convex Sets)

Let (H, ||-]|) be a Euclidean space and let B, C be two closed convex subsets of H. The POCS
algorithm, see [Bauschke and Combettes, 2011], searches for BN C by successive projections
onto B and C: given x, € B, compute

Ynt1 = argmin||x, — y||,

ree (37)
Xp41 = argmin||x — ypy1.

x€EB

There are at least two ways to write POCS as an alternating minimization method:
1. Take X = Y = H, with the cost c(x,y) = 3|[x — y||? and the indicator functions g =
and h = ¢, set ¢(x,y) = c(x,y) + &(x) + h(y).
2. Take X = B, Y = C and consider the function ¢(x,y) = 2HX -yl*

In both cases, we can do the analysis to get rates. Same results when ||x — y|| is replaced by
u(x|y) (Bregman projections).
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Sinkhorn algorithm /Entropic optimal transport
Let (X, 1) and (Y,r) be two probability spaces and take the set of couplings over X x Y (i.e.
joint laws) having marginal p (resp. v)

C=MN(p,*), D=N(xv), N(p,v)="N(=)NN7v)

Given £ > 0 and a ;1 ® v-measurable function b(x, y), the entropic optimal transport problem is

min KL(rle /4@ v),  where KL(r|7) = / log (dr/dz) drr (38)
well(u,v

The Sinkhorn algorithm solves (38) by initializing mo(dx, dy) = e~26¥)/2p(dx)v(dy) and by
alternating “Bregman projections” onto M(u,*) and M(x,v),

Ynt1 = argmin KL(v|m,), (39)
YEM(p,%)
Tnt1 = argmin KL(7|vpt1)- (40)

meM(*,v)
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Yn+1 = argmin KL(~y|m,), (41)
veN(p,*)

Tnt1 = argmin KL(7|vpy1). (42)
meN(+,v)

The iterates of Sinkhorn (the ones above) are also given by

Yn+1 = argmin KL(m4|7), (43)
YEM(p,%)

Tnt1 = argmin KL(7|ypy1). (44)
TeN(x,v)

Csiszar and Tusnady show (FP) directly [Csiszar and Tusnady, 1984, Section 3]. Alternatively
KL is a Bregman divergence and jointly convex, so

KL
Fr) = inf &(m~) = KL(pxrlu) is convex.  KL(pxmalp) < KET0).
yEM(p,*) n
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Expectation—-Maximization (EM)

Let X be a set of observed data, Z be a latent space and let {py € P(X x Z) : 6 € O} be a
statistical model, where © is a set of parameters. Having observed p € P(X) we want to find
f € © that maximizes the likelihood. This is equivalent to

in F(8) = KL 4
min £(6) (12l pxpo), (45)
We use the data processing inequality

F(0) = KL(u|pxpe) < KL(7|pg) =: (0, 7), (46)

Equality holds for m = p;‘p(j(xjx) po(dx, dz). The EM algorithm is [Neal and Hinton, 1998]:
Tnt1 = argmin KL(7|pg,), (E-step)

TeM(p,*)
0p+1 = argmin KL(741|pg)- (M-step)
(4SS

It can be written as either mirror descent (convex if py = K ® 6 [Aubin-Frankowski et al., 2022]) or a
projected natural gradient descent (convex if py is an exponential family [Kunstner et al., 2021])
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Conclusion: What have we seen?

To minimize f on a set X, we chose a set Y and a cost c(x, y).
For ¢(x,y) = c(x,y) +supycx f(x’) — c(x’,y), we did alternating minimization of ¢

Ynt1 = argmin ¢(Xnv )/)
yYey

Xp+1 = argmin ¢(X, yni1)-
xeX

We also did a forward—backward version of this and covered MD/NGD/RGD//Sinkhorn/EM. ..
We have seen that (sub)linear rates could be obtained based on
f(X) - f(xn) > C(X7,\/n+1) - C(Xayn) + C(Xm}/n) - C(Xnuyn-‘rl)a
f(x) = f(xn) < c(x, Ynt1) — c(Xn, Ynt1)-
Tell me about your favorite algorithm and we can see if it is an alternating minimization!

Thank you for your attention!

Other interests of mine: backward SDEs+optimal control (V. de Bortoli), kernels+ mean
field control (A Ren<oticsan)
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