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Motivation: gradient descent
Take f : Rd → R, L > 0 and consider gradient descent

xn+1 − xn = −1
L∇f (xn). (1)

For convergence of the gradient norm ∥∇f (xn)∥, we just need L-smoothness, expressed as a
“descent lemma”

f (x ′) ≤ f (x) + ⟨∇f (x), x ′ − x⟩ + L
2∥x − x ′∥2. (2)

Gradient descent is just minimization of the upper bound!

To obtain (sub)linear convergence of f (xn), we need (strong) convexity to hold for a λ ≥ 0

f (x) + ⟨∇f (x), x ′ − x⟩ + λ

2 ∥x − x ′∥2 ≤ f (x ′). (3)

How to generalize these conditions when ∥x − x ′∥2 is “replaced” by c(x , y)?
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Motivation: mirror descent
Take a convex u : Rd → R and consider its Bregman divergence

u(x ′|x) = u(x ′) − u(x) − ⟨∇u(x), x ′ − x⟩.

Assume f is smooth relatively to u [Bauschke et al., 2017] i.e.

f (x ′) ≤ f (x) + ⟨∇f (x), x ′ − x⟩ + u(x ′|x). (4)

which is equivalent to f (x ′|x) ≤ u(x ′|x).

If f is also λ-strongly convex relatively to u [Lu et al., 2018], i.e. f (x ′|x) ≥ λu(x ′|x) for λ ≥ 0,
we get (sub)linear convergence of f (xn) for the mirror descent scheme

xn+1 = argmin
x∈X

f (xn) + ⟨∇f (xn), x − xn⟩ + u(x |xn). (5)

which is equivalent to
∇u(xn+1) − ∇u(xn) = −∇f (xn). (6)

Already nice, but can we go further? To natural gradient descent and beyond?
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For simplicity, we assume that minimizers exist and are unique! Otherwise we need arguments
based on continuity, compactness. . . If we differentiate, then we work on open subsets of Rd .
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Executive summary: majorization–minimization
Let f : X → R where X is any set. Choose another set Y and a function c(x , y). Define the
upperbound

f (x) ≤ ϕ(x , y) := c(x , y) + f c(y) := c(x , y) + sup
x ′∈X

f (x ′) − c(x ′, y) (7)

Do alternating minimization (AM) of the surrogate

yn+1 = argmin
y∈Y

c(xn, y) + f c(y), (8)

xn+1 = argmin
x∈X

c(x , yn+1) + f c(yn+1). (9)

If we can differentiate and f (x) = infy c(x , y) + f c(y) (c-concavity) then we can write
(applying the envelope theorem ∇f (x) = ∇ϕ(x , ȳ(x)))

−∇xc(xn, yn+1) = −∇f (xn), (10)
∇xc(xn+1, yn+1) = 0. (11)
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Executive summary: convergence rates
Consider the sequence of AM iterates, starting from any x0,

yn → xn → yn+1

We say that f is c-cross-convex if, for all x , yn ∈ X × Y ,
f (x) − f (xn) ≥ c(x , yn+1) − c(x , yn) + c(xn, yn) − c(xn, yn+1).

c-concavity (f (x) = infy c(x , y) + f c(y)) implies, since f c(yn+1) = f (xn) − c(xn, yn+1),
f (x) − f (xn) ≤ c(x , yn+1) − c(xn, yn+1).

These conditions extend L-smoothness and (strong) convexity when c(x , y) = L
2 ∥x − y∥2

Suppose that f is c-concave and c-cross-convex, and x∗ = argminX f . Then

f (xn) − f (x∗) ≤ c(x∗, y0) − c(x0, y0)
n . (12)

Linear rates and local caracterization of c-concavity and c-cross-convexity given later.
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Formal algorithm

INPUT: a set X , a point x0 ∈ X and a function f : X → R, N a number of steps
CHOOSE: a set Y and a cost c(x , y)
DO: For ϕ(x , y) := c(x , y) + supx ′∈X f (x ′) − c(x ′, y), N steps of alternating minimization of ϕ

yn+1 = argmin
y∈Y

ϕ(xn, y)

xn+1 = argmin
x∈X

ϕ(x , yn+1),

CHECK: convergence conditions for x ∈ {x0, . . . xN}, n ∈ {0 . . . N}

f (x) − f (xn) ≥ c(x , yn+1) − c(x , yn) + c(xn, yn) − c(xn, yn+1),
f (x) − f (xn) ≤ c(x , yn+1) − c(xn, yn+1).

OUTPUT: (xn, yn)n iterates.
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Alternating minimization
Let ϕ(x , y) : X × Y → R where X , Y are any sets. Perform an alternating minimization

yn+1 = argmin
y∈Y

ϕ(xn, y)

xn+1 = argmin
x∈X

ϕ(x , yn+1),
(13)

Inspired by [Csiszár and Tusnády, 1984], we define:

Definition (Five-point property (FPP))

We say that ϕ satisfies the FPP if for all x ∈ X , y , y0 ∈ Y , with y0 → x0 → y1

ϕ(x , y1) + ϕ(x0, y0) ≤ ϕ(x , y) + ϕ(x , y0). (FP)

For λ > 0, ϕ has the λ-strong FPP if for all x ∈ X , y , y0 ∈ Y

ϕ(x , y1) + (1 − λ)ϕ(x0, y0) ≤ ϕ(x , y) + (1 − λ)ϕ(x , y0). (λ-FP)
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Alternating minimization - Remarks on FPP

Let ϕ(x , y) = c(x , y) + g(x) + h(y). Recall

ϕ(x , y1) + (1 − λ)ϕ(x0, y0) ≤ ϕ(x , y) + (1 − λ)ϕ(x , y0). (λ-FP)

Five points, but actually only x , y , y0 are free.
Actually 0 ≤ λ < 1 is enough, otherwise we converge in two steps for λ > 1.
Setting F (x) = infy∈Y ϕ(x , y), (λ-FP) can be written

F (x) ≥ F (x0) + δϕ(x , y0; x0, y1) + λ[ϕ(x , y0) − ϕ(x0, y0)]. (14)

where δc(x ′, y ′; x , y) := c(x , y ′) + c(x ′, y) − c(x , y) − c(x ′, y ′) is the cross-difference and
we have δϕ = δc .
Later we define through (λ-FP) the cross-convexity of ϕ(x , y) = c(x , y) + f c(y).
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ϕ(x , y1) + (1 − λ)ϕ(x0, y0) ≤ ϕ(x , y) + (1 − λ)ϕ(x , y0). (λ-FP)

Theorem (Convergence rates for alternating minimization)

Suppose that ϕ has a minimizer. Then:
1. For all n ≥ 0, ϕ(xn+1, yn+1) ≤ ϕ(xn, yn+1) ≤ ϕ(xn, yn).
2. If ϕ satisfies (FP). Then for any x ∈ X , y ∈ Y and any n ≥ 1,

ϕ(xn, yn) ≤ ϕ(x , y) + ϕ(x , y0) − ϕ(x0, y0)
n , so ϕ(xn, yn) − ϕ∗ = O(1/n)

3. If ϕ satisfies (λ-FP) for some λ ∈ (0, 1). Then for any x ∈ X , y ∈ Y and any n ≥ 1,

ϕ(xn, yn) ≤ ϕ(x , y) + λ[ϕ(x , y0) − ϕ(x0, y0)]
Λn − 1 ,

where Λ := (1 − λ)−1 > 1. In particular ϕ(xn, yn) − ϕ∗ = O((1 − λ)n).
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Proof of convergence rate
(i): ϕ(xn+1, yn+1) ≤ ϕ(xn, yn+1) ≤ ϕ(xn, yn) by definition of the iterates.
(ii): After rearranging terms, (FP) can be written as

ϕ(xn+1, yn+1) ≤ ϕ(x , y) + [ϕ(x , yn) − ϕ(xn, yn)] − [ϕ(x , yn+1) − ϕ(xn+1, yn+1)].

The last terms inside the brackets are nonnegative. Sum from 0 to n − 1 and use (i):

nϕ(xn, yn) ≤
n−1∑
k=0

ϕ(xk+1, yk+1) ≤ nϕ(x , y) + [ϕ(x , y0) − ϕ(x0, y0)] − [ϕ(x , yn) − ϕ(xn, yn)],

(iii): Similarly to (ii), (λ-FP) can be written as

ϕ(xn+1, yn+1) ≤ ϕ(x , y) + (1 − λ)[ϕ(x , yn) − ϕ(xn, yn)] − [ϕ(x , yn+1) − ϕ(xn+1, yn+1)].

Divide both sides by (1 − λ)n+1 and sum from 0 to n − 1( n−1∑
k=0

Λk+1
)
ϕ(xn, yn) ≤

( n−1∑
k=0

Λk+1
)
ϕ(x , y) + [ϕ(x , y0) − ϕ(x0, y0)],
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Semi-local criterion for the five-point property

ϕ(x , y1) + (1 − λ)ϕ(x0, y0) ≤ ϕ(x , y) + (1 − λ)ϕ(x , y0). (λ-FP)

There exists a (rather involved) semi-local characterization if X , Y ⊂ Rd ,

Theorem (Sufficient conditions for the five-point property)

Suppose that ϕ(x , y) = c(x , y) + g(x) + h(y) has a minimizer, c ∈ C4(X × Y ) has nonnegative
cross-curvature, ∇2

xy c(x , y) is everywhere invertible, X and Y have c-segments. Assume
further that F (x) = infy∈Y ϕ(x , y) is differentiable on X.

If t 7→ F (x(t)) is convex on every c-segment t 7→ (x(t), y) satisfying ∇xϕ(x(0), y) = 0,
then ϕ satisfies the five-point property (FP).
Let λ > 0. If t 7→ F (x(t)) − λϕ(x(t), y) is convex on the same c-segments as for (i), then
ϕ satisfies the strong five-point property (λ-FP).
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Gradient descent with a general cost

Start with
f (x) ≤ c(x , y) + f c(y) := c(x , y) + sup

x ′∈X
f (x ′) − c(x ′, y)

Do alternate minimization

yn+1 = argmin
y∈Y

c(xn, y) + f c(y), (15)

xn+1 = argmin
x∈X

c(x , yn+1) + f c(yn+1). (16)

If f (x) = infy c(x , y) + f c(y) (c-concavity), then it is equivalent to

−∇xc(xn, yn+1) = −∇f (xn), (17)
∇xc(xn+1, yn+1) = 0. (18)
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Gradient descent with a general cost - Examples

−∇xc(xn, yn+1) = −∇f (xn),
∇xc(xn+1, yn+1) = 0.

In the following: Y = X , and c is minimal on the diagonal {x = y}, so xn+1 = yn+1 (x -update)
1. Gradient descent: c(x , y) = L

2 ∥x − y∥2 and xn+1 − xn = − 1
L∇f (xn).

2. Mirror descent: c(x , y) = u(x |y), so ∇u(xn+1) − ∇u(xn) = −∇f (xn).
3. Natural gradient descent: c(x , y) = u(y |x), so xn+1 − xn = −(∇2u(xn))−1∇f (xn).
4. A nonlinear gradient descent: c(x , y) = ℓ(x − y), so xn+1 − xn = −∇ℓ∗(∇f (xn)).
5. Riemannian gradient descent: (M, g) a Riemannian manifold. Take X = Y = M and

c(x , y) = L
2 d2(x , y), so xn+1 = expxn(− 1

L∇f (xn)),

Cool, but what do you need to converge?
↪→ Something like L-smoothness and µ-strong convexity
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c-concavity

Definition (c-concavity)

We say that a function f : X → R is c-concave if there exists a function h : Y → R such that

f (x) = inf
y∈Y

c(x , y) + h(y), (19)

for all x ∈ X . If f is c-concave, then we can take h(y) = f c(y) = supx ′∈X f (x ′) − c(x ′, y).

f (x)
x 7→ c(x , y) + f c(y)

x 7→ c(x , y) + α

Figure: The c-transform of f . For a fixed y ∈ Y , the dashed line represents a function x 7→ c(x , y) + α
majorizing f . The smallest of such functions is x 7→ c(x , y) + f c(y), here represented in solid line.
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c-cross-convexity

We want f (x) − f (xn) ≥ c(x , yn+1) − c(x , yn) + c(xn, yn) − c(xn, yn+1) with
−∇xc(xn, yn+1) = −∇f (xn) and ∇xc(xn, yn) = 0.

Recall the cross-difference of c defined by
δc(x ′, y ′; x , y) := c(x , y ′) + c(x ′, y) − c(x , y) − c(x ′, y ′).

Definition (cross-convexity)

Suppose that f and c are differentiable. We say that f is c-cross-convex if for all x , x̄ ∈ X and
any ȳ , ŷ ∈ Y verifying ∇xc(x̄ , ȳ) = 0 and −∇xc(x̄ , ŷ) = −∇f (x̄) we have

f (x) ≥ f (x̄) + δc(x , ȳ ; x̄ , ŷ). (20)

In addition let λ > 0. We say that f is λ-strongly c-cross-convex if we have

f (x) ≥ f (x̄) + δc(x , ȳ ; x̄ , ŷ) + λ(c(x , ȳ) − c(x̄ , ȳ)). (21)
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Sketch of alternating minimization

xnxn+1

f (x)
x 7→ c(x , yn+1) + f c(yn+1)

Figure: The dashed functions represent some surrogates x 7→ c(x , y) + f c(y) for various values of y . The
solid line surrogate is the one for which the value at xn is minimized, i.e. y = yn+1.

Let ϕ(x , y) = c(x , y) + f c(y) and λ ≥ 0. If f is c-concave and λ-strongly c-cross-convex then
ϕ satisfies (λ-FP).
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Local criteria
If X , Y ⊂ Rd , then we have a local criterion:

Theorem (Local criterion for c-concavity [Villani, 2009, Theorem 12.46])

Suppose that c ∈ C4(X × Y ) has nonnegative cross-curvature, ∇2
xy c(x , y) is everywhere

invertible, X and Y have c-segments. Let f be a twice-differentiable function. Suppose that for
all x̄ ∈ X, there exists ŷ ∈ Y satisfying −∇xc(x̄ , ŷ) = −∇f (x̄) and such that

∇2f (x̄) ≤ ∇2
xxc(x̄ , ŷ).

Then f is c-concave. (Converse is also true)

If f is c-cross-convex then, whenever ∇xc(x̄ , ȳ) = 0 and −∇xc(x̄ , ŷ) = −∇f (x̄), we have

∇2f (x̄) ≥ ∇2
xxc(x̄ , ŷ) − ∇2

xxc(x̄ , ȳ). (22)

(Converse is maybe true, a semi-local condition with c-segments does exist though)
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Theorem (Corollary/Convergence rates for GD with general cost)

1. Suppose that f is c-concave. Then we have the descent property+stopping criterion

f (xn+1) ≤ f (xn) − [c(xn, yn+1) − c(xn+1, yn+1)] ≤ f (xn),

min
0≤k≤n−1

[c(xk , yk+1) − c(xk+1, yk+1)] ≤ f (x0) − f∗
n .

2. Suppose in addition that f is c-cross-convex. Then for any x ∈ X , n ≥ 1,

f (xn) ≤ f (x) + c(x , y0) − c(x0, y0)
n . (23)

3. Suppose in addition that f is λ-strongly c-cross-convex for some λ ∈ (0, 1). Then for any
x ∈ X , n ≥ 1, setting Λ := (1 − λ)−1 > 1

f (xn) ≤ f (x) + λ (c(x , y0) − c(x0, y0))
Λn − 1 , (24)
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Forward–backward splitting

min
x∈X

F (x) := f (x) + g(x) ≤ ϕ(x , y) := c(x , y) + f c(y) + g(x) (25)

Additional assumption: for each x ∈ X , infy∈Y c(x , y) = 0.

yn+1 = argmin
y∈Y

c(xn, y) + f c(y) + g(xn), (26)

xn+1 = argmin
x∈X

c(x , yn+1) + f c(yn+1) + g(x). (27)

If f is c-concave, then equivalent to

−∇xc(xn, yn+1) = −∇f (xn), (28)
−∇xc(xn+1, yn+1) = ∇g(xn+1). (29)
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Forward–backward splitting: cross-concavity

Definition (cross-concavity)

We say that a differentiable function f : X → R is c-cross-concave if for all x , x̄ ∈ X and any
ȳ , ŷ ∈ Y verifying ∇xc(x̄ , ȳ) = 0 and −∇xc(x̄ , ŷ) = −∇f (x̄) we have

f (x) ≤ f (x̄) + δc(x , ȳ ; x̄ , ŷ).

In addition let λ > 0. We say that f is λ-strongly c-cross-concave if under the same conditions
as above we have

f (x) ≤ f (x̄) + δc(x , ȳ ; x̄ , ŷ) − λ(c(x , ȳ) − c(x̄ , ȳ)).

Caveat: f c-cross-concave is not in general equivalent to (−f ) c-cross-convex.
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Theorem (Convergence rates for Forward–backward splitting)

Take ȳ0 ∈ argminy∈Y c(x0, y).
1. Suppose that f is c-concave. Then we have the descent property

f (xn+1) + g(xn+1) ≤ f (xn) + g(xn).

2. Suppose in addition that f is c-cross-convex and that −g is c-cross-concave. Then for any
x ∈ X, n ≥ 1,

f (xn) + g(xn) ≤ f (x) + g(x) + c(x , ȳ0)
n .

3. Suppose in addition that f is λ-strongly c-cross-convex and that −g is µ-strongly
c-cross-concave for some λ, µ ∈ [0, 1) with λ + µ > 0. Then for any x ∈ X, n ≥ 1,

f (xn) + g(xn) ≤ f (x) + g(x) + (λ + µ) c(x , ȳ0)
Λn − 1 , with Λ = 1 + µ

1 − λ
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Mirror descent
We take

c(x , y) = u(x |y) := u(x) − u(y) − ⟨∇u(y), x − y⟩, (30)
We love it because

it generalizes the square of Euclidean distances;
it characterizes convexity, since u(x |y) ≥ 0 iff u is convex.

Recall our scheme

−∇xc(xn, yn+1) = −∇f (xn),
∇xc(xn+1, yn+1) = 0.

Our gradient descent thus gives

∇u(yn+1) − ∇u(xn) = −∇f (xn),
∇u(xn+1) = ∇u(yn+1).

Combining, we get mirror descent in gradient form ∇u(xn+1) − ∇u(xn) = −∇f (xn).
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Definition (Relative smoothness and convexity)

Let L > 0, λ > 0, and consider a twice differentiable function f : X → R.
1. f is smooth relatively to u if u − f is convex [Bauschke et al., 2017]. Equivalently, if

∇2f ≤ ∇2u, or if f (x ′|x) ≤ u(x ′|x), i.e. f (x ′) ≤ f (x) + ⟨∇f (x), x ′ − x⟩ + u(x ′|x).

2. f is λ-strongly convex relatively to u [Lu et al., 2018] if f − λu is convex. Equivalently, if
∇2f ≥ λ∇2u, or if f (x ′|x) ≥ λu(x ′|x).

Naturally we want to minimize the upperbound given 1.:

xn+1 = argmin
x∈X

ϕ̃(x , xn) = f (xn) + ⟨∇f (xn), x − xn⟩ + u(x |xn) = f (x) + (u − f )(x |xn). (31)

Buy we can also do
ϕ(x , y) = u(x |y) + f c(y).

Actually we have ϕ̃(x , ỹ) = ϕ(x , y) when ∇u(y) = ∇u(ỹ) − ∇f (ỹ) (just a reparameterization).
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Mirror descent: c-concavity and cross-convexity

Proposition (c-concavity is relative smoothness)

Suppose that ∇u is surjective as a map from X to X ∗. Then f is c-concave for
c(x , y) = u(x |y) if and only if f is smooth relatively to u.

Proposition (cross-convexity is convexity)

Take c(x , y) = u(x |y). Then f is c-cross-convex if and only if f is convex. More generally, let
λ > 0. Then f is λ-strongly c-cross-convex if and only if f is λ-strongly convex relatively to u.

We recover the classical convergence rates:
sublinear when f is convex and smooth relatively to u [Bauschke et al., 2017]
linear if in addition f is λ-strongly convex relatively to u [Lu et al., 2018].
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Natural gradient descent

Take Y = X and consider the cost

c(x , y) = u(y |x) = u(y) − u(x) − ⟨∇u(x), y − x⟩.

Consequently
−∇xc(x , y) = ∇2u(x)(y − x).

Our gradient descent thus gives

yn+1 = xn − ∇2u(xn)−1∇f (xn),
∇xc(xn+1, yn+1) = 0.

Combining, we get natural gradient descent: xn+1 − xn = −∇2u(xn)−1∇f (xn).
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Lemma (Natural gradient descent: c-concavity and cross-convexity)

Let f : X → R be twice differentiable.
1. f is c-concave if and only if for all x , ξ,

∇2f (x)(ξ, ξ) ≤ ∇3u(x)
(
∇2u(x)−1∇f (x), ξ, ξ

)
+ ∇2u(x)(ξ, ξ); (32)

2. Let λ ≥ 0. f is λ-strongly c-cross-convex if and only if, for all x , ξ,

∇2f (x)(ξ, ξ) ≥ ∇3u(x)
(
∇2u(x)−1∇f (x), ξ, ξ

)
+ λ∇2u(x)(ξ, ξ). (33)

These assumptions give new global rates for NGD!
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Newton
Let Y = X and consider the cost

c(x , y) = f (y |x) = f (y) − f (x) − ⟨∇f (x), y − x⟩.

Then gradient descent with general cost reads

xn+1 − xn = −∇2f (xn)−1∇f (xn). (34)

This is Newton’s method. The smoothness and convexity assumptions on f can be combined as
follows. Let 0 ≤ λ < 1 and consider the (affine-invariant!) property: for all x , ξ,

0 ≤ ∇3f (x)
(
(∇2f )−1(x)∇f (x), ξ, ξ

)
≤ (1 − λ)∇2f (x)(ξ, ξ). (35)

This is not self-concordance (check ex and log(x)), i.e.

|∇3f (x)(ξ, ξ, ξ)| ≤ 2M
(
∇2f (x)(ξ, ξ)

)3/2
, ∀x , ξ ∈ X . (36)

and our property gives global rates (which self-concordance doesn’t)!
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Riemannian gradient descent
For c(x , y) = L

2 d2(x , y) on a manifold M away from the cut locus, the relation ξ = −∇xc(x , y)
defines a tangent vector ξ ∈ TxM, i.e. for exp the (Riemannian) exponential map

y = expx (ξ/L).

We obtain as before xn+1 = expxn

(
− 1

L∇f (xn)
)
.

Proposition

Let c(x , y) = L
2 d2(x , y). Suppose that (M, g) has nonnegative sectional curvature. Then

1. f geodesically convex =⇒ f c-cross-convex.
2. −g c-cross-concave =⇒ g geodesically convex.

Suppose that (M, g) has nonpositive sectional curvature. Then
1. f c-cross-convex =⇒ f geodesically convex.
2. g geodesically convex =⇒ −g c-cross-concave.
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Riemannian gradient descent

1. f is c-concave;
2. f has L-Lipschitz gradients;
3. ∇2f ≤ Lg;
4. f (x) ≤ f (x̄) + ⟨∇f (x̄), ξ⟩ + L

2 d2(x , x̄), where x = expx̄ (ξ).

Proposition

The following statements hold.
3 ⇐⇒ 4
Suppose that (M, g) has nonnegative curvature. Then 1 =⇒ 3.
Suppose that (M, g) has nonpositive curvature. Then 3 =⇒ 1.
2 =⇒ 3
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POCS (Projection Onto Convex Sets)

Let (H, ∥·∥) be a Euclidean space and let B, C be two closed convex subsets of H. The POCS
algorithm, see [Bauschke and Combettes, 2011], searches for B ∩ C by successive projections
onto B and C : given xn ∈ B, compute

yn+1 = argmin
y∈C

∥xn − y∥,

xn+1 = argmin
x∈B

∥x − yn+1∥.
(37)

There are at least two ways to write POCS as an alternating minimization method:
1. Take X = Y = H, with the cost c(x , y) = 1

2∥x − y∥2 and the indicator functions g = ιB
and h = ιC , set ϕ(x , y) = c(x , y) + g(x) + h(y).

2. Take X = B, Y = C and consider the function ϕ(x , y) = 1
2∥x − y∥2.

In both cases, we can do the analysis to get rates. Same results when ∥x − y∥ is replaced by
u(x |y) (Bregman projections).
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Sinkhorn algorithm/Entropic optimal transport
Let (X, µ) and (Y, ν) be two probability spaces and take the set of couplings over X × Y (i.e.
joint laws) having marginal µ (resp. ν)

C = Π(µ, ∗), D = Π(∗, ν), Π(µ, ν) = Π(µ, ∗) ∩ Π(∗, ν)
Given ε > 0 and a µ ⊗ ν-measurable function b(x , y), the entropic optimal transport problem is

min
π∈Π(µ,ν)

KL(π|e−b/εµ ⊗ ν), where KL(π|π̄) =
∫

log (dπ/dπ̄) dπ (38)

The Sinkhorn algorithm solves (38) by initializing π0(dx , dy) = e−b(x ,y)/εµ(dx)ν(dy) and by
alternating “Bregman projections” onto Π(µ, ∗) and Π(∗, ν),

γn+1 = argmin
γ∈Π(µ,∗)

KL(γ|πn), (39)

πn+1 = argmin
π∈Π(∗,ν)

KL(π|γn+1). (40)
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γn+1 = argmin
γ∈Π(µ,∗)

KL(γ|πn), (41)

πn+1 = argmin
π∈Π(∗,ν)

KL(π|γn+1). (42)

The iterates of Sinkhorn (the ones above) are also given by

γn+1 = argmin
γ∈Π(µ,∗)

KL(πn|γ), (43)

πn+1 = argmin
π∈Π(∗,ν)

KL(π|γn+1). (44)

Csiszár and Tusnády show (FP) directly [Csiszár and Tusnády, 1984, Section 3]. Alternatively
KL is a Bregman divergence and jointly convex, so

F (π) = inf
γ∈Π(µ,∗)

Φ(π, γ) = KL(pXπ|µ) is convex. KL(pXπn|µ) ≤ KL(π|γ0)
n .
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Expectation–Maximization (EM)
Let X be a set of observed data, Z be a latent space and let {pθ ∈ P(X × Z) : θ ∈ Θ} be a
statistical model, where Θ is a set of parameters. Having observed µ ∈ P(X) we want to find
θ ∈ Θ that maximizes the likelihood. This is equivalent to

min
θ∈Θ

F (θ) = KL(µ|pXpθ), (45)

We use the data processing inequality
F (θ) = KL(µ|pXpθ) ≤ KL(π|pθ) =: Φ(θ, π), (46)

Equality holds for π = µ(dx)
pXpθ(dx)pθ(dx , dz). The EM algorithm is [Neal and Hinton, 1998]:

πn+1 = argmin
π∈Π(µ,∗)

KL(π|pθn), (E-step)

θn+1 = argmin
θ∈Θ

KL(πn+1|pθ). (M-step)

It can be written as either mirror descent (convex if pθ = K ⊗ θ [Aubin-Frankowski et al., 2022]) or a
projected natural gradient descent (convex if pθ is an exponential family [Kunstner et al., 2021])
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Conclusion: What have we seen?
To minimize f on a set X , we chose a set Y and a cost c(x , y).
For ϕ(x , y) := c(x , y) + supx ′∈X f (x ′) − c(x ′, y), we did alternating minimization of ϕ

yn+1 = argmin
y∈Y

ϕ(xn, y)

xn+1 = argmin
x∈X

ϕ(x , yn+1).

We also did a forward–backward version of this and covered MD/NGD/RGD/Sinkhorn/EM. . .
We have seen that (sub)linear rates could be obtained based on

f (x) − f (xn) ≥ c(x , yn+1) − c(x , yn) + c(xn, yn) − c(xn, yn+1),
f (x) − f (xn) ≤ c(x , yn+1) − c(xn, yn+1).

Tell me about your favorite algorithm and we can see if it is an alternating minimization!
Thank you for your attention!

Other interests of mine: backward SDEs+optimal control (V. de Bortoli), kernels+ mean
field control (A. Bensoussan)
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